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Theorie und Praxis der Berechnung von Seilkonstruktionen

Theory and Practice of Calculation of Cable Structures

Theorie et pratique du calcul de constructions en cables

J. SZABÖ M. BERfiNYI
Prof. Dr., Technische Universität, Dipl.-Ing., Budapest

Budapest

Einleitung

Professor Leonhardt hat im Einführungsbericht [1] den gegenwärtigen
Entwicklungsstand der Konstruktion und Berechnung von Seilnetzen kurz
zusammengefasst und einige ungelöste Fragen der Berechnung dargelegt. Er
weist darauf hin, dass zurzeit die grösste Unsicherheit bei der Annahme der
Form des mit Eigenlast beanspruchten Netzes besteht.

Für die Bildung der Form des Netzes hat Otto Frei [2] zahlreiche gute
Vorschläge gegeben und damit zum Formenreichtum der tatsächlich
ausgeführten Netzwerke beigetragen. Die Zusammenhänge für die exakte, auf der
Theorie 2. Ordnung beruhende Untersuchung der Netze wurden schon von
mehreren Verfassern erarbeitet; unter ihnen soll hier bloss Siev [3] erwähnt
werden, mit Hinweis auf die von Mortensen [4] angebrachten kritischen
Bemerkungen zur Konvergenz der in den sogenannten exakten Verfahren
vorgeschlagenen Iterationen.

Die Verfasser der vorliegenden Abhandlung schlagen - mit Rücksicht auf
die Erfahrungen verschiedener Autoren - eine allgemeine exakte Theorie zur
Untersuchung der Stabnetze vor. Auf Grund dieser Theorie wird ein numerisches

Verfahren zur Berechnung des Stabnetzes vorgeführt.
Ihrem Ziel entsprechend besteht die Abhandlung aus drei Teilen: Im ersten

Teil wird die sehr einfach formulierte Matrix-Differentialgleichung des Stab-
netzes endlichen Freiheitsgrades und die numerische Lösungsmethode der
entsprechenden Anfangswertaufgabe erläutert. Mit Hilfe dieser Methode kann
das Problem mit beliebiger Genauigkeit gelöst werden. Die als Grundlage des

zu formulierenden Algorithmus dienende Iteration hat sich auch bei der
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Lösung sehr «schlechter» Aufgaben als konvergent erwiesen. Bei der Anwendung

des im ersten Teil beschriebenen Verfahrens wird irgendeine mögliche
(innerhalb der Möglichkeiten beliebig gewählte) Ausgangslage des Stabnetzes

angenommen. Da die vorteilhafte Anwendbarkeit des Verfahrens offensichtlich

dadurch beeinflusst wird, wie «weit entfernt» die Ausgangslange von der
der tatsächlich vorgegebenen Last entsprechenden Lage ist, wird in den beiden
folgenden Teilen der Abhandlung die unserseits erarbeitete und mehrfach
erprobte, zur Bestimmung des Ausgangslage empfohlene Methode besprochen.

Im zweiten Teil wird ein spezieller Typ des sogenannten rechtwinkligen
Seilnetzes untersucht, ausgehend von der Überlegung, dass die direkte Berechnung

des erwähnten Netztyps sehr einfach und selbst im Falle gross
dimensionierter (aus vielen Seilen bestehender) Netze noch mit Hilfe des operativen
Speichers der Rechenanlage möglich ist.

Im dritten Teil wird dargelegt, wie man mit Hilfe des rechtwinkligen
Seilnetzes ein Stabnetz konstruieren kann, dessen Knotenpunkte an (gewissen
Überlegungen entsprechenden) Hauptkrümmungslinien liegen und seine Stäbe
die diese Punkte verbindenden Sehnen der Hauptkrümmungslinien sind. Das
als Berechnungsgrundlage dienende rechtwinklige Seilnetz ist keine stetige
Fläche; das Richtungsfeld der Hauptkrümmungslinien kann daher mit den
in den Knotenpunkten des rechtwinkligen Seilnetzes liegenden Hauptrichtungen

angenähert werden.

1. Die Zustandsänderungsgleichung des Stabnetzes

Es wird angenommen, dass das Stabnetz aus geradachsigen, ideal elastischen

Stäben mit konstantem Querschnitt aufgebaut ist, so dass die Stäbe
mit reibungsfreien Gelenken aneinandergeschlossen sind. Ein Teil der Knotenpunkte

des Stabnetzes wird am steifen Rand angeschlossen. (Das an
elastischem Rand angeschlossene Stabnetz wird an anderer Stelle [5] ausführlich
besprochen.)

