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Theorie und Praxis der Berechnung von Seilkonstruktionen
Theory and Practice of Calculation of Cable Structures

Théorie et pratique du calcul de constructions en cibles

J. SZABO M. BERENYI
Prof. Dr., Technische Universitit, Dipl.-Ing., Budapest
Budapest
Einleitung

Professor LEONHARDT hat im Einfiihrungsbericht [1] den gegenwirtigen
Entwicklungsstand der Konstruktion und Berechnung von Seilnetzen kurz
zusammengefasst und einige ungeloste Fragen der Berechnung dargelegt. Er
weist darauf hin, dass zurzeit die grosste Unsicherheit bei der Annahme der
Form des mit Eigenlast beanspruchten Netzes besteht.

Fiir die Bildung der Form des Netzes hat Orro FREI [2] zahlreiche gute
Vorschlige gegeben und damit zum Formenreichtum der tatsdchlich ausge-
fiilhrten Netzwerke beigetragen. Die Zusammenhinge fiir die exakte, auf der
Theorie 2. Ordnung beruhende Untersuchung der Netze wurden schon von
mehreren Verfassern erarbeitet; unter ihnen soll hier bloss StEV [3] erwdhnt
werden, mit Hinweis auf die von MORTENSEN [4] angebrachten kritischen
Bemerkungen zur Konvergenz der in den sogenannten exakten Verfahren vor-
geschlagenen Iterationen.

Die Verfasser der vorliegenden Abhandlung schlagen — mit Riicksicht auf
die Erfahrungen verschiedener Autoren — eine allgemeine exakte Theorie zur
Untersuchung der Stabnetze vor. Auf Grund dieser Theorie wird ein numeri-
sches Verfahren zur Berechnung des Stabnetzes vorgefiihrt.

Threm Ziel entsprechend besteht die Abhandlung aus drei Teilen: Im ersten
Teil wird die sehr einfach formulierte Matrix-Differentialgleichung des Stab-
netzes endlichen Freiheitsgrades und die numerische Losungsmethode der
entsprechenden Anfangswertaufgabe erlautert. Mit Hilfe dieser Methode kann
das Problem mit beliebiger Genauigkeit gelost werden. Die als Grundlage des
zu formulierenden Algorithmus dienende Iteration hat sich auch bei der
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Losung sehr «schlechter» Aufgaben als konvergent erwiesen. Bei der Anwen-
dung des im ersten Teil beschriebenen Verfahrens wird irgendeine mégliche
(innerhalb der Moglichkeiten beliebig gewihlte) Ausgangslage des Stabnetzes
angenommen. Da die vorteilhafte Anwendbarkeit des Verfahrens offensicht-
lich dadurch beeinflusst wird, wie «weit entfernt» die Ausgangslange von der
der tatsiéchlich vorgegebenen Last entsprechenden Lage ist, wird in den beiden
folgenden Teilen der Abhandlung die unserseits erarbeitete und mehrfach
erprobte, zur Bestimmung des Ausgangslage empfohlene Methode besprochen.

Im zweiten Teil wird ein spezieller Typ des sogenannten rechtwinkligen
Seilnetzes untersucht, ausgehend von der Uberlegung, dass die direkte Berech-
nung des erwihnten Netztyps sehr einfach und selbst im Falle gross dimen-
sionierter (aus vielen Seilen bestehender) Netze noch mit Hilfe des operativen
Speichers der Rechenanlage moglich ist.

Im dritten Teil wird dargelegt, wie man mit Hilfe des rechtwinkligen Seil-
netzes ein Stabnetz konstruieren kann, dessen Knotenpunkte an (gewissen
Uberlegungen entsprechenden) Hauptkriimmungslinien liegen und seine Stéibe
die diese Punkte verbindenden Sehnen der Hauptkrimmungslinien sind. Das
als Berechnungsgrundlage dienende rechtwinklige Seilnetz ist keine stetige
Flache; das Richtungsfeld der Hauptkrimmungslinien kann daher mit den
in den Knotenpunkten des rechtwinkligen Seilnetzes liegenden Hauptrichtun-
gen angenihert werden.

1. Die Zustandsiinderungsgleichung des Stabnetzes

Es wird angenommen, dass das Stabnetz aus geradachsigen, ideal elasti-
schen Stdben mit konstantem Querschnitt aufgebaut ist, so dass die Stdbe
mit reibungsfreien Gelenken aneinandergeschlossen sind. Ein Teil der Knoten-
punkte des Stabnetzes wird am steifen Rand angeschlossen. (Das an elasti-
schem Rand angeschlossene Stabnetz wird an anderer Stelle [5] ausfiihrlich
besprochen.)

