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Analysis of Folded Plate and Cylindrical Shell Roofs
Analyse de toits en plaques pliéeé et en forme de coques cylindriques

Analyse gefalteter Platten- und zylindrischer Schalenddiicher

A. HRENNIKOFF

Sc. D., Research Professor, Emeritus, of Civil Engineering, University of
British Columbia, Vancouver, B. C., Canada

General

Folded plate roof, as exemplified in Fig. 1, is a structure consisting of several
rectangular strips resembling closely the cylindrical or barrel shape roof. Both
are supported by cross diaphragms or walls, and in some cases also by the
vertical edge beams. In barrel roofs the latter may be either distinct from the
barrel (Fig. 2), or be merging into it gradually (Fig. 3).

The analysis of folded plates, as of cylindrical shells, may be carried out
by the displacement method using models composed of numerous flat rectan-
gular finite elements or cells. There is an essential distinction in the actions
of these two types of structures: the nodes of the folded plate situated along
the inter-fold ridges cannot rotate about the axes normal to the ridge lines.
This peculiarity results in a substantial complication of the solution, calhng
for the use of a special iteration procedure.

The method of solution is illustrated on a particular example of folded
plate roof, and its results are compared with those of two closely resembling
it barrel roofs provided with edge beams.

Finite Element Models of Cylindrical and Folded Plate Roofs

The model of cylindrical shell is a polygonal surface made up of a number
of flat rectangular elements inscribed into the actual surface of the shell. The
elements are endowed with the direct stress and flexural stiffnesses. Cells of
this kind have nodes with five degrees of freedom: three displacements along
the coordinate axes and two rotations about the axes in the plane of the cell.
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Rotation about the axis normal to this plane is impossible in the prototype,
and so it is suppressed in the model. With four nodes in the cell its stiffness
matrix has the size 20 x 20.

The model of folded plate is constructed by subdividing the folds into cells
of suitable size, with some of their nodes falling on the inter-fold ridges, and
the others away from them.

It is easy to see that the ridge nodes have four degrees of freedom, three
displacements and only one rotation about the ridge line L. Consider as an
example a rotation vector (an angle) 6 of the node 1 in Fig. 4. This vector is
equivalent to two components 6" and 68”. The node 1 in the cell B is obviously
capable of rotation 0, but the same node in the cell 4 can undergo only the
rotation 6’ and not 6”. Since the node belongs to both cells, it cannot rotate
about any axis other than L along the ridge line.

The four movements of the ridge nodes generate five force and moment
components at the cell nodes including the moments about the axes ¥, or ¥
in the directions of the folds. Thus a rectangular cell adjacent to the ridge,
with two nodes on it, has stiffness matrix with 20 rows and only 18 columns.

It is appropriate to mention at this point, that the conclusion just reached
with regard to the nature of possible rotations of the ridge nodes in a folded
plate model does not apply to the shell model in spite of the similarity in
appearance of the two models. The angularity of the cell to cell connection in
the barrel roof model results from the finite size of cells. As their size diminishes
the angularity decreases toward zero. In the folded plate model the angularity
remains constant, no matter how small are the cells.

Solution of Cylindrical Shell Model

The method is described in Ref. [1], and it consists of computer solution
of the equation

(K] {80} = {Fo}- (1)

Here {5,} is the vector of the nodal displacements of the model produced by
the load vector {F,}, all loads of which are applied at the nodes. Both these
vectors are referred to shell coordinates. [K,,] is the stiffness matrix of the
model combined of 20 x 20 cell stiffness matrices. The cells may be either of
the bar (framework) type, or of the no-bar type. Only the former will be
used here.

The cell matrices are expressed first with reference to the cell axes X, Y,
Z, — matrix [K], and then they are transformed to the shell axes L, T, R
(Fig. 5) — matrix [K,]. This is imperative for solution of Eq. (1). The axes L
at all nodes are the same as the axes X. The 7' and R axes are different along
the circumference, and they are inclined to the axes Y and Z at the angles
+4B and —4B on the two sides of the cell. In the cell axes the matrices [K]
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consist of two uncoupled parts, the 8 X8 plane stress part and the 12x12
flexure part. These are given in Ref. [2]. For convenience the nodal forces
corresponding to unit movements of the node 1 are stated in Tables 1 and 2.
The rest of the terms follow from the conditions of symmetry.