,o
k

Fig. 1.

Die Stabkräfte des Stabnetzes gemäss Fig. 1 deutend, wird das Gleichgewicht
des mit «j» bezeichneten Knotenpunktes mit Gleichungen der Form

Y^BLZtl8j9k + p o (^ x,y,z) (1)
k v3,k

ausgedrückt, wobei sich die Addierung auf alle Stäbe erstreckt, in deren
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Symbol «j» enthalten ist. Aus der Gleichung (1) ergibt sich die Feststellung,
dass bei vorgegebenen Knotenpunktkoordinaten jedem beliebigen Stabkraftsystem

s ein eindeutig bestimmbares Knotenpunktlastsystem p zugehört
(umgekehrt gilt das allgemein nicht!).

Es sei angenommen, dass der Vektor dr der Knotenpunktkoordinaten eine
infinitesimale Änderung erleidet, während sich der Vektor der Stabkräfte mit
dem Zuwachs ds verändert. Die Gesamtheit der die Verschiebungen der
Endpunkte des Stabes (j, k) und die Verträglichkeit der Stabdehnung ausdrückenden

Gleichungen

£ l!ä^d^ + tip^dA+F.tkds.k + dkk o (2)
k \ li,k Lj,k I

(H x,y,z)

wird Verschiebungs-Differentialgleichungssystem der Stabnetz-Knotenpunkte
genannt und in kurzer Form mit der Matrizengleichung

Gdr + Fds + dt 0 (3)

bezeichnet, wobei G die geometrische Matrix des Stabnetzes bedeutet, mit den
Stabindizes (j,Jc) als Zeilenindizes und den Komponenten von r als Spaltenindizes.

Die Elemente der Matrix G können folgenderweise formuliert werden:

ri /$ £ \ H'k ~~ f^j
^W^fc — \°a,j~°a,k) 7 »

l3,k

_
(1, falls a j,

a>j {0, falls ci + j.

Wie daraus ersichtlich, lässt sich bei G und F nach Gleichung (3) und
willkürlichem, jedoch infinitesimal kleinem Wert von dr und ds die der Verträglichkeit

entsprechende Stabdehnung dt eindeutig bestimmen.
Es ist leicht verständlich, dass die Gleichgewichtsgleichung (1) zur Matrizengleichung

G*s+p=:0 (4)

als Gleichgewichtsgleichung des Stabnetzes zusammengefasst werden kann, wobei
G* die Transponierte der vorher erwähnten Matrix G ist.

Bei Änderung der Knotenpunktkoordinaten des Stabnetzes mit dr haben
sich die Stabkräfte um ds verändert, und der dem Gleichgewicht der Knotenpunkte

entsprechende Lastvektor wird sich offensichtlich um dp ändern. Das
veränderte Gleichgewicht stellt sich jedoch bei einer geänderten Geometrie
des Stabnetzes ein. Diese neue Lage wird durch eine Matrizengleichung

(G* + dG*)(s + ds) + (p + dp) 0 (5)

ausgedrückt. Mit Rücksicht jedoch darauf, dass G ausschliesslich von den
Knotenpunktkoordinaten abhängig ist, kann der Zusammenhang
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(G*+dG*) G*+^^dr+--- (6)
c r

d G*
aufgeschrieben werden, wobei mit dem Symbol —^— der Ableitungstensor der

Matrix G* bezeichnet wurde. Nach Einsetzen des Zusammenhanges (6) in die
Gleichung (5), Durchführung der Multiplikation und Vernachlässigung der
Potenzen, bzw. Produkte der Differentiale erhält man das folgende Ergebnis:

——dr\s+p + dp 0. (7)

Berücksichtigt man noch den Zusammenhang (4), so erhält man aus der
Gleichung (7) die Stabkraftänderungs-Differentialgleichung des Stabnetzes:

l^- dr\ s+ G* ds + dp 0. (8)

Das mit dem kontravarianten Vektor dr und dem kovarianten Vektor s
d G*

gebildete Produkt des Tensors —^— ist von der Reihenfolge dieser Faktoren

unabhängig; es lässt sich also der folgende Zusammenhang aufschreiben:

[•£.]*-D*-(<£4
und auf Grund dieses Zusammenhanges kann die Gleichung (8) auf die
folgende Form gebracht werden:

Ddr + G*ds + dp 0. (9)

Die die Gleichungen (9) und (3) zusammenfassende Gleichung

[2n[*]+[2]-
wird Zustandsänderungs-Differentialgleichung des Stabnetzes genannt.