Sj,k
O/ l

k
Fig. 1.

i

Die Stabkrifte des Stabnetzes gemiiss Fig. 1 deutend, wird das Gleichgewicht
des mit «j» bezeichneten Knotenpunktes mit Gleichungen der Form

Y B  tpy =0 (p=a.4,2) (1)
k ik

ausgedriickt, wobei sich die Addierung auf alle Stibe erstreckt, in deren
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Symbol «j» enthalten ist. Aus der Gleichung (1) ergibt sich die Feststellung,
dass bei vorgegebenen Knotenpunktkoordinaten jedem beliebigen Stabkraft-
system s ein eindeutig bestimmbares Knotenpunktlastsystem p zugehort
(umgekehrt gilt das allgemein nicht!).

Es sei angenommen, dass der Vektor dr der Knotenpunktkoordinaten eine
infinitesimale Anderung erleidet, wihrend sich der Vektor der Stabkrifte mit
dem Zuwachs ds verandert. Die Gesamtheit der die Verschiebungen der End-
punkte des Stabes (j, k) und die Vertriglichkeit der Stabdehnung ausdriicken-
den Gleichungen

Y (“k‘f‘f dp; + HIEE duk) + B} yds; +dt; = 0 (2)

T\ bk Uik

(r=2,9,2)

wird Verschiebungs-Differentialgleichungssystem der Stabnetz-Knotenpunkte
genannt und in kurzer Form mit der Matrizengleichung

Gdr+Fds+dt =0 (3)

bezeichnet, wobei G die geometrische Matrix des Stabnetzes bedeutet, mit den
Stabindizes (j, k) als Zeilenindizes und den Komponenten von r als Spalten-
indizes. Die Elemente der Matrix G konnen folgenderweise formuliert werden:

Gy = (89— 800 LE 11

Liw
N 1, falls o=y,
%3 710, falls o=j.

o,

Wie daraus ersichtlich, ldsst sich bei G und F nach Gleichung (3) und will-
kiirlichem, jedoch infinitesimal kleinem Wert von dr und ds die der Vertrig-
lichkeit entsprechende Stabdehnung dt eindeutig bestimmen.

Es ist leicht verstédndlich, dass die Gleichgewichtsgleichung (1) zur Matrizen-

gleichung
G*s+p=0 (4)

als Gleichgewichtsgleichung des Stabnetzes zusammengefasst werden kann, wobei
G* die Transponierte der vorher erwdahnten Matrix G ist.

Bei Anderung der Knotenpunktkoordinaten des Stabnetzes mit dr haben
sich die Stabkrafte um ds verdndert, und der dem Gleichgewicht der Knoten-
punkte entsprechende Lastvektor wird sich offensichtlich um dp dndern. Das
verdnderte Gleichgewicht stellt sich jedoch bei einer gednderten Geometrie
des Stabnetzes ein. Diese neue Lage wird durch eine Matrizengleichung

(G*+dG*)(s+ds)+(p+dp) =0 (5)

ausgedriickt. Mit Riicksicht jedoch darauf, dass G ausschliesslich von den
Knotenpunktkoordinaten abhéngig ist, kann der Zusammenhang
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oG*

(G*+dG*) = G*+=Zdr+ - (6)

r

aufgeschrieben werden, wobei mit dem Symbol %‘:"* der Ableitungstensor der

Matrix G* bezeichnet wurde. Nach Einsetzen des Zusammenhanges (6) in die
Gleichung (5), Durchfithrung der Multiplikation und Vernachlissigung der
Potenzen, bzw. Produkte der Differentiale erhidlt man das folgende Ergebnis:

0 G*
G*s-{—G*ds—l—(?dr)s—i—p—i—dp:O. (7)

Beriicksichtigt man noch den Zusammenhang (4), so erhdlt man aus der
Gleichung (7) die Stabkraftinderungs-Differentialgleichung des Stabnetzes:

%
(88G dr)s+G*ds+dp=0. (8)

r

Das mit dem kontravarianten Vektor dr und dem kovarianten Vektor s

gebildete Produkt des Tensors aa(';_*

unabhingig; es lasst sich also der folgende Zusammenhang aufschreiben:

