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Curved Box Girder Bridges with Intermediate Diaphragms and Supports
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Introduction

The use of curved box girder bridges in modern highway systems and inter-
change facilities has greatly increased. Reviews of the various approximate
methods for analyzing such structures can be found in the report of the Sub-
committee on Box Girders of the ASCE-AASHO Task Committee on Flexural
Members [1] and in the work of McMaxvus, Nasik and CULVER [2], in which
an extensive list of references is given. Among others, DABROWSKI [3,4],
Kuranisui [5], Tune [6], and KoxNisHI and KoMATSU [7] suggested approxi-
mate methods of analysis. RorLL and ANEJA [8] conducted an experimental
investigation using plastic models of a curved box beam. The orthotropic
plate theory with application to multi-cell curved box girders was studied by
YoxEezawA [9], CERADINI [10], GAVARINI [11] and CHEUNG [12].

Recently, CHEUNG and CHEUNG [13] and MEYER and SCORDELIS [14] treated
curved folded plate structures simply supported at the two ends and composed
of elements that may in general be segments of conical frustra by finite strip
method. SAKAT and OKUMURA [15, 16] modified Vlasov’s folded plate theory
and applied it to investigate the influence of diaphragms on the behavior of
box girders with ribbed plate elements and verified the results experimentally.
CHU and PINJARKAR [17] developed a stiffness method for the exact analysis
of simply supported curved box girder bridges consisting of horizontal segmental
annular decks and vertical cylindrical webs. The stiffness coefficients of the
shell elements were based on Horr’s [18] solution of Donnell’s equations.
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In the present study, the same analytical model used by CHU and PINJARKAR
[17] is adopted. The objective is to develope an accurate and efficient method
of analysis of the influence of intermediate diaphragms on the behavior of
curved box girder bridges simply supported at the ends and subjected to
concentrated loads applied at the joints. For the shell elements, Donnell’s
equations are solved more efficiently with the aid of Vwasov’s [19] strain
function. The solutions due to unit vertical and radial loads applied at the
joints for the case without intermediate diaphragms are obtained and used as
influence coefficients to evaluate the effect of intermediate diaphragms under
any combination of concentrated live loads applied at the joints. Continuous
spans over intermediate supports are also treated in a similar manner.

Fundamental Consideration

Consider a double cell horizontally curved circular box girder bridge, with
or without intermediate diaphragms, simply supported at the ends by means
of supporting diaphragms, and subjected to unit concentrated loads acting at
the joints as shown in Fig. 1. The bridge is assumed to have uniform cross

Fig. 1. Simply Supported Curved Box Girder Bridge.

section throughout the span, consisting of the vertical webs which lie on con-
centric cylindrical surfaces and the horizontal decks which are segmental
annular plates. The end diaphragms are assumed to be infinitely rigid in and
flexible normal to their planes. It is also assumed that the influence of the
in-plane forces on the bending of the plate may be disregarded. This leads to
two fourth order partial differential equations which govern the bending and
the membrane action of the plate.

A vertical concentrated load acting on a joint of the top deck (Fig. 2a) can
be resolved into the symmetrical (Fig. 2b) and antisymmetrical component
(Fig. 2¢). The solution for the antisymmetrical component will be treated in
detail. It will be shown later that, for vertical loads applied at the joints, the
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solution for the antisymmetrical component (Fig. 2c) gives practically the
same results as the solution for the general loading (Fig. 2a). The slight dif-
ference, which is the solution for the symmetrical component (Fig. 2b), is
localized and can be obtained by suitable approximation for design purposes.
Obviously, it can be readily obtained by a similar analysis as for the anti-
symmetrical component if an accurate solution is desired.

R \L
(a),General Loading  (b) Symmetrical Loading (c) Antisymmetrical Loading
Fig. 2. Components of Loading.

The cylindrical coordinates (r, 8, x) with origin at the center of curvature
and the mid-height of the bridge are indicated in Fig. 1. The radii of curva-
tures of the inner, the middle and the outer webs with depth 24 are denoted
by a, b and ¢ respectively. The positions of the end diaphragms are defined by
6=0 and 0=40,. The positive directions of the displacements and the stress
resultants for the segmental annular plate and shell elements are shown in
Fig. 3a and b respectively.