Der Block D der Gleichung (10) ist symmetrisch, seine Elemente liefert
der Ausdruck:

V fi<J,J~8<r,k) (cpiJ,kCv;1,k — Sti,v) D
(;, Ä;) hU k

(p,v x,y,z;a j,k),

3,k

r Pj—Pk rivI*''k,j 7 ^Ä;i,^'L3,k

kk ^-^)2 + (^-%)2 + (^-^-)2
(1, falls u, v,Und *»> ={o, falls £ + v.
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Von einem beliebigen Zustand r0, s0 und dementsprechenden G0 ausgehend,
kann auf Grund von (4) die diesem Zustand entsprechende Last

Po ~Goso (11)

bestimmt werden. Im Besitz der willkürlich gewählten Stabkräfte (s0) lässt sich
in direkter Weise die elastische Stabdehnung und jene weitere Stabdehnung t0
errechnen, die erforderlich ist, damit sich die ursprüngliche Länge «l» der
einzelnen Stäbe auf eine Länge verändert, die das Einpassen zwischen die
willkürlich gewählten Knotenpunkte r0 ermöglicht. Mit Hilfe der Gleichung (10)
kann der der vorgegebenen Last p und Stabdehnung t entsprechende Zustand
r, s einer beliebigen Genauigkeitsvorschrift gemäss bestimmt werden. Falls
man nämlich die Gleichung (10) als mit der Differenz der dem willkürlich
gewählten Ausgangszustand (r0,s0) zugehörenden Vektoren p0,t0 und der
vorgegebenen Vektoren p, t:

4p0=P-Po,
At0 =t-t0

mit einer vorgeschriebenen Genauigkeit lösbar betrachtet, so können die
Vektoren A r0, A s0 aus der Gleichung

\D0 G*]Mr0l
[G0 F J [A s0\ + \AP°

^]Atn 0

berechnet werden. Mit Hilfe dieser Vektoren sind

ri ro + ^ro
und sx s0 + A s0

bestimmt, und mit Hilfe der entsprechenden Blöcke Gl5 Dx lassen sich die
verträglichen Vektoren p±, tx und danach mit diesen die Vektoren

APi =P-Pi>
Atx t-tx

errechnen. Das Verfahren in diesem Sinne weiterführend, ist es leicht
kontrollierbar, ob die mit den Längen der Vektoren (Ap0,A t0), (Ap±,A tx),.
(A pi, A tt),. gebildete Folge monoton abnimmt oder nicht. Im letzteren
Fall kann, durch Verminderung der endlichen Ausgangszuwachse Ap0,At0
auf eAp0,€A t0(0<€< 1), die Konvergenz des Verfahrens immer wiederhergestellt

werden.
Mit dem nachstehenden, zu diesem Zweck erarbeiteten und numerisch

ausführlich analysierten Zahlenbeispiel werden unsere Feststellungen gut
veranschaulicht.

Zur Untersuchung der Konvergenzverhältnisse der Zustandsänderungs-
gleichung (10) wurde als Extremfall das gemäss Fig. 2 angeordnete, in einer
horizontalen Ebene liegende Stabnetz gewählt.
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i.y

(2,5,4)(-2,5,4)

9 10 2

(-5,0) (5;0)

15

(2,5,-4)
Fig. 2.

(0,-4)

Die Anfangsbeanspruchung der längs der drei Diagonalen des Sechseckes

gelegenen Stäbe war eine Zugkraft von s 2,5Mp; in den übrigen Stäben der
Konstruktion wurde keine Anfangsbeanspruchung angenommen. In den Punkten

2 und 14 wurde elastische Stützung angenommen, mit einer Federkonstante
von p 100 Mp/m. Die Stützpunkte der Diagonalstäbe sind unverschieblich.