0 G* 0 G*
[8r s]dr=Ddr=( 5

ist von der Reihenfolge dieser Faktoren

dr) s

r

und auf Grund dieses Zusammenhanges kann die Gleichung (8) auf die fol-
gende Form gebracht werden:

Ddr+ G*ds+dp = 0. (9)

Die die Gleichungen (9) und (3) zusammenfassende Gleichung

[IG) g*] [Zzl:] + [35] =0 (10)

wird Zustandsinderungs-Differentialgleichung des Stabnetzes genannt.
Der Block D der Gleichung (10) ist symmetrisch, seine Elemente liefert
~der Ausdruck:
(80,3'_80,15) (C,u;i,kcv;y',k_su,v)s_ - D
; 5.k
3G, k) ik
(wv=2,9y,2,0 =j,k),

[N

T _ Py
wobei: Cpijke =7 = Gy
ik
Fi — He
C,. g = ———— == G ..
wik,j Mt d, ko
Z]',k

L = V(wk_xj)2+ (Y —Y;)* + (2, — %)
und S = {

v

1, falls p=v,
0, falls p=+v.
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Von einem beliebigen Zustand r, s, und dementsprechenden G, ausgehend,
kann auf Grund von (4) die diesem Zustand entsprechende Last

Po=—G¢ s, (11)

bestimmt werden. Im Besitz der willkiirlich gewdhlten Stabkrifte (s,) lisst sich
in direkter Weise die elastische Stabdehnung und jene weitere Stabdehnung ¢,
errechnen, die erforderlich ist, damit sich die urspriingliche Lédnge «!» der ein-
zelnen Stdbe auf eine Lange veréndert, die das Einpassen zwischen die will-
kiirlich gewahlten Knotenpunkte r, ermoglicht. Mit Hilfe der Gleichung (10)
kann der der vorgegebenen Last p und Stabdehnung t entsprechende Zustand
r, s einer beliebigen Genauigkeitsvorschrift geméss bestimmt werden. Falls
man ndmlich die Gleichung (10) als mit der Differenz der dem willkiirlich
gewihlten Ausgangszustand (r,, s,) zugehdrenden Vektoren p,,t, und der
vorgegebenen Vektoren p, t:

4po =P —Po

Aty =t—t,

mit einer vorgeschriebenen Genauigkeit 16sbar betrachtet, so konnen die Vek-
toren 4 r,, 4s, aus der Gleichung

D, G§l[4dr, dpy]
[Go F ] [Aso] * [Ato] =90
berechnet werden. Mit Hilfe dieser Vektoren sind

ri=ry+4dr,

und s; = s,+4s,

bestimmt, und mit Hilfe der entsprechenden Blécke G,, D, lassen sich die
vertriglichen Vektoren p,, t; und danach mit diesen die Vektoren

4p,=p—p1;
At =t—1t,

errechnen. Das Verfahren in diesem Sinne weiterfithrend, ist es leicht kon-
trollierbar, ob die mit den Léngen der Vektoren (4 p,,4d¢,), (dp,,4¢,),...,
dp;,4¢;),. .. gebildete Folge monoton abnimmt oder nicht. Im letzteren
Fall kann, durch Verminderung der endlichen Ausgangszuwachse 4 p,,d4¢,
auf ed py,edt,(0<e<1l), die Konvergenz des Verfahrens immer wiederher-
gestellt werden.

Mit dem nachstehenden, zu diesem Zweck erarbeiteten und numerisch aus-
filhrlich analysierten Zahlenbeispiel werden unsere Feststellungen gut ver-
anschaulicht.

Zur Untersuchung der Konvergenzverhiltnisse der Zustandsdnderungs-
gleichung (10) wurde als Extremfall das geméiss Fig. 2 angeordnete, in einer
horizontalen Ebene liegende Stabnetz gewiihlt.
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=X

Fig. 2.

Die Anfangsbeanspruchung der lings der drei Diagonalen des Sechseckes
gelegenen Stibe war eine Zugkraft von s=2,5Mp; in den iibrigen Stiben der
Konstruktion wurde keine Anfangsbeanspruchung angenommen. In den Punk-
ten 2 und 14 wurde elastische Stiitzung angenommen, mit einer Federkonstante
von p =100 Mp/m. Die Stiitzpunkte der Diagonalstédbe sind unverschieblich.