Table 1. Stiffness Matrix Terms — Plane Stress — Rectangular Bar Cell
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Transformation of the cell matrix [K] into the shell matrix [K,] is done

by the relation
(Kol = [M]"[K][M]. (2)

The transformation matrix [M] is defined by the expression
{8} = [M]{3,} (3)

The displacement vectors {8} and {3,}, respectively in cell and shell coordinates,
are described explicitly by the expressions

{8}7 =(dxy, Ay, A2,,0%,0 , dxy, Ady,... 05,0, d2,,4y,,A2,,60%,6%), (4)

{0g}T = (g, vy, Wy, 00,08, uy,0,. . 05,07, uy, v, wy, 0F, 6F). (5)

Numbering of the cell nodes 1 to 4 is given in Fig. 5. The same [M] relates
also the nodal load components { P} and {F,}.
The 20 x 20 transformation matrix [M] may be written

m] 0 0 0
0 [my] O 0
0 0 [m] 0
0 0 0 [my]{20x20

[M] = (6)

Here the 55 submatrices [m,] and [m,;] are as follows:
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[m,] =
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0 0 0
Cos3pB Sinip 0
—SinipB Cos3p 0
0 0 1

0 0 0

(7)

and [m;] = [m,]* (8)
Table 2. Nodal Forces and Moments. Rectangular Bar Cell.
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Generation of stiffness matrices in shell coordinates should be preferably left
to computer.

After the Eq. (1) is solved for the displacement vector {5,} in shell coordi-
nates, the displacements in the individual cells are transformed to cell coordi-
nates by Eq. (3), and the nodal forces and moments in all cells are found using
Eq. (1). By spreading these over the tributary areas of the model the stresses
in the prototype are found. ‘

Solution of Folded Plate Model

The relation of the structure axes L, T, R to the cell axes X, Y, Z at the
ridge nodes (Fig. 6) is much the same as in the shell model. The angle B8 repre-
sents here the angle between the adjacent folds. At the nodes on the flat parts
of the folds the structure axes and the cell axes are the same.

As was explained earlier, the ridge nodes do not rotate about 7' axis, and
their other nodal movements result in moments about this axis. The displace-
ment vector {5,} contains only four movements at each of the ridge nodes and
five at all other nodes. The Eq. (1) is solved for these. The structure subjected
to these movements remains unbalanced at the ridge nodes with regard to the
moments about 7 axis, and this calls for a special operation. For reasons
which will be made clear later, these moments or, more correctly, the moments
other than ML, will be referred to the axes lying in the plane of the cell, i.e.
to Y, in the cells 4 on the left of the ridge, and Yy in the cells B on the right.

Conversion of the stiffness matrices of cells, situated along the ridge, from
cell to structure coordinates is subject to Eq. (2), but the transformation
matrix [M] is different from the one used with shell models. Furthermore, it
is different for the cells 4 and B.

(1] 0 0 o0
For the cells A: [(M,] = 8 [”30] [(1)] 8 . (6a)
0 0 0 [my] [20x20

([m,] O 0 0
For the cells B: [My] = g [(1)] [77;) 1 g . (6Db)
0

0 0 0 [1]]20x20

1 0 0 00
0 CosiB Sin{p 0 0
Here |m,o| =0 —SiniB CosiB 0 0, (7a)
0o 0 0 10
0 0 0 01
[m10] = [m,0]7. (8a)

The symbol [1] signifies 5 X 5 diagonal unit matrix.
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In cells with no nodes on the ridge lines the stiffness matrices in cell and
structure coordinates are the same. Should the cell extend for the full width
of the fold from ridge line to ridge line, the Eqgs. (6), (7) and (8), used for the
shell models hold also here, except that the fifth row, fifth column term in
the submatrices [m,] and [m;] should be unity in place of Cos }B.
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Complete solution of a folded plate problem is carried out in several steps.
The first step, the determination of nodal displacements by Eq. (1), ignoring
the lack of moment equilibrium, and subsequent determination of the unbal-
anced nodal moments has already been described. Let M¥ and MY (Fig. 7)
be the vectors of these unbalanced moments, each of which comes from two
cells adjacent to the node in question. Equilibrium of these is effected by
development of resistances following the most rigid route available to them in
the structure, namely by the way of the moments M% and M%, which are
normal to the directions ¥, and Yy respectively. Being the equilibrants,
these moments close the vector polygon. The principle invoked here is an
aspect of that of least work. Its common example is the action of a bridge
truss with riveted joints. The load carried by it follows the most rigid route
by the way of direct stresses, with very little of it left to the secondary or
flexural stresses.