Das Stabnetz ist mit einer vertikalen, im Mittelpunkt angreifenden Einzellast

von der Grösse P 2,0Mp beansprucht.
Die numerische Prüfung wurde mit der Laststufe AP 0,25P begonnen,

wobei das Verfahren nicht konvergent war. Der Versuch wurde danach mit
den Werten 0,20 P und 0,10 P fortgesetzt, bis sich schliesslich bei einer
Lastannahme von JP 0,05P( 0,lMp) das Verfahren als konvergent erwies.
Bei der ersten Laststufe hat die relative Genauigkeit nach 43 Iterationsschritten

den Wert IO-5 erreicht. Auf Fig. 3 ist die Anzahl der bei den
einzelnen Laststufen erforderlichen Iterationsschritte dargestellt, während Fig. 4
die durch die stufenweise Lasterhöhung erfolgende zentrische Durchbiegung
veranschaulicht.

2. Das orthogonale Seilnetz

Es wurde bereits in der Einleitung betont, dass wir das orthogonale Seilnetz
als Modell nicht geeignet finden, um mit seiner Hilfe die allgemeine Analyse
des Stabnetzes durchführen zu können. Obwohl früher [6], [7] ein Versuch
unternommen wurde, die Zustandsänderung des auf elastischen Rand gespannten

Seilnetzes - und gleichzeitig auch die horizontalen Verschiebungen der
Knotenpunkte, sowie den Einfluss der Veränderung der Seilkräfte - auf Grund
dieses Modells zu untersuchen, besteht kein Zweifel, dass dieses Verfahren
selbst mit grossem Aufwand nur Näherungswerte liefern kann.
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40

y 30

20

0.2 0,3 0,4 0,5 0,6
ausgeglichener Lastanteil

Fig. 3.

0,7 0,8 0,9 1,0

E0,2

0.1

0.1 0,2 0,3 0,4 0,5 0,6 0,7
ausgeglichener Lastanteil'

Fig. 4.

0,8 0,9

Wenn man jedoch dieses in rechnerischer Hinsicht sehr vorteilhafte Modell
zweckentsprechend, nämlich zur exakten Berechnung einer möglichen
Ausgangsform des Netzes benutzt, so lässt sich unbedingt ein vorteilhaftes
Hilfsmittel zur allgemeinen Analyse der Stabnetze gewinnen. Das Modell des
orthogonalen Seilnetzes wird durch Erfüllung des einfachsten Bedingungssystems
brauchbar gemacht:

a) Die Seile bilden im Grundriss eine äquidistante orthogonale Masche und
sind auf den in vorgeschriebener Höhe befindlichen Punkten des steifen,
rechteckförmigen Randes reibungsfrei gelagert.



200 J. SZABO - M. BERENYI

b) Die Höhenlage der im Grundriss einander schneidenden Seile ist (im Schnitt¬
punkt) dieselbe.

c) Das Netz wird ausschliesslich mit den auf die Knotenpunkte konzentrierten
vertikalen Kräften belastet.

d) Die einzelnen Seile verschieben sich unter Einfluss der Belastung nur in
vertikaler Ebene.

e) Längs der einzelnen Seile ist die horizontale Komponente der Seilkraft eine

positive Konstante von vorgegebener Grösse.

Zur Behandlung dieses Modells genügt das Aufschreiben der Gleichgewichtsbedingungen,

in denen die vertikale Koordinate der Knotenpunkte als
Unbekannte enthalten ist. Die nähere Erläuterung der Aufgabe ist in [8] enthalten;
an dieser Stelle soll nur der Gedankengang der Berechnung, bzw. die zur
Formulierung des Modells dienende Matrizengleichung kurz dargestellt werden.

Die Skizze des Modells mit den angewandten Symbolen ist auf Fig. 5

dargestellt.

Hy1

Hy2

Z02

^\Zm+I

^Hx2
Fig. 5.

Das Gleichgewicht des Knotenpunktes /, k wird mit der Gleichung

H H
~^~

— zj-l,k + %Zj,k~ Zj+1,k) + ~~j~
~~ zj, k-1 + ^ Za ^ — Z* £+1) — Pj k (12)

ausgedrückt, und die Gesamtheit der Gleichgewichtsgleichungen kann in der
Matrizengleichung

-CXZHx + -HyZCy - P + -Z0yHx + - HyZ0x (13)

zusammengefasst werden. Diese letztere Gleichung wird zweckmässiger in
nachfolgender Form aufgeschrieben:

A^Z + ZA^ Q, (14)

wo jc\.~. — -"?/ {->,*.