Das Stabnetz ist mit einer vertikalen, im Mittelpunkt angreifenden Einzel-
last von der Grosse P =2,0 Mp beansprucht.

Die numerische Priifung wurde mit der Laststufe 4 P=0,25 P begonnen,
wobei das Verfahren nicht konvergent war. Der Versuch wurde danach mit
den Werten 0,20 P und 0,10 P fortgesetzt, bis sich schliesslich bei einer Last-
annahme von 4 P=0,05P (=0,1Mp) das Verfahren als konvergent erwies.
Bei der ersten Laststufe hat die relative Genauigkeit nach 43 Iterations-
schritten den Wert 10~° erreicht. Auf Fig. 3 ist die Anzahl der bei den ein-
zelnen Laststufen erforderlichen Iterationsschritte dargestellt, wihrend Fig. 4
die durch die stufenweise Lasterhohung erfolgende zentrische Durchbiegung
veranschaulicht.

2. Das orthogonale Seilnetz

Es wurde bereits in der Einleitung betont, dass wir das orthogonale Seilnetz
als Modell nicht geeignet finden, um mit seiner Hilfe die allgemeine Analyse
des Stabnetzes durchfithren zu kénnen. Obwohl friiher [6], [7] ein Versuch
unternommen wurde, die Zustandséinderung des auf elastischen Rand gespann-
ten Seilnetzes — und gleichzeitig auch die horizontalen Verschiebungen der
Knotenpunkte, sowie den Einfluss der Veriinderung der Seilkrifte — auf Grund
dieses Modells zu untersuchen, besteht kein Zweifel, dass dieses Verfahren
selbst mit grossem Aufwand nur Néherungswerte liefern kann.
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Wenn man jedoch dieses in rechnerischer Hinsicht sehr vorteilhafte Modell
zweckentsprechend, ndmlich zur exakten Berechnung einer moglichen Aus-
gangsform des Netzes benutzt, so ldsst sich unbedingt ein vorteilhaftes Hilfs-
mittel zur allgemeinen Analyse der Stabnetze gewinnen. Das Modell des ortho-
gonalen Seilnetzes wird durch Erfiillung des einfachsten Bedingungssystems
brauchbar gemacht:

a) Die Seile bilden im Grundriss eine dquidistante orthogonale Masche und
sind auf den in vorgeschriebener Hohe befindlichen Punkten des steifen,
rechteckférmigen Randes reibungsfrei gelagert.
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b) Die Hohenlage der im Grundriss einander schneidenden Seile ist (im Schnitt-
punkt) dieselbe. '

¢) Das Netz wird ausschliesslich mit den auf die Knotenpunkte konzentrierten
vertikalen Kréaften belastet. ,

d) Die einzelnen Seile verschieben sich unter Einfluss der Belastung nur in

vertikaler Ebene. ‘
e) Langs der einzelnen Seile ist die horizontale Komponente der Seilkraft eine

positive Konstante von vorgegebener Grosse.

Zur Behandlung dieses Modells geniigt das Aufschreiben der Gleichgewichts-
bedingungen, in denen die vertikale Koordinate der Knotenpunkte als Unbe-
kannte enthalten ist. Die ndhere Erlduterung der Aufgabe ist in [8] enthalten;
an dieser Stelle soll nur der Gedankengang der Berechnung, bzw. die zur
Formulierung des Modells dienende Matrizengleichung kurz dargestellt werden.

Die Skizze des Modells mit den angewandten Symbolen ist auf Fig. 5 dar-
gestellt.

W E \n ) b
L Zon Hyt
Hy2
Zo2 Hym
Zmn
Z
Znt 2 Hxn
21
= melI \
™l \
Fig. 5
H Hx2
x1

Das Gleichgewicht des Knotenpunktes j, £ wird mit der Gleichung

H, H,;

jd—k( 21kt 22~ 2 n) T (<2 T 22— Zea) = B (12)
ausgedriickt, und die Gesamtheit der Gleichgewichtsgleichungen kann in der
Matrizengleichung

1
b

1

- H,Z,, (13)

1 1
ECzZHx_I— HyZCy=P+&Z0wa+
zusammengefasst werden. Diese letztere Gleichung wird zweckméssiger in

nachfolgender Form aufgeschrieben:

A,Z+7Z4,=Q, (14)
wo A, =1H51Cx,
a
1 —1
A, =-C H,

vob
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1
b
G=12,....m; k=1,2,...,n),