The moments M% and M% may be expressed by trigonometry from the
vector diagram as follows:

M%Z = M¥ CotB+ M Cosecf,
M% = MY Cosec B+ ME Cot 8. )

The positive signs of these moments are the ones in Fig. 7.

The roof-edge beam ridge (Fig. 8) merits a few further remarks, although
it is substantially the same as the other ridges. It is convenient to make the
structure axes at its nodes coincident with the cell axes of the beam X, Y, Z.
Then the stiffness matrices of the beam cells B need no transformation from
the cell axes, and the transformations of the roof cells 4 are carried out in the
same manner as of the other ridge cells 4 by the Egs. (2), (6a), (7a) and (8a),
except that the angle y (Fig. 8) is used in place of 18 in Eq. (7a). The moments
M% and M% are found by Eqgs. (9) with replacement by y of the angles B in
these equations.

Consider now a ridge node »n and its unbalanced moments M% and M%
shown by circular arrows in Fig. 9. It is legitimate to assume that each such
moment is produced in equal parts in the cells A or B adjacent to this node
(call them A4, and 4, ,, or B, and B, ,), and that each of these moments is
formed by a pair of oppositely directed transverse forces N, or Ny applied
at the nodes, as shown. The force contributions at the node n of the two cells
cancel each other. Thus the unbalanced moment M¥ at any node » is balanced
by the oppositely directed forces
_ MZ@n)

N4 2ka

(10)

applied at the nodes (n —1) and (»+1) in Fig. 10. A similar expression holds
for the force Ngz. The symbol (n) in the numerator of the expression signifies
the location of the moment M%. It follows from this analysis, that the trans-
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verse forces at the node 7 are contributed by moments at the nodes (n—1)
and (n+1). They are (Fig. 11)

N, () = 5= [ME (1) = M (n— 1],
(1)
Ny (n) = oo [MZ (n+1) — M% (n—1)].

[\
=™
S}

The forces N, (n) and Ny (n) in these expressions represent the residue of
the loads acting on the structure, remaining still unbalanced after completion
of the first step of solution of the displacement problem. Now in the second
step the model is analyzed again under the action of these loads N without
involvement of the actual applied loads considered in the first step. The new
solution yields among its results the new moments M and M}, whose
equilibrants, the new M% and M%, are converted again into the new forces N
to be treated the same as their predecessors. The iteration procedure described
here is expected to end quickly. The complete solution of the problem is given
by the combination of the results of all steps.

With cells of finite size the final results exhibit some unusual peculiarity —
an absence of exact balance of forces both at the ridge nodes and in the cells
adjacent to the ridges. The reason for this is not difficult to see. The unbalanced
moments M¥ and M} belonging to the node n are not balanced at this node,
because the forces N developing the balancing moments M% and M% are
applied not at the node n, but at the nodes (n —1) and (n+ 1). Furthermore,
the moment MY could not be equilibrated by the corresponding moment M#%
even if it were applied at the node » because its magnitude does not depend
on MY alone, but also on M%. As the cells are reduced to a very fine size, and
the stress conditions in the adjoining units become nearly uniform, the joints
approach balance, and so do the pairs of the oppositly located cells 4 and B,
taken together. Actually, however, a quite good balance is attained even when
the cells are fairly large.

Structures Analyzed

The theory is applied to an example of folded plate roof, with vertical edge
beams on the sides, supported by the end diaphragms. The folds, two cells
wide, are inscribed into a circular curve of R=31', and the total internal
angle of 80°. The structure (Fig. 12) 77.5" long and 39.84" wide between the
edge beams, is symmetrical about two vertical planes. Its model is formed of
2.703' X 3.875" bar cells of aspect ratio k=1.4355, with 20 cells along the
length and 22 laterally, of which number three cells on each side belong to
the edge beams.