4 — C TT-1
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(j 1,2, .,m; k 1,2, .,n),
Gx [cj, kl 5 cj, k ~ °j k-1 + ^ °j, k ~~ °j, k+1 j

(j,k 1,2, ...,m),
Cy {.cj,kh cj,k ~°j,k-l + %°j,k~~°j,k+l>

(j,k 1,2, .,n),
Hx [Hxj,kV> Hxj,k — °j,k-Hxk>

(j,k 1,2, .,n),
H„ l yj, kl' •" yj, k ^jt k^yj >

(?,fc 1,2, .,m),
Z0y LZ0y>j,kl> Z0y>j,k "l,j ^0,fc "^ °ra,;?' 2mH 1,& >

(?" 1,2, ..,m; k 1,2,...,n),
Zqx L^O x' j, kl i z0x''j,k °l,kzj,0~\~ °n,kzj,n+l>

(j 1,2, .,m; fc 1,2, ...,^),

Kr Jl, falls ct t,~ \0, falls c7 + r,
z fo.fcL 0* 1,2, ...,m; fc 1,2, .,n),
p [Pj,k]> (j=l,2,...,m; k=l,2,...,n).

Zwo Lösung der Gleichung (14) wurden bei unseren numerischen
Untersuchungen zwei Verfahren angewandt. Beim einen - allgemein üblichen -
Verfahren wird die Matrizengleichung (14) zur Vektorengleichung

Az q (15)

transformiert und bei der Lösung der Vorteil ausgenutzt, dass A eine
symmetrische Bandmatrix der Bandbreite 2 m +1 oder 2n-\-\ ist. Beim anderen
Verfahren wird die Spektralauflösung der Koeffizientenmatrizen Ax und Ay
angewandt und die Matrizengleichung (14) direkt gelöst.

Wenn das Netz mn Innenpunkte (Knotenpunkte) besitzt, so enthält die
Matrix Am2n2 Elemente, von denen in jeder Zeile höchstens 5 von Null
verschieden sind. Unter Ausnutzung der Symmetrie und Bandstruktur der Matrix
ist die Anzahl der zu speichernden Elemente -m^n angenommen - (m + 1)mn.
Bei relativ nicht zu grossem m und n kann die Speicherung bei der Maschinenrechnung

nur noch mit Peripheriespeicher gelöst werden. Im Falle m>10,
bzw. n> 10 wird die Anzahl der zu speichernden Elemente der Koeffizientenmatrizen

nach Gleichung (14) im Verhältnis zur Anzahl der zu speichernden
Elemente der Bandmatrix mindestens um eine Grössenordnung kleiner.

Die Lösung der Gleichung (14) kann im Falle der vollständigen
Spektralauflösung der Koeffizienten Ax und Ay in expliziter Form aufgeschrieben
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werden. Die vollständige Spektralzerlegung eines Koeffizienten A der Grösse

nn ist folgendermassen durchführbar:
Man geht von der Modalmatrix (Matrix der EigenVektoren) U0 Uq1 — Uc

aus (Uc ist das Modal der gleichförmigen Kontinuantenmatrix C) und bildet
die Matrix

B0= U^A^Uo. (16)

Falls ausser der Diagonalen von B0 noch weitere von Null verschiedene
Elemente vorhanden sind, so wird in n Schritten eine Ähnlichkeitstransformation
durchgeführt.

Im ersten Schritt erhält man:

hk j0;

wobei: <?i [^ s] W ^=[_g£
E =[8j,k]; j,k= 1,2, ...,n-\;

Es wird nun JB0 folgenderweise aufgeteilt:
Vb h*

0 U L

und die Multiplikation nach (17) durchgeführt:

b-h*q h*
k+(bE-L)q-qh*q q h* + L

(17)

falls j k,
falls j + k.

B1 (18)

Falls f(q) qh* q — (bE — L)q — k 0 ist, so kann in der ersten Spalte von
B± nur das Hauptdiagonal-Element von Null verschieden sein.

Den Zusammenhang (17) berücksichtigend, werden mit der Transformation
von jB0 gleichzeitig auch die Modale transformiert:

[tfo^MCiBoCr1)«?!^1 (19)

u, Bi Ul1

Das Verfahren w-mal wiederholend, erhält man das Ergebnis UAjll= Un;
AAfJL Bn; Uj1^ l/"1, welches das vollständige Spektrum von A^ ergibt:

All=VA,kAAllV^. (20)

Bei jedem einzelnen Schritt des Verfahrens wurde zur Lösung des Gleichungssystems

zweiter Ordnung f(q) 0 die Newton-Raphson-Methode angewandt.
Von den zahlreichen numerischen Untersuchungen sind hier zwei beigelegt.