1
Q =gl = HJIPH9?1+5H;71Z0¢;+ Z,, H1,

C, = [cjrl; Cie = —0;p1+28; =8 ki1,
(j)k == 1?29 .. 'Jm)ﬁ

C, =[c¢;l; Cik = _Sj,k—1+28j,k_8j,k+1r
g, k=1,2,...,n),

H, = [ij,k]; Hacj,lc = 8j,kak7
(g, k=1,2,...,n),

H, = [Hy;l; Hy;w =0;,Hy,

g, k=1,2,...,m),

ZOy = [z()y:j,k]; Royij e = Bl,jzo,k+8m,jzm4-l,k’
G=12,....m; k=1,2,...,n),

Zyy = [Zogijuls Roxij, b = 81,kzj,0+8n,k i 41
G=12,....,m; k=1,2,...,n),

N 1, falls o=17,
o7 )0, falls o %7,
Z =[zj,k]’ (j=1,2,...,m; k—_~1,2,...,n),

P =[F,] G=1.2,....,m; k=1,2...,n).

Zur Losung der Gleichung (14) wurden bei unseren numerischen Unter-
suchungen zwei Verfahren angewandt. Beim einen — allgemein tiiblichen —
Verfahren wird die Matrizengleichung (14) zur Vektorengleichung

Az =gq (15)

transformiert und bei der Losung der Vorteil ausgenutzt, dass 4 eine sym-
metrische Bandmatrix der Bandbreite 2m+1 oder 27+ 1 ist. Beim anderen
Verfahren wird die Spektralauflosung der Koeffizientenmatrizen 4, und 4
angewandt und die Matrizengleichung (14) direkt gelost.

Wenn das Netz mn Innenpunkte (Knotenpunkte) besitzt, so enthilt die
Matrix Am?n? Elemente, von denen in jeder Zeile hochstens 5 von Null ver-
schieden sind. Unter Ausnutzung der Symmetrie und Bandstruktur der Matrix
ist die Anzahl der zu speichernden Elemente — m <n angenommen — (m + 1) m n.
Bei relativ nicht zu grossem m und n kann die Speicherung bei der Maschinen-
rechnung nur noch mit Peripheriespeicher gelost werden. Im Falle m > 10,
bzw. n> 10 wird die Anzahl der zu speichernden Elemente der Koeffizienten-
matrizen nach Gleichung (14) im Verhéltnis zur Anzahl der zu speichernden
Elemente der Bandmatrix mindestens um eine Grossenordnung kleiner.

Die Losung der Gleichung (14) kann im Falle der vollstindigen Spektral-
auflosung der Koeffizienten 4, und 4, in expliziter Form aufgeschrieben

4
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werden. Die vollsténdige Spektralzerlegung eines Koeffizienten 4, der Grosse
nn ist folgendermassen durchfiithrbar:

Man geht von der Modalmatrix (Matrix der Eigenvektoren) U,= Ujl= U,
aus (U, ist das Modal der gleichférmigen Kontinuantenmatrix C) und bildet
die Matrix

B, = U;' 4, U,. (16)

Falls ausser der Diagonalen von B, noch weitere von Null verschiedene Ele-
mente vorhanden sind, so wird in # Schritten eine Ahnlichkeitstransformation

durchgefiihrt.
Im ersten Schritt erhilt man:
B, = Q, B, Q;', (17)
10 10
1° = —1 [
wobei: Q, [q E] bzw. Qg [_q E] ,

1, falls j=k,

Bl pk=12onmt 8"”“2{0 falls j+k.

Es wird nun B, folgenderweise aufgeteilt:

b h*
5=[ur )

und die Multiplikation nach (17) durchgefiihrt:

b—h*q h* ]

Bl:[k-{-(bE—L)q—qh*q qh*+L (18)

Falls f(q) = qh*q—(bE—L)q—k = 0 ist, so kann in der ersten Spalte von
B, nur das Hauptdiagonal-Element von Null verschieden sein.