(a) Segmental Annular Plate Element (b) Cylindrical Shell Element
Fig. 3. Positive Directions of Displacements and Stress Resultants.
Segmental Annular Decks in Bending

The homogeneous biharmonic differential equation governing the bending
of an elastic annular plate in small deflections [20] is

Viw =0, (1)
2 10 1 o2
2 = —— _——— — ————
where 4 3p2+p i + T (2)

In these equations, w is the displacement normal to the plate, positive as
shown in Fig. 3a, and p=r/R where R is in general the radius of the outer
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edge of the annular plate. The general solution of Eq. (1) satisfying the
boundary conditions at 6=0 and §=46, is obtained in the form, for k> 1,

w= Z [Almpk+A2mp_k+A3mPk+2+A4mp_k+2]8ink0’ (3)
m=1
where k=27 : (4)
0o

and 4,,, to 4,,, are constants of integration. The expressions for the cor-
responding stress resultants can be derived from Eq. (3).

Segmental Annular Decks in Plane Stress

The differential equation governing the membrane action of the annular
deck plate is [21]
Vie =0, (5)

where ¢ is an Airy’s stress function. The general solution of Eq. (5) which
satisfies the boundary conditions at § =0 and =46, can be obtained similarly
in the form, for k> 1,

(P = Eth Z [A5mpk+A6mp—k+A7mpk+2+A8mP_k+2] Sinkaa (6)
m=1

where E is the modulus of elasticity, ¢; the thickness of the deck plate and
Ay, to Ag,, are the constants of integration. The membrane stress resultants
can be readily found and the associated displacement field determined from
the stress-displacement relations.

Cylindrical Webs under Curved KEdge Loading

The differential equations governing the static behavior of cylindrical shells
attributed to Donnell will be adopted [19,20]. The condition of equilibrium
for a cylindrical shell with thickness ¢, and radius R are expressed in terms
of the displacement components «, v and w (Fig. 3b) by

2u 1—v *u  14v 2w ow

et T et 2 Ggee “ar ()
1+v *u v 1—v v ow

5 too Tt 3 s ae - (7b)
ou ov o d..

Véf-'_ﬁ_w—’g Viw=0, (7¢)

in which v is the Poisson’s ratio and

=z o _ _lin 2 O
‘=g P=pm V=iatip (8)
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Introduce for convenience Vlasov’s strain function i (¢, 8) which is related
to the displacements by

2y By

U = 8{802_1) FFek (9a)
__PY &
v = T (2%—)3C230, (9b)
w=—V. (9¢)
It can be readily shown that Eqgs. (9) satisfy Eqgs. (7) provided
__VZ 841# _
V8 + 2 I 0. (10)

To satisfy the boundary conditions at 6=0 and 6=0, the general solution of
Eq. (10) may be assumed in the form

& =m§1¢m(§)sink0. (11)

Substituting Eq. (11) in Eq. ( 10) leads to

¢,
4
. . 1—»2
in which A= —4-/?— (13)
The characteristic equation of Eq. (12) can be shown to be
(a2 — )t = — 42, (14)

which can be simplified to a set of four quadratic equations
—kB=+(144)Ax,. (15)

The eight roots of Eq. (14) are obtained by solving Eq. (15) separately in the
form

aye = Y1t agy = —(y1 181), (16)
a8 = Yatify, a5 =—(ya£1Bs),
A A
where y1,2=§[4_~1+}'1/1+k3+k0], 61,2=§[1i V1+k3—-k0],
(17)
k2
By = 25

Thus the solution of Eq. (12) becomes
‘l‘m = 21 Efnmeang’ (18)

where B,, are constants of integration. In view of Eqs. (16), Eq. (18) is
expressed in terms of trigonometric and hyperbolic functions and, for loadings
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which are antisymmetrical with respect to =0, the terms containing even
functions of { in the resulting equation are dropped. This leads to

= 3 [By,,cospB{sinhy, {+ By, sinp; {coshy,{
m=1

1
+ Bj,, cos By { sinhy, { + By, sin B, {coshy, {Jsink 0, (19)

in which the arbitrary constants By, to B,, are linear combination of B,,.
Substituting Eq. (19) in Eqgs. (9) yields the displacement components from
which the stress resultants can be readily obtained. The details can be found
in Ref. [22].