Die Matrix A ist das Produkt der Matrix C und der Diagonalmatrix H.
Im ersten Beispiel wurde mit der Annahme

H (5, 4, 3, 2, 1, 1, 1, 1, 0,9, 0,8, 0,7, 0,6, 0,5, 0,4)
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die Spektralzerlegung der Matrix A HC durchgeführt. Der Rechenprozess
nahm mit der Anlage Siemens 4004/45 drei Minuten in Anspruch.

Beim zweiten Beispiel handelte es sich um eine Matrix von Ordnung 20.
Die Annahme war hier

H 2,0, 1,9, 1,7, 1,4, 1,0, 0,6, 0,3, 0,2, 0,1, 0,2,

0,4, 0,7, 1,1, 1,4, 1,6, 1,7, 1,6, 1,2, 0,6, 0,1 >;

die Rechenzeit betrug 7 Minuten.
Die Fehlerschranke betrug

e= 10_8Spur_^4)
n

Die Eigenwerte von A waren im ersten Beispiel

AA (0,04059 0,15841 0,36927 0,65553 2,05151

0,98188 1,32940 8,40050 1,68200 3,66910

3,02327 14,26011 2,49574 4,68271),

bzw. im zweiten Beispiel:

AA (0,00731 0,06470 0,10005 0,16362 3,45717

4,63950 0,63694 3,04287 5,99104 0,27974

0,78616 0,36623 2,49410 6,57467 0,50650

4,62137 1,06850 1,19411 1,86066 1,74475).

3. Das an den Hauptkrümmungslinien liegende Stabnetz

Mit Hilfe des orthogonalen Seilnetzes kann die Begrenzungsfläche von
gewünschter Form des zu überdachenden Raumes konstruiert werden. Der
Grundriss des zu überdachenden Raumes kann innerhalb des Randes des
rechtwinkligen Seilnetzes beliebig gestaltet werden. Durch Variieren der Höhe der
Randpunkte des rechtwinkligen Netzes (dadurch wird nur die auf der rechten
Seite der Gleichung (14) stehende Matrix Q beeinflusst) erreicht man, dass die
Seile den eigentlichen Rand des zu konstruierenden Netzes in der gewünschten
Höhe schneiden. Die Berechnung des Netzes wird auch nicht wesentlich beeinflusst,

wenn das Netz in einzelnen Punkten mit Masten gestützt ist. Jeder
einzelne Mast erfordert je eine Lösung der Gleichung (14), sowie die Lösung
eines Bedingungsgleichungssystems, das aus so vielen Gleichungen besteht,
wie die Anzahl der Mäste. Damit sollen die Bedingungen erfüllt werden, dass
die Knotenpunkte des Seilnetzes an den Stellen der Mäste die vorgeschriebene
Höhe besitzen.
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Das Seilnetz kann also im wesentlichen durch drei Verfahren auf die
gewünschte Form gebracht werden:

1. Mit der Höhenlage der Randpunkte des rechtwinkligen Netzes,
2. durch Anwendung von Seilkräften unterschiedlicher Grösse in den einzelnen

Seilen,
3. durch Stützung einzelner Punkte des Netzes mit Masten.

Unter diesen ist das letztgenannte Verfahren am wenigsten wirksam, da
die Beanspruchung des Netzes mit grosser Einzellast in entscheidendem Grad
mit grosser lokaler Verschiebung und nur in einem geringeren Grad mit der
Veränderung der ganzen Netzform einhergeht. Wirksamer ist die gleichzeitige
Übertragung des Masteffektes auf eine Gruppe der benachbarten Netzpunkte,
da hierdurch mit geringerer Masthöhe der gleiche netzformende Effekt erzielbar

ist.
Nachdem die gewünschte Netzform sich mit Hilfe des rechtwinkligen

Seilnetzmodells ausgebildet hat, können die Richtungsfelder der Hauptkrümmungslinien

und die den Tangenten der Hauptkrümmungslinien zugehörenden
spezifischen Seilkräfte mittels eines einfachen numerischen Verfahrens berechnet