Den Zusammenhang (17) beriicksichtigend, werden mit der Transformation
von B, gleichzeitig auch die Modale transformiert:

A4, = (U, Q") (Q, B, Q") (Q, Ug"). (19)
U, B, Ut

Das Verfahren n-mal wiederholend, erhélt man das Ergebnis U,, = U,;
Ay, = B,; Uz, = U, welches das vollsténdige Spektrum von A4, ergibt:

AP‘ = UAH AAM UE}L. (20)

Bei jedem einzelnen Schritt des Verfahrens wurde zur Losung des Gleichungs-
systems zweiter Ordnung f(q)=0 die Newton-Raphson-Methode angewandt.
Von den zahlreichen numerischen Untersuchungen sind hier zwei beigelegt.
Die Matrix A ist das Produkt der Matrix C und der Diagonalmatrix H.
Im ersten Beispiel wurde mit der Annahme

H=(54,321,1,1,1,0,9,0.8,0,77,0,6,0,5, 0,4)
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die Spektralzerlegung der Matrix 4=H C durchgefiihrt. Der Rechenprozess
nahm mit der Anlage Siemens 4004/45 drei Minuten in Anspruch.

Beim zweiten Beispiel handelte es sich um eine Matrix von Ordnung 20.
Die Annahme war hier

H=1(20,19 1,714, 1,0,0,6,03,0,2, 0,1, 0,2,
0,4,07,1,1,1,4,1,6,1,7,1,6,1,2,0,6, 0,1 );

die Rechenzeit betrug 7 Minuten.
Die Fehlerschranke betrug

= 10-8 Spur (A4)
—

Die Eigenwerte von A4 waren im ersten Beispiel

A, =(0,04059 0,15841 0,36927 0,65553 2,05151
0,98188 1,32940 8,40050 1,68200 3,66910
3,02327 14,26011 249574 4,68271),

bzw. im zweiten Beispiel:

A, = (0,00731 0,06470 0,10005 0,16362 3,45717
4,63950 0,63694 3,04287 5,99104 0,27974
0,78616 0,36623 2,49410 6,57467 0,50650
4,62137 1,06850 1,19411 1,86066 1,74475).

3. Das an den Hauptkriimmungslinien liegende Stabnetz

Mit Hilfe des orthogonalen Seilnetzes kann die Begrenzungsfliche von ge-
wiinschter Form des zu iiberdachenden Raumes konstruiert werden. Der
Grundriss des zu iberdachenden Raumes kann innerhalb des Randes des recht-
winkligen Seilnetzes beliebig gestaltet werden. Durch Variieren der Hohe der
Randpunkte des rechtwinkligen Netzes (dadurch wird nur die auf der rechten
Seite der Gleichung (14) stehende Matrix Q beeinflusst) erreicht man, dass die
Seile den eigentlichen Rand des zu konstruierenden Netzes in der gewiinschten
Hohe schneiden. Die Berechnung des Netzes wird auch nicht wesentlich beein-
flusst, wenn das Netz in einzelnen Punkten mit Masten gestiitzt ist. Jeder
einzelne Mast erfordert je eine Losung der Gleichung (14), sowie die Losung
eines Bedingungsgleichungssystems, das aus so vielen Gleichungen besteht,
wie die Anzahl der Maste. Damit sollen die Bedingungen erfiillt werden, dass
die Knotenpunkte des Seilnetzes an den Stellen der Maste die vorgeschriebene
Hohe besitzen.
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Das Seilnetz kann also im wesentlichen durch drei Verfahren auf die ge-
wiinschte Form gebracht werden:

1. Mit der Hohenlage der Randpunkte des rechtwinkligen Netzes,

2. durch Anwendung von Seilkréften unterschiedlicher Grosse in den einzelnen
Seilen,

3. durch Stiitzung einzelner Punkte des Netzes mit Masten.

Unter diesen ist das letztgenannte Verfahren am wenigsten wirksam, da
die Beanspruchung des Netzes mit grosser Einzellast in entscheidendem Grad
mit grosser lokaler Verschiebung und nur in einem geringeren Grad mit der
Veranderung der ganzen Netzform einhergeht. Wirksamer ist die gleichzeitige
Ubertragung des Masteffektes auf eine Gruppe der benachbarten Netzpunkte,
da hierdurch mit geringerer Masthohe der gleiche netzformende Effekt erziel-
bar ist.