Box Girder Bridge under Unit Loads

The basic problem in the proposed method of analysis is the case of a curved
box girder bridge without intermediate diaphragm subjected to antisymmetri-
cal unit loads applied at the joints, as shown in Fig. 2¢ where P,=1. It will
be shown that the effects of loads applied along the joints, as well as the inter-
mediate diaphragm and supports, can be evaluated by means of the linear
combination of the individual effect, making use of the influence values
obtained from the unit loads solution.

The unit antisymmetrical loads, applied either vertically or radially at the
joints with radius R, at =0, is assumed to be uniformly distributed over a
small arc of length 2 «a subtending an angle 2a/R at the center of curvature.
These unit vertical or radial loads, Pg (6) or Hy (), will be represented by the
series

Pro(6) or Hy(8) = 3 Pgy (6,)sinko, (20)
m=1
y 1 sinkaa
where Py (6, )0= B/sza sinkfdd = g S U ke, (21)

and Py (f) is positive in the positive z-direction, while Hp (0) is positive if
acting in the positive r-direction at the bottom joint (Fig. 4).

ow, 0% owy
i'ax Bx 9x
w, - Wy vs
oy Plone of us!
: Antisymmetry !
N Nxz Nxs h
Sxer My sx.2 M. Sxes b M,
|\, Viz
V,
H Vu Mu Of d Via i Vis W Mrs %_":_5_ Mr re Vi
° _____ N S N —— Y
N !; Nyo [N s us N [
res Nres R b Nygs TN "™ Nies 3% He
Inner Joint Middle Joint Outer Joint
(r=a, x=h) (r=b, x=h) (r=c, x=h)

Fig. 4. Positive Directions of Loads, Displacements and Stress Resultants at the Joints.
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Boundary Conditions

The general solutions, Egs. (3), (6) and (19), involve 28 arbitrary constants,
viz., A;,, to Ag,, for the inner and outer annular plates, and B,,, to B,,, for
the inner, middle and outer cylindrical shells. These constants are determined
from the following 28 boundary conditions. To facilitate the derivation of
these equations, the positive directions of the loads, displacements and stress
resultants at the joints are shown in Fig. 4. At the inner joint r=a and x =4,

(Vr4)p=a/b_(Nx1)C=h/a+Pa (0) =0, ( r4)p—a/b+(Mx1)§ hla — =0,
(Nya)p—am + (Vo) t—nia +Hy (0) = 0, (Ny04)p=aip — (Sz01)tnia = 0
1 8w4) (1 awl) (22)
W) oeais = (%1)t—tla>
( 4)p fo ( 1)Z " (b 3P p=alb a aé’ gh/a
(u4)p=a/b = —(wl)é=h/a’ ?)4 p=alb (Ul)?; hla>
at the middle joint r=b and x=h,

—(Vd)pe1 = Na2)nin + (Vo) ppie + B (6) = 0,

( r4)p 1+(Mx2)§ h/b_(Mr5)p=b/c =0,
Nea)o1+(Vao)ionip + (Nys)ptie + Hyp (8) = 0,
r04)p— —(8z02)t—np+ (Nrg5)ppie = 0,

—(
—(v
(
(bl 8;24) (bl 89@22)4 no (01 8;;;5) p=ble

Wy)pm1 = (U2)i=pp = (Ws)p=plc> (23)
(u4 =1 = (wz)c hib = (u5) =bles
(”4)p=1 = (”2)§=h/b = (”5)p:b/c
and at the outer joint r=c¢ and x=h,
- (17?’5)p=1_ (Nz3)§=h/c+Pc(0) =0, (Mrs)p=1+ (Mw3)§=h/c =0,
_(Nr5)p=1+(Vz3)§=h/c+Hc (0) =0, (N7'95)p 1+(Sx03)5=h/c =0,
1 8@05) (1 8w3) (24)
Ws)p=1 = \Uz)t—pjc> P ’
( 5)p—1 ( 3)2_7/ (c 8p c 8§ {—hle
(u5)p=1 = - (w3)§=h/c7 (”5),0: = (7)3)§=h/c-

