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Inelastic Lateral Torsional Buckling of Beam Columns

Flambage torsionnel lateral non-elastique de colonnes

Unelastisches seitliches Torsionsknicken von Stützen

G. ABDEL-SAYED A. A. AGLAN
Associate Professor Research Assistant

Department of Civil Engineering, University of Windsor

Introduction

A wide flange beam-column subjected to an axial force and to end moments
about its major axis may fail because of: (1) local buckling, (2) excessive
bending in the plane of applied moments, or (3) lateral torsional buckling.
The local buckling can be avoided by satisfying specified width to thickness
ratios of the cross-sectional components [8] which, fortunately, are usually
met in most WF shapes. By eliminating the local buckling, the relationship
between the applied end moment, M0, and the resulting slope, 0, of a wide-
flange member follows one of the curves shown in Fig. 1 in which the length
as well as the axial force, P, are assumed to remain constant. The optimum
Performance of the beam-column is reached if failure is due to excessive
bending in the plane of the applied moment [6, 9], i. e. curve (a) with maximum
moment M0max. If no adequate lateral bracing is provided, the beam-column
deflects laterally out of the plane of bending with simultaneous rotation before
reaching its ultimate bending capacity. This behaviour starts at a bifurcation
point B (see Fig. 1) beyond which the M-d curve slopes slightly upwards
indicating capability of the member to carry additional loading [7,13]. However,

this additional loading is so small that the bifurcation point is considered
to effectively determine the buckling limit to the beam-column.

The problem of lateral torsional buckling of beam-columns has been exten-
sively studied in the elastic ränge. In the inelastic ränge, it was examined by
Mmanda [12,13], who took into account the prebuckling displacements of
the column (i. e. the deflection in the plane of applied moment before the
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Fig. 1. Typical M-0 curves for a beam column under uniaxially eccentric load.

initiation of the lateral torsional buckling), but he neglected the residual
stresses and the strain hardening. Ftjktjmoto [4,5] also examined this problem

considering the residual stresses but neglecting the pre-buckling
displacements as well as the strain hardening. The effect of strain hardening in
the problem of lateral buckling ofbeam columns appears to have been neglected.

This study examines the problem of elastic and inelastic lateral-torsional
buckling of perfectly straight wide-flange beam-columns subjected to axial
force and equal end moments about the major axis. The residual stresses and

pre-buckling displacements are considered together with the strain hardening.

Differential Equations

The differential equations governing the lateral torsional buckling of a
beam-column have been treated extensively [4, 7,14,16] based on the following
assumptions:

1. The beam-column is perfectly straight. The WF cross-section does not
vary along the length of the beam and retains its original shape without
distortion prior to and during buckling. The deflection and rotations are too
small relative to the dimensions of the beam-column.

2. The axial force, P, and the end moments, M0, are applied at the ends
of the beam-column and no lateral forces are acting between the ends. The
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moments, M0, act about the major axis of the cross-section. The axial force
acts along the direction of the original centroidal axis of the cross-section and
retains its direction until failure.

The three simultaneous, differential equations which govern lateral torsional
buckling are [13]:

Bx(v; + v")+M0 + P(vi + v) 0, (la)
Byu" + Pu + [M0 + P(vi + y0)]ß 09 (lb)
Cwß'"-(CT-$or2dA)ß' + [M0 + P(vi + y0)]u' 0, (lc)

A

in which u, v displacement in the x- and ^/-directions respectively; ß rotation

about the z-axis; vi prebuckling displacement; Bx,By flexural rigidity
about the x- and ^/-axis respectively; CT St. Venant's torsional rigidity;

Cw warping rigidity; \or2dA Wagner effect; y0 distance from centroid,
A

c, to shear centre, s. The ', " and '" indicate the first, second and third differen-
tiations with respect to z. Eq. (la) governs the M-P-<f> relationship occurring
between the moment about the #-axis, Mx M0 +Pfa + v), the thrust, P,
and the curvature <f>x v% + v". It is independent of the lateral displacement,
u, and the torsional displacement, ß; therefore, it has no effect on lateral-
torsional buckling of elastic beam-columns. However, for inelastic beam-
columns the M-P-cf) relationship does affect the lateral torsional buckling as

it governs the strain-distribution in cross-sections and the corresponding
rigidity coefficients appearing in Eqs. (lb) and (lc).