Nachdem die gewiinschte Netzform sich mit Hilfe des rechtwinkligen Seil-
netzmodells ausgebildet hat, konnen die Richtungsfelder der Hauptkriim-
mungslinien und die den Tangenten der Hauptkriimmungslinien zugehoérenden
spezifischen Seilkrifte mittels eines einfachen numerischen Verfahrens berech-
net werden. Bei der numerischen Analyse ist die Bestimmung einer einzigen
Flache, in der die Knotenpunkte des rechtwinkligen Seilnetzes enthalten sind,
nicht notwendig. Im Falle eines ausreichend dichten Netzes ist es vollkommen
zweckentsprechend, den einzelnen Knotenpunkten je ein hyperbolisches Para-
boloid mit vertikaler Achse zuzuordnen. Jedem Knotenpunkt des Netzes wird
durch seine Hohe und durch die Hohen der benachbarten vier Knotenpunkte
eine vertikale Fliche zweiter Ordnung eindeutig zugeordnet. Diese Fliche
bestimmt die den Knotenpunkten zugehorenden Grossen — Flichentangente,
Normale, Kriimmung, usw. — und ermdéglicht die Bestimmung der Haupt-
kriimmungsrichtungen. Im Besitz der derart gewonnenen Daten erhilt man
die Hauptkriimmungslinien des Seilnetzes derart, dass man die Gesamtheit
" der Grundrissprojektion der Knotenpunkt-Hauptkriimmungsrichtungen als
Richtungsfeld der Hauptkrimmungslinien des Netzes betrachtet. Innerhalb
des Richtungsfeldes werden durch numerische Integration die Hauptkriim-
mungslinien mit beliebiger Dichte hergestellt (wobei man durch lineare Inter-
polation im Bereich zwischen jeweils vier Netzpunkten des Richtungsfeldes
die Dichte erhoht.

Erfahrungsgemiss ist es zweckmissig, die Bestimmung der Hauptkriim-
mungslinien unter Beibehaltung der Beziehung Mensch/Maschine zu auto-
matisieren. Darunter ist der folgende Vorgang zu verstehen:

1. Darstellung des rdaumlichen Bildes des rechtwinkligen Seilnetzes auf Bild-
schirm; Modifizierung des Netzes zur gewiinschten Form unter Anwendung
der oben erwdhnten drei Verfahren.

2. Darstellung des Hauptkriimmungs-Richtungsfeldes im Grundriss, mit Hilfe
eines Zeichenautomaten.
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3. Auf Grund dieses Bildes des Richtungsfeldes wird dariiber entschieden, von
welchem Punkt die Integration ausgehen und in welcher Richtung sie ver-
laufen soll.

4. Bestimmung jener Punkte der ersten ausgewidhlten, mit dem Zeichenauto-
maten im Grundriss dargestellten Hauptkriimmungslinie, von denen aus-
gehend die normale Hauptkriimmungslinienschar konstruiert werden soll.

Das Schema des Konstruktionsverfahrens und die nach den einzelnen
Schritten erhaltenen (intermedidren) zeichnerischen Ergebnisse sind auf dem
nachfolgenden Beispiel veranschaulicht. Ein Knotenpunkt des auf Fig. 6 dar-
gestellten Seilnetzes wird mit einem Mast in die Hohe von 10 Metern aufge-
schoben. Das Seilnetz nimmt unter Wirkung der vorgeschriebenen horizontalen

z Hy =10 Mp y
/ / 4
Hy =10 Mp ~+—— ,g
AV T N7
By v
~ /
75 [ AT T T
7 &
v 1 16x2,5 = 40,0m |

Fig. 6.

Fig. 7.



206 J. SZABO - M. BERENYI

Komponenten der Seilkrifte die in Fig. 7 geschilderte Form an. Das Richtungs-
feld der Hauptkriimmungslinien wird in Fig. 8 gezeigt.

Die Berechnung der ersten Hauptkriimmungslinie wurde ausgehend vom
Punkt 4 (s. Fig. 8 und Fig. 9) durchgefiihrt, und zwar mit der Vorschrift, dass die

I U U S o

+

XXX XX X AAAA KK
XXX XX XA A AKX
XXX XXX AAA-F A AKX
XX XXX XA A4 X
XXX XXX XA A A K
XXX XX XA A A K

XX HKAAK XA X XK

) S S SV O O O

Fig. 8. Fig. 9.

auf der Fldche 2,5 Meter voneinander entfernt liegenden Punkte der Linie
bezeichnet werden sollen. Auf diese Weise ergaben sich die Punkte 4, B,C,... M
der Fig. 9. Die erste orthogonale Hauptkrimmungslinie geht vom Punkt E
aus. Die mit N, O,...T bezeichneten Punkte dieser Linie liegen gleichfalls
2,5 Meter entfernt voneinander. Die weiteren Hauptkriimmungslinien sind
ausgegangen von den mit 4, B, ... T bezeichneten Punkten aufgezeichnet.