In these equations, N,;, N,g, and N, are membrane stress resultants, M,;
and M ,; the bending stress resultants and S,g,;, ¥, and V,; the supplemented
shear stress resultants as shown in Fig. 4. The subscripts 1= 1,2 and 3 are used
for the inner, the middle and the outer shell webs respectively, and ¢ =4 and 5
for the inner and the outer annular plates respectively. For each set of unit
loads, the appropriate Py () or Hy, () are retained while the rest are set equal
to zero. For instance, for the case shown in Fig. 2¢, P, (6) is given by Eq. (20)

in view of Eq. (21) with R=a.
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It is evident that the boundary conditions at the end diaphragms, (Ng;)g—0,g,
= (Mp;)p—0,0,= (%:)9—0,0,= (W;)p=0,9,=0 for :=1 to 5, and the boundary con-
ditions on the plane of antisymmetry at mid-depths of the webs, (N,;)ro=
(M 1) z—0=(v;)r=0 = (W;)r—o=0 for i=1,2 and 3, are satisfied by the general
solutions.

Solution without Intermediate Diaphragm

For six pairs of antisymmetrical unit vertical and radial loads applied
simultaneously at the joints r =a, b and ¢ at § =6,,, substituting the appropriate
displacement components and stress resultants and the appropriate Py () or
Hg (0) from Eq. (20) into the boundary conditions, Eqs. (22) to (24), leads to
a set of 28 simultaneous equations for each harmonic m which can be expressed
by

[CHX} = {P}. (25)

In this equation, [C] is a 28 X 28 coefficient matrix, {X} the unknown vector
whose elements are the 28 constants of integration and {P} the load vector
Pyg,,(0,) given by Eq. (21). The elements of [C], {X} and {P} are given in
Ref. [22]. Finally, Egs. (25) are solved to obtain the values of {X}=[C]1{P}
for each pair of antisymmetrical unit loads by setting the others equal to zero.
The corresponding displacements and stress resultants at any point (r,6,x)
can be computed by means of the appropriate equations (22).

Treatment of Intermediate Diaphragms and Supports

Unlike the end diaphragms, which are full diaphragms assumed to be rigid
in their planes but flexible perpendicular thereto; the intermediate diaphragm
is assumed to act as rigid cross bracings in such a way that the diaphragm
exerts only concentrated reactions on the joints without introducing resisting
moments against joint rotations. In other words, the interactions between the
intermediate diaphragm and the double cell box girder consist of pairs of

Fig. 5. Rigid Body Displacements and Diaphragm Reactions.
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vertical and radial reactive forces at each of the six joints of the cross section
(Fig. 5). The reactive forces are assumed to be uniformly distributed over a
small arc length along the joint equal to that used in the case of the unit loads.
Thus the diaphragm is infinitely rigid in its own plane and, under general
loading, it undergoes rigid body displacement, i.e., vertical and radial deflec-
tions as well as rotation about the axis of the bridge.

Solution with Intermediate Diaphragm

For antisymmetrical loading, the number of unknown vertical and hori-
zontal diaphragm reactions on the joints reduces from twelve to six, i.e., B
and R,y for i=1,2 and 3 corresponding to the three bottom joints as shown
in Fig. 5. In this case the undetermined rigid body displacement components
of the diaphragm reduce from three to two, the vertical deflection 4 of the
centroid of the diaphragm and the rotation ® about this centroidal axis while
the radial deflection vanishes. These eight unknowns are determined from the
eight equations derived from six compatibility conditions for vertical and
radial displacements of the three joints rigidly connected by the diaphragm,
and two equilibrium conditions governing the forces acting on the diaphragm.
Observe that the equilibrium of forces in the radial direction is identically
satisfied by the antisymmetry of forces R, .

The set of 8 simultaneous equations can be represented in the form

Wiy Wiey Wisy Wing Wisg Wisg —1 —(b——a)/hT ’ R,y ‘ F _wlel
Waoy Wagy Wargg Was g Wasg — 1 0 Ryy — Wy
Wasy Wi Waeg Wasg —1  (€—D)/h Ry —Ws;v
Ung Ueg Uisg 0 —1 ] By L __ ] T U |
Usomr Yoz O -1 Ry — Uiy ’
Symmetrical Ugggr O -1 Ry —Ugjp
0 0 Yi| 0
} 0 oo, L OF ) | 0 Jgg,
(26)

in which the influence coefficients w,;, and wu,;; are respectively the vertical
and radial displacements at the diaphragm at joint ¢ due to unit vertical loads
applied at the diaphragm at joint j. The subscript H denotes the corresponding
quantities due to unit horizontal loads and the angle 6, indicates the location
of the diaphragm. In the column vector on the right side of Eqs. (26), w;;
and wu; represent respectively the vertical and horizontal displacements at
the diaphragm at joint ¢ due to unit vertical loads applied at joint j along the
bridge at 6 =0, (Fig. 1).