The load is made up of the weight of reinforced concrete in the roof and



ANALYSIS OF FOLDED PLATE AND CYLINDRICAL SHELL ROOFS 93

the edge beams 33/,” thick, amounting to 47 lbs. per sq.ft. of surface, and of
snow load of 25 1bs. per sq. ft. of horizontal projection. The material is assumed
to have uniform elastic properties with ¥ =3(10)%1bs./sq.ft. and p=0.2.
The results of analysis of this structure, described as No. 1, are compared
with those of two shell structures, resembling it closely in shape. The model
of the first of these (structure No. 2) has the same number and size of cells, and
is illustrated by the same Fig. 12, its only difference from the folded roof
being the location of all roof nodes on the circumscribed cylindrical surface.
The last or No. 3 structure (Fig. 13) is characterized by shape with gradual
transition from the roof to the edge beam, and while the number and size of
its cells is still the same as in the other two structures, its width and over-all
height are about 29, different from them. The three structures are compared
with regard to deflections, thrusts and moments in some significant locations.

Deflections

These are compared at the nodes between the mid-span and the end dia-
phragm as follows: vertical deflections along the crown line, vertical deflections
along the bottom of the edge beam and the horizontal deflections in the same
locations on the edge beam.

All these deflections present smooth parabolic curves (Fig. 14) of the type
y=ka™ with the order »n of the parabola varying between 1.65 and 2.07. The
corresponding ordinates in the three structures differ somewhat in magnitude,
as indicated in Fig. 14, not always in the same sequence. Their greatest ordi-
nates and the values of the parameter n are stated in Table 3. The greatest
difference in deflections between the three structures is found in horizontal
deflections, the structure No. 3 having only 0.7 of the value of the folded plate.
The vertical deflections are much closer. This agreement in deflections is

Table 3. Deflections of Three Roof Structures.

No. 1 No. 2 No. 3
Folded Plate Barrel Roof Barrel Roof
with ! with Merged Smoothly
Edge Beams ’[ Edge Beams into Edge Beams
d inch n 7 | &inch n d inch "
Vertical, ' ‘
Crown Line 0.216 1.65 | 1.256 0.208 1.74 0.222 2.07
Vert., Bot’'m
Edge Beam 0.0555 1.71 0.67 0.0611 1.76 0.0546 2.06
Horiz., Bot’,
Edge Beam 0.561 1.76 1.57 0.492 1.73 0.390 ‘ 1.93
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rather curious, when one considers the difference in analytical procedure
employed in solutions.

Another result worthy of being pointed out is the substantial difference in
deflections of the folded plate structure between the final values and the ones
following the first step of the solution procedure prior to balancing the ridge
moments MY . The initial and final deflections stand in a nearly constant ratio
all along the span; these ratios r=8,/8; are also stated in Table 3. The fact
that the ratio » is much greater than one, shows, that it is incorrect to leave
the ridge moments unbalanced, as suggested by some investigators (3).

Thrusts

The lengthwise thrusts in the prototype structures on the planes normal
to L axis are found by dividing the relevant nodal forces by the tributary

Mid-Span End.

7636

15667
8.031'

F[g.ME Deflections & N* Thrusts.
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—~—— Shell
-------- Rounded Edye Shell.
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2.61&:
2733
297+

Fig.i5. NT Thrusts "o
Sryniﬁcance of Lines - as in Fzy-ﬂf.
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0-247
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Roof—Edye Beam Ridge

Folded Plate & Edge Beam
————Shell & Edge Beam
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lengths. This means, that along the crown line and the ridge junction of the
roof and the edge beam the L nodal forces in the two cells adjacent to the
node are divided by the width of the cell 2.703’. On the underside of the edge
beam the cell nodal force is divided by % (2.703'), and at the same time multi-
plied by 1.09, to allow for the change in the lever arm to the neutral axis of
the section from the edge beam to the centre of the triangularly distributed
thrust area.

