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Finite Element Analysis'of Cable-Stayed Bridges
Analyse par éléments finis de ponts & cdbles

Berechnung von Schragkabelbriicken mit Hilfe finiter Elemente

T. KAJITA Y. K. CHEUNG
Ph.D., Post-doctoral Fellow, Department D.Sec. MICE, MI Struct. E., Professor of
of Civil Engineering, The University of Civil Engineering, The TUniversity of
Calgary, Calgary, Alberta, Canada Calgary, Calgary, Alberta, Canada
Introduction

In recent years, many bridges of the cable-stayed type [1] have been used
for medium to long spans, and although the concept itself is not new, rapid
growth in popularity has only been possible because of the development of
orthotropic bridge decks, improved cable structures, the wide-spread use of
the electronic computer, etc. In a review paper by LEONHARDT [2] it has been
shown that cable-stayed bridges are clearly superior to suspension bridges for
all spans above 200 metres.

A number of techniques can be used for the analysis of cable-stayed bridges.
The transfer matrix method which was developed in Germany [3] is quite
popular and has been recently applied to the non-linear analysis of cable-
stayed girder bridges by Tane [4]. A mixed force-displacement method was
developed by STaFrorD SMITH [5] while TRoITsKY and LAzAr [6] used a
flexibility approach to obtain analytical data for comparison with experi-
mental results.

Most papers published on the static behaviour of cable-stayed bridges
related only to the simplified problem of a two-dimensional frame structure.
One exception is found in a paper by STAFFORD SMITH [7], who extended the
technique given in reference [5] to the analysis of double-plane cable-stayed
girder bridges and treated the deck as a plate.

In the present paper, cable-stayed bridges are solved by the finite element
method, in which the bridge deck is divided into a number of shell elements
and the whole structure treated as a three-dimensional system. A computer
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program has been developed which can deal with various saddle types for the
cables and also various types of connections between the tower and the deck.
Only linear analysis will be discussed here.

The second part of the paper deals with the dynamic analysis of cable-
stayed bridges by considering the bridge deck as a shell and assuming that the
cables behave as springs. The mode shapes and frequencies of an example
bridge has been computed and the effect of sectional area of cables on the
frequencies is discussed. The present method yields bending as well as torsional
modes, which the simplified plane frame type of analysis is incapable of giving.
This fact is of great importance since aerodynamic test results showed that
in the cable-stayed system the cables themselves provide a large resistance
against torsional movement, which is the dangerous mode of oscillation for
suspension bridges.

Static Analysis

A cable-stayed bridge is a three-dimensional structure which consists of
two cable planes and a bridge deck as shown in Fig. 1. The finite element
analysis requires the deck to be divided into rectangular shell elements (which
is obtained simply by combining a bi-linear plane stress element and a non-
conforming 12-degree polynomial plate bending element) and the tower into
beam elements. In order to deal with various saddle types, a flexibility approach
is used for determining the cable forces.

Referring to Fig. 1, let

Ik, and F#;, Dbe the unknown redundant forces for the cables and tower respec-
tively;

x, and x; be the deflections of plate at the connecting points between plate
and cables and between plate and tower respectively due to F,
and F,;
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Fig. 1. Typical bridge with finite element idealization and redundant forces.
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x, and z; be the deflections of the tower at connecting points between tower
and cables and between tower and plate respectively due to F,
and F;

y, and y, be the deflections of the plate at the connecting points between
plate and cables and between plate and tower respectively due to
external loads; and

f:;; and f;; are the coefficients of the flexibility matrices for plate and tower
respectively.

It is then possible to establish the following equations. For plate deflections

rf = L e+ A m

For tower deflections

w0} [ fo (E) )
For compatibility between plate and tower
{w} = {3} (3)

The relationship between the displacements at cable ends, z, and z,, is more
involved and is dependent on the type of cable saddle used (Fig. 2). For a
fixed saddle (Fig. 2a), the cable forces are

EA

S; = —T——’(-—uicosw,;+wisinoci+utcosoci—-w,,sinoci),
i
4
o _ B4, . . 4

J

Fig. 2. Cable saddle types and cable forces and displacements,
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For a pinned saddle (Fig. 2b)
EA;A,;

Si = mil—{ ‘—u,i COS oci +w,{ SiIl “i+ut (COS di +COS a])
wysin g (5)
— wy (sin o; + sin o) — w; €08 o + w; sin o},
SJ' = S@

For a roller saddle (Fig. 2¢)
E Ai Aj COS o5

S; = — U, COS or; + W; sin o

v A,-licosa,-—Ail,-cos%{ ¢ L ¢
+ 1w, (COS a; + €08 ar;) — Wy (sin og + 8in o) — u; 0S8 o+ w; sin ey}, (6)
cos o;

Sj:'_ t i
COde

In general, Egs. (4), (5), and (6) can be written as

® =10, ca{%), ™)

_
l0.5m
14m

04 =
o 10 feo 30 40 50 | 1sm
60
l_24m 32m 2gm 2im 30m

0-10 1 10-20 20-30 30-40 \ 40-50 60-70 70-80 80-90

I (in m?) 0.015 0.015 0.015 0.017

0.020 | 0.013 | 0.013 | 0.008
A (in m?) 0.12 0.12 0.12 0.13

0.14 0.08 0.08 0.06

Yong’s modulus: Cable 1.6x 107 Mp/m? Load: 2 Mp/m
Girder 2.1 x 107 Mp/m?