The solution of KEqs. (26) yields the reactions as well as the rigid body dis-
placements of the diaphragm at #=0,; due to unit vertical loads applied at
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joint § and 6=46,,. The total solution is obtained by the superposition of the
effect of the unit vertical loads and those of the diaphragm reactions. Observe
that in this linear combination, the influence coefficients are those calculated
for the unit vertical and horizontal loads acting on the bridge without dia-
phragm discussed previously.

Solution with Intermediate Support

The solution for a box girder bridge with intermediate support provided
by means of an intermediate diaphragm which in turn is supported by a sub-
structure can be obtained by similar superposition technique with slight
modification. In this case, since the rigid body displacement of the diaphragm
is arrested by the support, 4 =0 =0 and Eqs. (26) can be used with the deletion
of the last two rows and columns.

Numerical Examples and Discussion

Comparison with Results of Finite Strip Analysis

The first example compares the results obtained for a curved box girder
bridge without intermediate diaphragms by the finite strip method [13] and
those calculated by the proposed method using approximate cross section and
loading to preserve symmetry (Fig. 6). The central span length and the mean

|
5 8" ; g"

’ 8" g
W o1 w J o ]
|8 R & LN .
18 8" 8 L)
% T T ¥ T |
18 18 18 18 4
(a) Proposed Method (b) Finite Stip Method (18 Strips)

Fig. 6. Approximate Sections and Loadings.

radius are 100ft. each with subtended angle of 1 rad. A total of 20 non-zero
terms of the series solution, the same as those used in the finite strip analysis,
are computed and the results for the stress resultants Ny and M, obtained at
the midspan for »v=0.16 are shown in Figs. 7 and 8 for three different radial
loading positions, i.e., unit load applied at 6,/0,=1/2 at the inner edge, center
and outer edge. The first loading position is illustrated in Fig. 6. The results
from both methods of analysis are in good agreement qualitatively in spite
of the approximation of the cross section and loading. This agreement holds
true also for the longitudinal bending moment M, [22]. This verifies that, with
the exception of the vicinity of the load, the magnitudes and distribution of
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Proposed Method

Finite Strip Method [13]
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Fig. 7. Comparison of Longitudinal Normal Force Ngx 102 at Midspan Due to Unit Load at

Proposed Method

Midspan (Without Diaphragm).

Finite Strip Method [13]
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Fig. 8. Comparison of Transverse Bending Moment M, x 102 at Midspan Due to Unit Load at
Midspan (Without Diaphragm).
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the stress resultants due to the antisymmetrical load component (Fig. 2¢)
considered in the proposed method are essentially the same as those due to
general loading (Fig. 2a).

Influence of Intermediate Diaphragm

The second example deals with curved double cell box girder bridges with
or without an intermediate diaphragm. The following set of parameters is
chosen for the study: depth to central span ratio = 1/15, depth to total width
ratio = 1/3, depth to web thickness ratio = 16, web thickness to deck thick-
ness ratio = 3/4, subtended angle = 1.2 rad. and v=0.15. The angle of distri-
bution of the loads or the diaphragm reactions along the inner joint is arbi-
trarily taken to be 0.005 rad. The series solution is assumed to converge when
the amplitude of the current term is less than or equal to } 9, of the current
sum. The results for the displacements and the important stress resultants
obtained at quarter sections due to unit vertical loads at 6,/6, = 1/2 or 1/4 for
different radial loading positions are presented in Figs. 9 to 14 for a compara-
tive study of the influence of the intermediate diaphragm provided at midspan.

It is seen from Figs. 9 and 13a that the cross section of the box girder
without the intermediate diaphragm distorts considerably as it deflects under

Without Diaphragm Diophragm at Midspan

Inner Quter Inner
Edge Edge Edge 1
r=a r=c r=o

{a)

)
~— T B
~N //’ N
(b) > o
/\/\ \///
P PN
1
R——— T ———
N J L
N - - 1
(c) N N
_________ —7_/—"*\% ——-—A//\( f
S BN e _*K—-——’
Scale >
) 5 10
—————— 8/6,=1/4,3/4 8/80=1/2 !