Gleichzeitig erhilt man die Koordinaten der Schnittpunkte der Haupt-
kriitmmungslinien, ferner die den Schnittpunkten zugehorenden je vier Seil-
krifte. Diese Seilkrifte werden mit Hilfe der spezifischen Seilkraft und der
Sehnenlédnge berechnet.

Auf Grund des Verfahrens sind also die Knotenpunktkoordinaten (r,) eines
Stabnetzes (und dementsprechend seine geometrische Matrix G,) sowie seine
Stabkrifte (s,) bekannt, wodurch mit Hilfe des Zusammenhanges (11) das mit
dem Ausgangszustand r,, s, vertriagliche Knotenpunktlastsystem p,, t, be-
stimmt werden kann. Die weiteren Verschiebungen des Netzes r, werden dann
in der im ersten Abschnitt erliuterten Weise berechnet, und zwar derart, dass
der Zustand r, s als die der vorgeschriebenen Flichenlast p entsprechende
und den Anfangsbedingungen geniigende Losung der Differentialgleichung (10)
bestimmt wird.
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Bezeichnungen

Matrizen, Vektoren, Spalten: Fettdruck

Transponierte Matrix, Zeile.

l; , Lange des die Knotenpunkte j und & verbindenden Stabes.

die Gesamtheit der Knotenpunktkoordinaten z;,¥;,2;(j=1,2...n) ent-
haltender Vektor, kurz: Knotenpunkt-Koordinatenvektor.

s  Die Gesamtheit der Stabkrifte s; ; enthaltender Vektor (kurz: Stabkraft-
vektor).
P Die Gesamtheit der Knotenpunkt-Lastkomponenten p,;, p,;, p,; enthal-
tender Vektor (kurz: Lastvektor).
F  Die Gesamtheit der Moduli F} ; = ﬁ——fk der Stiabe enthaltende Diagonal-
matrix (kurz: Netzelastizitdtsmatrix). '
t  Die Gesamtheit der fiir diese Stibe vorgegebenen Dehnungen ¢, ; enthal-
tender Vektor.
A; r, Querschnitt des Stabes (7, k).
G Geometrische Matrix des Stabnetzes.
D Die erginzende Steifigkeits-Matrix.
E Die Einheits-Matrix.
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Zusammenfassung

Der exakte Zusammenhang zwischen den Lasten, Stabdehnungen, Stab-

kraften und Knotenpunktverschiebungen eines Stabnetzes endlichen Freiheits-
grades kann mit Hilfe einer Matrizendifferentialgleichung aufgeschrieben wer-
den. Diese Gleichung kann zur iterativen Berechnung von beliebiger Genauig-
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keit des einer gegebenen Last entsprechenden Netzzustandes angewandt wer-
den. Die Anfangsform des Netzes ldsst sich mit Hilfe eines orthogonalen Seil-
netzes bequem bestimmen. Die Daten des orthogonalen Seilnetzes kénnen zur
Konstruktion eines beliebigen Netzes als Hilfsmittel beniitzt werden. Als Bei-
spiel wird ein mit den Sehnen der Hauptkriitmmungslinien konstruiertes Netz
aufgezeichnet.

Summary

The exact relation between the loads, the elongations and forces of bars
and the displacements of points of junction of a bar net with a finite degree
of freedom can be formulated by a matrix differential equation. This equation
can be applied for the iterative calculation of arbitrary accuracy of a given
load to the corresponding net-state. The initial shape of the net can be deter-
mined easily by means of an orthogonal cable net. The data of the orthogonal
cable net can be used for constructing an arbitrary net as expedient. An
example is given by tracing a net constructed with the chords of the main
curvature lines.

Résumé

Le rapport exact entre charges, allongement de barre, tensions dans la
barre et déplacements de nceuds d’assemblage d’un réseau de treillis de degré
de liberté fini peut étre formulé a 1’aide d’une équation différentielle matri-
cielle. Cette équation peut étre employée au calcul itératif d’exactitude arbi-
traire de 1’état du réseau correspondant a une charge donnée. La forme initiale
du réseau peut étre déterminée facilement & ’aide d’un réseau de cables ortho-
gonal. Les dates du réseau de cables orthogonal peuvent étre employées pour
la construction d’un réseau arbitraire. A titre d’exemple on a tracé un réseau
construit avec les cordes des lignes de courbure principales.
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