werden. Bei der numerischen Analyse ist die Bestimmung einer einzigen
Fläche, in der die Knotenpunkte des rechtwinkligen Seilnetzes enthalten sind,
nicht notwendig. Im Falle eines ausreichend dichten Netzes ist es vollkommen
zweckentsprechend, den einzelnen Knotenpunkten je ein hyperbolisches Para-
boloid mit vertikaler Achse zuzuordnen. Jedem Knotenpunkt des Netzes wird
durch seine Höhe und durch die Höhen der benachbarten vier Knotenpunkte
eine vertikale Fläche zweiter Ordnung eindeutig zugeordnet. Diese Fläche
bestimmt die den Knotenpunkten zugehörenden Grössen - Flächentangente,
Normale, Krümmung, usw. - und ermöglicht die Bestimmung der
Hauptkrümmungsrichtungen. Im Besitz der derart gewonnenen Daten erhält man
die Hauptkrümmungslinien des Seilnetzes derart, dass man die Gesamtheit
der Grundrissprojektion der Knotenpunkt-Hauptkrümmungsrichtungen als

Richtungsfeld der Hauptkrümmungslinien des Netzes betrachtet. Innerhalb
des Richtungsfeldes werden durch numerische Integration die Hauptkrümmungslinien

mit beliebiger Dichte hergestellt (wobei man durch lineare
Interpolation im Bereich zwischen jeweils vier Netzpunkten des Richtungsfeldes
die Dichte erhöht.

Erfahrungsgemäss ist es zweckmässig, die Bestimmung der Hauptkrümmungslinien

unter Beibehaltung der Beziehung Mensch/Maschine zu
automatisieren. Darunter ist der folgende Vorgang zu verstehen:
1. Darstellung des räumlichen Bildes des rechtwinkligen Seilnetzes auf

Bildschirm; Modifizierung des Netzes zur gewünschten Form unter Anwendung
der oben erwähnten drei Verfahren.

2. Darstellung des Hauptkrümmungs-Richtungsfeldes im Grundriss, mit Hilfe
eines Zeichenautomaten.
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3. Auf Grund dieses Bildes des Richtungsfeldes wird darüber entschieden, von
welchem Punkt die Integration ausgehen und in welcher Richtung sie
verlaufen soll.

4. Bestimmung jener Punkte der ersten ausgewählten, mit dem Zeichenautomaten

im Grundriss dargestellten Hauptkrümmungslinie, von denen
ausgehend die normale Hauptkrümmungslinienschar konstruiert werden soll.

Das Schema des Konstruktionsverfahrens und die nach den einzelnen
Schritten erhaltenen (intermediären) zeichnerischen Ergebnisse sind auf dem
nachfolgenden Beispiel veranschaulicht. Ein Knotenpunkt des auf Fig. 6

dargestellten Seilnetzes wird mit einem Mast in die Höhe von 10 Metern
aufgeschoben. Das Seilnetz nimmt unter Wirkung der vorgeschriebenen horizontalen

Hy IOMp /£ZZa j?
s/

Mp

/ 16x2,5 40,0m

Fig. 6.

Fig. 7.



206 J. SZABO - M. BERENYI

Komponenten der Seilkräfte die in Fig. 7 geschilderte Form an. Das Richtungsfeld

der Hauptkrümmungslinien wird in Fig. 8 gezeigt.
Die Berechnung der ersten Hauptkrümmungslinie wurde ausgehend vom

Punkt A (s. Fig. 8 und Fig. 9) durchgeführt, und zwar mit der Vorschrift, dass die

X XX X XX XH
xxx xxx x-ixxxxx^xhxx^v-^x-h
++++ -VA-X-!\\\XXX^xxxxxxx^-^xxxxxxx-^xxxxxxx-ixxxxxxx-ix xx x xxx-h
X X X X x x*x--

1

Fig. 8. Fig. 9.

auf der Fläche 2,5 Meter voneinander entfernt liegenden Punkte der Linie
bezeichnet werden sollen. Auf diese W'eise ergaben sich die Punkte A, B,C,...M
der Fig. 9. Die erste orthogonale Hauptkrümmungslinie geht vom Punkt E
aus. Die mit N,0,. .T bezeichneten Punkte dieser Linie liegen gleichfalls
2,5 Meter entfernt voneinander. Die weiteren Hauptkrümmungslinien sind

ausgegangen von den mit A,B,. .T bezeichneten Punkten aufgezeichnet.
Gleichzeitig erhält man die Koordinaten der Schnittpunkte der

Hauptkrümmungslinien, ferner die den Schnittpunkten zugehörenden je vier
Seilkräfte. Diese Seilkräfte werden mit Hilfe der spezifischen Seilkraft und der
Sehnenlänge berechnet.