Boundary Conditions

The ends of the beam-column are free to rotate about either principal axes
with no displacement in either direction. They are also free to warp but their
rotation about the longitudinal axis (z-axis) is prevented. These boundary
conditions can be written as follows: at z 0 and z L: u u"=ß ß' 0 in
which L the length of the beam column.

Material Properties

The idealized stress strain relationship of steel is shown in Fig. 2, it is the
same for compression and tension stresses and can be formulated as follows:

* Ee-E[e±ey] + {^E[e±€st], (2)

in which o the stress; E modulus of elasticity; Est the strain hardening
modulus; ey and est the absolute value of the yield strain and the strain at
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Fig. 2. Idealized stress-strain diagram (in tension and compression).

the onset of strain hardening. The two brackets have special significance as

follows:

1. when €<€y, both brackets disappear;
2. when €y < e < est, only the second bracket disappears,
3. when €st < e, both brackets are taken into consideration.

The signs inside the brackets are positive if e is negative and vice versa.
The residual stresses are assumed to be distributed symmetrically about

the i/-axis as shown in Fig. 3 [10] and can be given by the following Eq.:

aR °rt + Vrc-Vrt
(6/2)

x\, (3)
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Fig. 3. Assumed residual stress pattern.
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in which orc, ort maximum compressive and tensile residual stresses respectively;

b the width of the flange and \x\ the absolute value of x.
The residual stresses are always less than the yield stresses, therefore a

corresponding residual strain can be introduced by dividing both sides of
Eq. (3) by E, obtaining the following equation:

€* e*+Ww' (4)

Method of Solution

Based on the above definitions, equations and boundary conditions, the
investigation of the lateral torsional buckling problem in a beam-column (i. e.
the detection of the bifurcation point, J5, on the M0-6 curve, Fig. 1), then
follows four steps:

/. Determination of Moment- Thrust-Curvature Relationship

This relationship, known as M-P-<f> curves, is first established for a cross-
section subjected to axial force, P, and a moment, Mx, acting about the
#-axis. Plane cross-sections are assumed to remain plane after beam-column
deformation; therefore, the strain at any point (x,y) on the cross-section can
be written as follows:

€ €0 + <l>xy + €R, (5)

in which e0 the average normal strain, i. e.

edA. (6)e° iJ€
<f>x the curvature about the #-axis and <f>xy is the flexural strain referred to
as em(€m <f>xy). The relatively small thickness of flanges and web (in com-
parison with the cross-section) insures that the strains can be safely assumed
to be uniform over these thicknesses. The strains are Symmetrie about the
2/-axis and can take any one of the sixteen configurations shown in Fig. 4.

The equilibrium between external and internal forces requires that:

P =fadA (7)
A

and Mx =$oydA. (8)
A

Substituting Eq. (2) in Eq. (7) and dividing by the axial thrust Py which
corresponds to the yield stress level, Py E€yA, leads to:
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Fig. 4. Sequence for checking the strain patterns.

The first integral of Eq. (9) equals to €0ley (Eq. (6)) in the non-dimensional

form, while the second and third integrals are the sectional volumes of — ± 1

— ±— respectively and can be calculated numerically for any assumec.

strain configuration. Therefore, Eq. (9) takes the form:

Q fö)-fö) + 8 0, (10)

in which Q, B and S are coefficients depending on the thrust P, flexural
strains €m, geometry of section, residual stresses and the assumed strain
configuration. Expressions for Q, B and S have been derived in Reference [2].

Using non-dimensional factors Kl9 K2 and KB to describe the cross-section
as shown in Fig. 3 and substituting Eq. (2) in Eq. (8) and dividing by the
moment Mx at which yielding first occurs in flexure, leads to:

M\ D(l+K2)\
Mx JX V'kKMiMH^Mt^H «">
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in which the integrals on the left hand side can be calculated numerically for
any assumed strain configuration (D — half depth of the web).