Cable forces (Mp), Bending Moments (Mp.m) and Axial forces (Mp)

Nl NZ N3 N4 MlO N101 NIOT M30 N301 N30T MGO MSO

Reference

[3] 122.9 97.3 | 28.1 |109.1 |-199.5 |-158.8 |-184.5| 15.8 | —84.5 | —87.0 |—447.7 [268.9
Present
analysis 122.6| 97.2 | 28.4 |108.6 |—-199.2 —-158.0 |-184.1 | 23.2 {-184.1 | —87.0 |-442.6

266.2

Fig. 3. Plane frame cable-stayed bridge.
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where C; and C, are matrices which are related to the cable characteristics.
By combining Egs. (1), (2), (3), and (7), the redundant forces can be computed
through the following equation.

1 R I il B s A

Once the redundant forces have been solved, it requires then only a straight-
forward computation to determine all the other displacements and internal
forces of the structure. _

The same computer program can be used for solving plane frame cable-
stayed structures, since it is only necessary to use the appropriate flexibility
coefficients (for frame members) in Eq. (1). In fact, the program was firstly
checked by solving the plane frame cable-stayed girder bridges shown in
Fig. 3, and the results are compared with those of reference [3] in the same
diagram.
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Fig. 4. Example of cable-stayed bridges.
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Examples of Static Analysis

Fig. 4a shows a plane frame cable-stayed girder bridge which will be used
as the basis of comparison for all examples. The three-dimensional behaviour
of this type of structure is examined by analyzing three cases in which the
girder is replaced by bridge decks with different widths (Fig. 4b), such that
the overall moments of inertia for all transverse sections are the same. Two
different loading cases are considered: a full uniformly distributed load and
a partial uniformly distributed load over half of the deck, as is shown in Fig. 4c.
These loads are equivalent to the line load for the girder of the plane frame
structure.

Due to symmetry, only half of the bridge is analyzed, and the deck is
divided into 56 shell elements.

Some results of the analysis are given in Table 1. The cable forces and the
deflections and bending moments of the deck at mid-span are compared with
the results of the plane frame analysis.

The results for full uniformly distributed load (Load 1) are symmetrical
with respect to the longitudinal centre line of the bridge, and the transverse
variations of deflections and moments are quite small. Therefore, the bridge
can be safely analyzed as a plane frame structure under such loads.

On the other hand, the partial uniformly distributed load (Load 2) is not

Table 1. Internal Forces and Displacements for Bridges in Fig. 4

Beam
Bridge Deck Plate b=10m Plate 6=20 m Plate b=40m (FIE;Z
Load 1 Load 2 | Load 1 Load 2 | Load 1 Load 2 | Structure)
1 521.3 540.9 521.5 583.3 521.7 663.5 521.0
5 521.3 501.7 521.56 459.7 521.7 379.9 ’
2 452.2 470.8 452.1 509.9 451.0 579.6 448.4
Cable 6 452.2 433.6 452.1 394.3 451.0 322.4 :
Tension
(in ton) 3 212.3 234.9 208.7 271.0 193.8 297.2 208.2
7 212.3 189.7 208.7 146.4 193.9 90.6 ’
4 350.5 375.2 347.5 417.8 335.3 465.1 348.5
8 350.5 325.8 347.5 277.2 335.3 205.5 ’
Displacement B 0.4365 0.4536 | 0.4370 0.4908 | 0.4394 0.5620
(ig meirs] C 0.4360 0.4360 | 0.4357 0.4357 | 0.4444 0.4444 0.4611
B’ 0.4365 0.4194 | 0.4370 0.3832 | 0.4394 0.3168
Longitudinal
Bending Moment B 275.5 238.6 144.8 160.9 87.1 111.8
_ ton X metre C 273.2 273.2 138.2 138.3 72.3 723
(m m—) B’ 275.5 267.4 144.8 128.7 87.1 624
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symmetrical with respect to the centre line of the bridge, and the forces and
displacements at symmetrical points are now different, with the discrepancies
becoming larger for increasing bridge width.

An examination of the influence surfaces of cable forces and deflections
and bending moments at a selected point on the bridge (b=40m) given in
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a) Axial force in cable 1.

77
/%;/411%?%/1/////
e T A A,
Vo ey AN 0 0 i o

b) Axial force in cable 4.