The diagrams of these NZ forces are also parabolic in shape, and they
resemble closely the deflections diagrams of Table 3. The Table 4, in which
they are assembled, contains the maximum values of thrusts, the orders of
the parabolae » and the ratios » between the final thrust values and the ones
prior to balancing the moments on the ridges. ‘

Table 4. NL Thrusts of Three Roof Structures

No. 1 | No. 2 No. 3
Folded Plate Barrel Roof Barrel Roof
with with Merged Smoothly
Edge Beams Edge Beams into Edge Beams
NZL max. " r NL max. " NL max. n
kip/ft. kip/ft. kip/ft.
On
Crown Line -14.50 1.72 1.28 -13.36 1.70 -13.11 1.83
Roof-Edge B.
Junection 11.37 2.45 1.43 10.30 2.50 8.91 2.25
Bot. Edge of
Edge Beam 18.30 1.95 1.01 17.90 1.90 18.15 1.89

The thrusts along the crown line in 7' direction are not distributed para-
bolically as the L thrusts. They are nearly equal over several nodes near the
mid-span (Fig. 15), and then they decrease towards the end supports first
slowly and then sharply. The ordinates of the curves in the three structures
are still more or less proportional to each other.

Bending Moments

These are investigated on L and 7 (or Y) planes along the crown and
along the roof-edge beam ridge. The crown moments M7 appear in the form
of parabolic curves of the same general shape in all three structures. The
results are stated in Table 5, arranged as Table 3. From this table it may be
observed, that the moments M7 in the structure No. 2 are only half as great,
and in the structure No. 3 one third as great as in the folded plate roof. The
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Table 5. MT Bending Moments Along the Crown

MT max.
Structure k. ft./ft. n r
No. 1 Folded Plate 0.537 2.90 1.475
No. 2 Shell and E. B. 0.283 2.50
No. 3 Rounded E. B. 0.187 2.88

latter moments are about 13 times greater than their incomplete values
present just after the step 1 of the solution.

The MT moments in the folded plate structure along the roof-edge beam
ridge do not vary a great deal, and their maximum moment value is only
about a quarter of 0.537 k-ft./ft. crown moment in Table 5. In the structure
No. 2, also subject to two-step iteration analysis, this moment is still smaller
by some 20%,. In the structure No. 3, devoid of the ridge, the moments M7 in
the area under consideration are very small.

The bending moments M~ along the ridge nodes, unlike the moments M7,
cannot be found by the method of nodal concentrations in view of the exist-
ence of the earlier described special equilibrium conditions. However, a quite
simple different method is available for this purpose. With the ridge nodes
undergoing no rotations about 7' or Y axes, the basic relation of elasticity
between the moments on the two perpendicular planes becomes ML=y M7T,
making ML proportional to the known moment M7 with the coefficient of
proportionality u.

Torsion Moments

Direct determination of torsional moments M, at the ridge from the nodal
moment concentrations in the planes 7' or Y is impossible because of the
special condition of unbalance of these moments. On the other hand, it is felt,
that the moments M,, may be found in the usual manner from the nodal
concentrations in the plane L, ignoring the angularity of the roof-beam
junction, which is not believed to affect M, significantly. The moment M,
" is then found by the relation of elasticity M,,= —M,,. With the roof and
the edge beam cells being of the same size, the M,, moments are equal on
both sides of the ridge.

The diagrams of torsional moments M, along the line of the roof-edge
beam nodes in the structures 1 and 2 are comparable in shape, as may be seen
from Fig. 16. Beginning with zero values at mid-span, the torques increase
to maximum at the supports, following the lines not too far different from
straight, with the values of torques in the structure 1 being some 15 to 209,
greater than in the structure 2.
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Conclusions

1. The presence of angular ridges in the folded plate structures complicates
considerably the displacement method of their analysis, in view of inability
of the ridge nodes to rotate about the axes perpendicular to the ridge, thus
leaving unbalanced the moments about these axes. Development of a suitable
iteration procedure for equilibration of these moments represents an original
contribution of this paper.

2. The method is applied to a particular vertically loaded folded plate roof
structure, called No. 1, provided with longitudinal vertical edge beams. Two
other similarly loaded structures, No. 2 and No. 3, covering equal areas, are
analyzed for comparison, the No. 2 structure being a barrel roof with the same
edge beams, and No. 3 — a similar barrel roof curving gradually into the edge
beams.

3. Deflections and stresses of different kinds, namely, normal stresses in
longitudinal and transverse directions, and flexural moments and torques in
L and T planes along both the crown and the ridge line, are determined and
compared in all three structures. Structure No. 3 has the smallest stresses and
deflections, followed by No. 2, with No. 1 developing the greatest stresses and
deflections in all but one comparatively unimportant case of deflection.
Judging by these examples, barrel roofs, not necessarily of constant radius
across them, have definite advantage in stresses and deflections over the
folded plates.