Fig. 9. Deflections (u, w) (Dg/a?) x 10* Due to Unit Loads at Midspan.
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Fig. 10. Transverse Bending Moment M, X 102 Due to Unit Loads at Midspan.
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Fig. 11. Longitudinal Normal Force Ng @ Due to Unit Loads at Midspan.

the loads. This distortion, which is maximum under inner edge loadings,
causes large transverse bending moments in the cell walls (Fig. 10). For loads
acting at the outer joint, the distortion is less prominent because of the greater
flexibility of the outer web with longer span length. It is of interest to observe
that with the addition of the intermediate diaphragm at midspan, the distor-
tion of the cross section is practically eliminated throughout the span for all
cases of joint loadings acting at the midspan. Consequently, the transverse
bending moments disappear from the cell walls except locally at the middle
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Fig. 12. Longitudinal Bending Moment Mg x 102 Due to Unit Loads at Midspan.
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Fig. 14. Transverse Normal Force N, a and Diaphragm Reactions R;i and B;p.

and exterior joints at the diaphragm. However, for loads applied at the quarter
span with the diaphragm at the midspan, the distortion and the associated
transverse bending moments exist at sections in the vicinity of the loads but
with much reduced magnitudes (Figs. 13a and b).

The deflections of the girder decrease considerably with the addition of the
intermediate diaphragm which prevents the distortion and increases the
overall stiffness of the bridge. The large magnitudes of the displacements
which occur under the loads without intermediate diaphragms shift to the
outer edge for the addition of the intermediate diaphragm. These behaviors
are also repeated with the longitudinal normal forces Ny in the circumferential
direction (Fig. 11). This fact is due to the redistribution of the applied loads
by the diaphragm in accordance with the flexibilities of the webs. For sections
sufficiently away from the diaphragm, the values Ny as well as M, are hardly
influenced by the intermediate diaphragm (Figs. 11, 12, 13¢ and d). The large
magnitudes of M, under loads at the midspan reduce significantly with the
presence of the diaphragm at that section (Fig. 12).

The concentrated diaphragm reactions cause large transverse normal forces
N, in the neighborhood of the joints (Fig. 14), which are insignificant for the
case without intermediate diaphragms except under the loads. However, the
values N, decrease sharply at a small distance from the loads or the reactions.

Continuous Curved Box Girder Bridges

The curved box girder bridge with the same set of parameters investigated
in the second example is analyzed for two equal continuous spans over a
supported intermediate diaphragm. The results obtained for unit vertical loads
applied at the quarterspan are shown in Figs. 13 and 14. The magnitudes of
the distortion and the transverse bending moments are significant at sections
under the load as expected for the case of a loaded span without intermediate
diaphragms. It is interesting to notice that these distortion and transverse
bending moment are almost identical to those in the case of a single span
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bridge with an intermediate diaphragm at the midspan and subjected to loads
at the quarter span (Fig. 13b). This is due to the fact that the intermediate
support acts in the same way as the intermediate diaphragm to resist distor-
tions under quarter span loading.

Diaphragm and Support Reactions

The concentrated reactive forces acting on the joints due to the addition
of the intermediate diaphragm or support at the midspan are indicated in
Fig. 14 for different loading positions. The intermediate diaphragm may be
constructed in the form of a truss with chords, verticals and diagonal bracings
connected to the bridge at the joints. It should be designed sufficiently stiff
to resist the total diaphragm reactions with relatively small displacements in
comparison with the distortion of the box sections. Obviously, the severest
loading condition for the diaphragm occurs when the loads act on the dia-
phragm. It is important to note that the diaphragm must resist the total
diaphragm reactions without the aid of the box section and that the inter-
mediate support must be designed to resist the total diaphragm reactions.

The supplemented shear stress resultants in the decks and the membrane
shear stress resultants in the webs at the end supports due to unit loads at the
midspan for the bridge with or without intermediate diaphragm are shown in
Fig. 15. The total shears carried by the webs and decks for the middle web
loading are respectively 0.986 and 0.014 for the case without intermediate
diaphragm, and 0.99 and 0.01 with the intermediate diaphragm. It is inter-
esting to note that the proportions remain practically the same for edge
loading in spite of significant changes in shear values of the individual web
members.
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Fig. 15. Supplemented Shear Force Vga in Decks and Membrane Shear Force Ng; @ in Webs
at Supports (8/0, = 0.1) Due to Unit Loads at Midspan.