//////W///

¢) Longitudinal bending moment at point B.
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d) Deflection at point B.

Fig. 5. Influence surfaces.
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Fig. 5 will also show that eccentric loads will induce significantly different
responses at symmetrical points on two sides of the bridge. Such transverse
behaviour will not be brought out by the simple plane frame analysis.

Dynamic Analysis and Examples

The well-known displacement method using lumped mass technique is used
in the present analysis. Strictly speaking, the method is only applicable to
bridges with cable saddle type (1). However, if saddle type (2) is approximated
by inserting an imaginary member as is shown in Fig. 2, the structure can
also be analyzed by this method. To simplify the analysis, the cables are
treated as springs, thus implying that they can take up compression as well
as tension. Such an assumption has been used by Tanc [4], and is justified to
some extent because of the relatively high stresses which existed in the cables
under dead load.

The examples shown in Fig. 4a and Fig. 4b (b=20m) are used here again
for free vibration analysis. In order to understand better the effect of cables
on the dynamic behaviour of the structure, three different sectional areas of
cables and a different cable arrangement (8 cables instead of 4 cables, as shown
in Fig. 6) are used for the three-dimensional structure. The mass per unit
length of the bridge is kept, of course, constant for all cases.

The frequencies for the different cases mentioned above are listed in Table 2,

1 =o.2m:
A =0.3M

TOWER {

CABLE A =0.03"“2

3 A
L som 200m gom T

Fig. 6. Example bridge for dynamic analysis.

Table 2. Natural Frequencies (in c/s) of Cable-stayed Bridges

Transverse Modes Torsional Modes
Sectional Area of
Each Cable (m?)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 2
0.00 0.432 1.21 1.90 2.21 3.65 7.35
0.03 1.17 1.50 2.20 2.99 4.11 7.70
0.05 1.40 1.58 2.38 3.33 4.44 7.84
0.03 (8 cables) 1.31 1.56 2.42 3.58 4.41 7.88
0.03 (beam) 1.13 1.48 2.22 2.90
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and 4 transverse modes and 2 torsional modes have been included. An examina-
tion of the results shows that the cables have a stiffening effect and tend to
raise the frequencies significantly with increasing cable area, and that for the

Fig. 7. Mode shapes of deck and towers.
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a) Transverse mode 1.
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b) Transverse mode 2.
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c¢) Transverse mode 3.
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d) Transverse mode 4.
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e) Torsional mode 1.
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Fig. 8. Mode shapes of the plane frame cable-stayed structure.
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same total cable area, the number of cables used has little effect on the fre-
quencies.

The mode shapes of the deck and towers for the case of 0.03 m? cables are
plotted in Fig. 7, while the mode shapes of the girder and towers are shown
in Fig. 8. The torsional modes can be obtained only when the bridge is treated
as a three-dimensional structure.

Conclusion

The finite element method has been successfully applied to the static and
dynamic analysis of cable-stayed bridges and the three-dimensional charac-
teristics of the structures have been fully demonstrated. The examples show
that the plane frame analysis commonly used in design is insufficient to give
all aspects of behaviour of the cable-stayed bridges.

Notation

A;, A sectional areas of cable
C,, 0, coefficient matrices of cable equation
E Young’s Modulus
F,, F, redundant forces
fii> Fis coefficients of flexibility matrix
l;s 1 lengths of cable
S;, 8; cable forces
X, X displacements of plate due to redundant force
x,, T, displacements of tower due to redundant force
Yos Yy displacements of plate due to external force
u;, u;, w; horizontal displacements
w;, w;, w; vertical displacements
oy, 0 slope angles of cable
I unit matrix
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Summary

The finite element method has been applied to the static and dynamic
analysis of cable-stayed bridges. A number of examples have been worked
out for several different parameters such as bridge width, cable area and cable
arrangements, and the significance of the results are discussed. The three-
dimensional analysis is also compared with the plane frame type of analysis
commonly used in design.

Résumé

La méthode des éléments finis a été employée & 1’analyse statique et dyna-
mique de ponts & haubans. Plusieurs exemples ont été élaborés pour différents
paramétres, tels que largeur du pont, superficie et disposition des cibles et la
signification des résultats est discutée. L’analyse tridimensionnelle est égale-
ment comparée avec le type bidimensionnel employé a 1’analyse habituelle.

Zusammenfassung

Die Methode der finiten Elemente wurde auf die statische und dynamische
Analyse von Schrigkabelbriicken angewandt. Eine Anzahl von Beispielen
wurde fiir einige verschiedene Parameter, wie Briickenbreite, Seilbereich und
Seilanordnung ausgearbeitet und die Bedeutung der Ergebnisse diskutiert.
Die dreidimensionale Analyse wird auch mit dem zweidimensionalen Typ bei
- der iiblichen, im Entwurf angewandten Analyse verglichen.
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