4. The apparent general inferiority of folded plates in comparison with
shells is subject to one qualification applicable to thin metallic shells. Such
shells, unlike comparatively thick reinforced concrete structures, may fail by
instability, and their resistance to failure of this kind is definitely improved
by the presence of interfold ridges.
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Notation
A, B cells on left and right.
E modulus of elasticity.
[K], [K,) cell stiffness matrices in cell and structure coordinates.
[K,.] stiffness matrix of whole model.

L, T, R structure axes and coordinates.
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[M], [M,], [Mg], [M]*
ML MT
My, ME, M7, M%
M, M, M, M,,

My, Myy, Tye, Tis
M.’EZ[’ Myw

N,N,, Ny,

NZ NT

{P}, {Fo}

R

X, Y, Z

Y., Yp,Z;,Z5

X, Y, Z

with two subscripts

a
k

[”7’2 0]> [mr 0]7 [ml]7 [mr]
m*, mY

with two subscripts
n

r

t

U, U, W

with subscripts

x, Y, 2

dx, 4y, Az

with subscripts

B
¥
{8}, {30}

7’
0’ 01, 0”

6=, gv

with subscripts
0L 9T

with subscripts

A. HRENNIKOFF

transformation matrices and transpose matrix.
bending moment at the node on L and 7T planes.
nodal moments on Y or Z planes on left and right sides.

nodal moments, as defined.

torsion moments.

nodal forces in Y direction.

normal thrusts in structures on L and 7' planes.
vectors of nodal forces referred to cell and structure
axes.

radius of structure.

cell coordinate axes.

axes on left and right of node.

terms of cell stiffness matrix.

cell dimension along X axis.
cell aspect ratio.

submatrices.

terms of cell stiffness matrix.

parameter of parabola.

ratio of final and initial displacements.
thickness of shell or folded plate.

nodal displacements in structure coordinates.

coordinates referred to cell axes.
nodal displacements referred to cell axes.

external angle between adjacent cells or folds.
external angle between roof and edge beam at the ridge.
node displacement vectors in cell and structure coor-
dinates.

Poisson’s ratio.

angle vectors.

nodal rotations, referred to cell axes.

nodal rotations, referred to structure axes.
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Summary

The finite element method, making use of rectangular bar cells, is applied
to deflection and stress analysis of cylindrical shell and folded plates structures.
The latter require the use of a special iteration procedure in view of inability
of the ridge nodes to rotate about axes other than parallel to the ridge lines
on which they are situated. The application of the method is illustrated on
the examples of three structures. The results show that folded plates are
inferior to cylindrical shells, closely resembling them in shape, both in stresses
and deflections.

Résumé

La méthode des éléments finis se servant de cellules de barres rectangulaires
est appliquée & I'analyse de déflexions et de tensions de coques cylindriques
et de structures en plaques pliées. Ces derniéres demandent I’emploi d’un
procédé d’itération spécial, étant donnée I'incapacité des points de jonction
de tourner autour des axes non paralleles aux lignes des sommets du toit ou
elles sont situées. L’application de la méthode est illustrée par I’exemple de
trois structures. Les résultats montrent que des plaques pliées sont inférieures
aux coques cylindriques quant aux tensions et déflexions bien que dans la
forme elles leurs rassemblent beaucoup.

Zusammenfassung

Die Methode der endlichen Elemente wird unter Verwendung rechteckiger
Stabzellenelemente auf die Biegungs- und Spannungsberechnung zylindrischer
Schalen und gefalteter Plattentragwerke angewendet. Die letzteren erfordern
den Gebrauch eines besonderen Iterationsverfahrens und zwar im Hinblick
auf die Unfahigkeit der Knotenpunkte, um andere Achsen zu rotieren als
solche parallel zu den Faltenlinien, in denen sie liegen. Die Anwendung der
Methode wird an Beispielen von 3 Bauten erldutert. Die Ergebnisse zeigen,
dass gefaltete Platten zylindrischen Schalen hinsichtlich Beanspruchung und
Durchbiegung unterlegen sind, obwohl sie ihnen in der Form sehr dhnlich sind.
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