Conclusion

The proposed method of analysis with antisymmetrical joint loads is an
accurate and efficient means for analyzing the behavior of curved box girder
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bridges with or without intermediate diaphragms and supports. Dealing with
the antisymmetrical component of the joint loads greatly simplifies the analysis
of the problem and consequently saves computer storage and execution time
for its solution. The comparison with the results for the general loadings
obtained by the finite strip analysis verifies that the proposed analysis yields
practically all the essential details. The effect of the symmetrical load com-
ponent is local and can be either suitably approximated or readily obtained
by a similar analysis if more accurate results are desired.

Proposed Method ( Without Diaphrogm )

Proposed Method (Without Diaphragm)
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It can be seen from Figs. 16 and 17, and the results reported in Refs. [16, 22],
that the deflections with intermediate diaphragms tend to approach the
approximate solution based on non-deformable cross sections [7]. The latter
cannot be applied to the design of curved box girder bridges without inter-
mediate diaphragms. With the provision of an intermediate diaphragm at the
midspan, the approximate solutions are in qualitative agreement with the
proposed solutions. Better quantitative agreement can be achieved by the
use of more intermediate diaphragms.

The use of intermediate diaphragms reduces effectively the cross sectional
distortion and the associated transverse bending moments in the cell walls, in-
creases overall stiffness of the bridge, decreases and redistributes the longitudi-
nal normal forces and longitudinal bending moments in the vicinity of the dia-
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phragm sections. The general conclusions with regard to the response of curved
box girder bridges with or without intermediate diaphragms predicted by the
proposed method agree well with the experimental observations reported in
Ref. [16].

The proposed method of analysis can be extended without fundamental
difficulties to analyze the behavior of curved steel box girder bridges with rib-
stiffened decks. In this case the equations governing the bending and mem-
brane action of the deck plates, which are assumed to be isotropic in this study,
are to be replaced by appropriate equations which take the orthotropy into
account.
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Summary

The static behavior of simply supported curved box girder bridges with or
without intermediate diaphragms subjected to concentrated joint loads is
investigated. The analytical model consists of a double cell box section with
horizontal annular segmental deck plates and vertical cylindrical shell webs.
The solutions due to unit antisymmetrical vertical and radial loads applied
at the joints for the case without intermediate diaphragms are obtained and
used as influence coefficients to evaluate the effect of intermediate diaphragms
under vertical loads applied at the joints. Continuous spans over intermediate
supports are treated in a similar manner. Numerical examples are presented
and the influence of intermediate diaphragms is discussed.

Résumé

On étudie le comportement statique de poutres de ponts en caisson simple-
ment supportées, avec ou sans panneaux sous l'influence de charges concen-
trées. Le modéle analytique est constitué d’une section de caisson & doubles
cellules avec des couvre-joints horizontaux annulaires et par des plaques
verticales cylindriques. On obtient les solutions dues aux charges antimétriques
verticales et radiales appliquées aux joints dans le cas sans panneaux et on
s’en sert de coefficients d’influence pour évaluer l'effet de panneaux sous des
charges verticales agissant aux joints. Des ouvertures continues sur des sup-
ports intermédiaires sont traitées de fagon analogue. On donne des exemples
numériques et on discute de 'influence des panneaux.
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Zusammenfassung

Es wird das statische Verhalten einfach unterstiitzter gekriimmter Kasten-
tragerbriicken mit oder ohne Querwénde unter Einwirkung konzentrierter
Belastungen untersucht. Das analytische Modell besteht aus einem doppel-
zelligen Kastenquerschnitt mit horizontalen ringférmigen Segmentdeckplatten
und vertikalen zylindrischen Scheiben. Man erhélt die Losungen infolge anti-
metrischer vertikaler und radialer Belastungen an den Verbindungen fiir den
Fall ohne Querwénde und beniitzt sie als Einflusskoeffizienten, um die Wirkung
von Querwinden unter vertikalen an den Verbindungen wirkender Lasten
abzuschitzen. Durchlaufende Offnungen iiber Zwischenstiitzen werden in
analoger Weise behandelt. Es werden Zahlenbeispiele gegeben und der Ein-
fluss von Querwéanden diskutiert.
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