Auf Grund des Verfahrens sind also die Knotenpunktkoordinaten (r0) eines
Stabnetzes (und dementsprechend seine geometrische Matrix G0) sowie seine

Stabkräfte (s0) bekannt, wodurch mit Hilfe des Zusammenhanges (11) das mit
dem Ausgangszustand r0, s0 verträgliche Knotenpunktlastsystem p0, t0
bestimmt werden kann. Die weiteren Verschiebungen des Netzes r0 werden dann
in der im ersten Abschnitt erläuterten Weise berechnet, und zwar derart, dass

der Zustand r, s als die der vorgeschriebenen Flächenlast p entsprechende
und den Anfangsbedingungen genügende Lösung der Differentialgleichung (10)
bestimmt wird.
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Bezeichnungen

Matrizen, Vektoren, Spalten: Fettdruck
* Transponierte Matrix, Zeile.

ljk Länge des die Knotenpunkte j und fc verbindenden Stabes.

r die Gesamtheit der Knotenpunktkoordinaten Xj,yj,Zj(j =1,2 .n) ent¬
haltender Vektor, kurz: Knotenpunkt-Koordinatenvektor.

s Die Gesamtheit der Stabkräfte sjk enthaltender Vektor (kurz: Stabkraft-
vektor).

p Die Gesamtheit der Knotenpunkt-Lastkomponenten pxj, pyj, pzj enthal¬
tender Vektor (kurz: Lastvektor).

F Die Gesamtheit der Moduli F, j, ^
3'k der Stäbe enthaltende Diagonal-3>K EAjtk &

matrix (kurz: Netzelastizitätsmatrix).
t Die Gesamtheit der für diese Stäbe vorgegebenen Dehnungen tjk enthal¬

tender Vektor.
Ajk Querschnitt des Stabes (j,fc).
G Geometrische Matrix des Stabnetzes.
D Die ergänzende Steifigkeits-Matrix.
E Die Einheits-Matrix.
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Zusammenfassung

Der exakte Zusammenhang zwischen den Lasten, Stabdehnungen, Stab-
kräften und Knotenpunktverschiebungen eines Stabnetzes endlichen Freiheitsgrades

kann mit Hilfe einer Matrizendifferentialgleichung aufgeschrieben werden.

Diese Gleichung kann zur iterativen Berechnung von beliebiger Genauig-



208 J. SZABÖ - M. BERENYI

keit des einer gegebenen Last entsprechenden Netzzustandes angewandt
werden. Die Anfangsform des Netzes lässt sich mit Hilfe eines orthogonalen
Seilnetzes bequem bestimmen. Die Daten des orthogonalen Seilnetzes können zur
Konstruktion eines beliebigen Netzes als Hilfsmittel benützt werden. Als
Beispiel wird ein mit den Sehnen der Hauptkrümmungslinien konstruiertes Netz

aufgezeichnet.

Summary

The exact relation between the loads, the elongations and forces of bars
and the displacements of points of junction of a bar net with a finite degree
of freedom can be formulated by a matrix differential equation. This equation
can be applied for the iterative calculation of arbitrary accuracy of a given
load to the corresponding net-state. The initial shape of the net can be
determined easily by means of an orthogonal cable net. The data of the orthogonal
cable net can be used for constructing an arbitrary net as expedient. An
example is given by tracing a net constructed with the chords of the main
curvature lines.

Resume

Le rapport exact entre charges, allongement de barre, tensions dans la
barre et deplacements de noeuds d'assemblage d'un reseau de treillis de degre
de liberte fini peut etre formule ä l'aide d'une equation differentielle matri-
cielle. Cette equation peut etre employee au calcul iteratif d'exactitude arbi-
traire de l'etat du reseau correspondant ä une charge donnee. La forme initiale
du reseau peut etre determinee facilement ä l'aide d'un reseau de cables
orthogonal. Les dates du reseau de cables orthogonal peuvent etre employees pour
la construction d'un reseau arbitraire. A titre d'exemple on a trace un reseau
construit avec les cordes des lignes de courbure principales.
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