For a specified thrust P and residual stress distribution, a trial and error
procedure is applied [2,11].
1. A curvature </>x is assumed and the flexural strains, em <f)xy are calculated

at the points 1 to 6 shown in Fig. 3.

2. A strain configuration is assumed and with the flexural strains em calculated

in step No. 1, the coefficients Q, B and S are calculated for the specified
thrust P and residual stresses.

3. Q, B and S are substituted in Eq. (10) and eQJ€y is calculated.
4. The strain is calculated using Eq. (5). The corresponding strain configuration

is found and compared with the assumed one.
5. The steps 1 to 4 are repeated until the calculated configuration becomes

the same as the assumed one, then the moment Mx is calculated using
Eq. (11). Since this moment corresponds to the assumed curvature <f>x and
thrust, P, it presents a point on the M-P-</> curve.

6. Repeat steps 1 to 5 for different curvatures <j>x and find the corresponding
moments Mx.

II. Determination of the Cross-Sectional Mechanical Properties

The cross-sectional properties By, Cw, y0 and \or2 dA, which are constant
along the length of an elastic beam-column, become variable in the inelastic
ränge because of partial yielding or strain-hardening. The bending and warping
rigidities are the elastic rigidities of the unyielded part of cross-section plus
the rigidities of the strain hardening area. The distance y0 is calculated between
the original centroid of the section and the shear centre of the unyielded area.
Formulas are established [2] for the By, Cw and y0 for each of the strain
configuration, Fig. 4.

The derivation of mathematical expression for the Wagner effect becomes
too laborious for inelastic sections. Therefore, it is calculated numerically by
dividing each flange and web to 20 equal parts [2]. The St.Venant torsional
rigidity, in line with previous studies [3,4,7,13,14] is assumed to be always
equal to the elastic torsional rigidity.

///. Determination of End-Moment Versus End-Botation

For a beam-column with specified length, L, thrust, P, and end moments
M0, a deflection curve can be obtained using numerical integration and the
M-P-cf> curves developed in phase I. The end moments are equal; therefore,
the deflection curve is symmetrical with zero slope at the middle where the
integration starts. From a group of column defleption curves (CDC-S) the
curves of end-moment versus end rotation can be obtained [15].



8 G. ABDEL-SAYED - A. A. AGLAN

IV. Determination of the Lateral-Torsional Bückling

Each point on the Mo-0 curve, Fig. 1, represents a stable, uni-axially loaded
beam-column deflected in the plane of applied end-moments. The deflection
curve and bending moments diagram is defined in phase III. With specified
thrust and moment, any cross-sectional strain-configuration can be obtained
from phase I and the mechanical properties calculated in phase II.

The lateral torsional buckling (bifurcation point, B) is examined using
Eq. (lb) and Eq. (lc) where coefficients (beam-column's sectional-properties)
are variable with respect to z. Therefore, a direct Solution is rather difficult
and a finite difference approximation is applied. This leads to a set of
simultaneous algebraic equations in the lateral displacement u and the rotations ß
at a number of discrete points spaced at h L\n, in which n is an odd number
to which the beam is divided (5).

This system of equations can be written in matrix form as follows:

(C-\I)X 0, (12)

in which C real non-symmetric matrix, A eigenvalues, (A= 1 — Moi), I
identity matrix and X eigenvectors.

The point of onset of lateral-torsional buckling and the rigidity coefficients
(By, CT, Cw, y0 and J*or2dA) are interdependent. Therefore, a trial and error
approach is applied to solve the problem.

A critical end-moment, M\iy is assumed using an approximate method for
a beam-column with specified length and axial load, P. The deflection and the
moment at evenly spaced discrete points along the entire length of the beam-
column can be calculated using the CDC-S (phase 3). The corresponding
mechanical properties are calculated from phase 2 for the section at each of
the discrete points. The matrix C can then be calculated and also the
corresponding minimum critical end moment, Moi, from the eigenvalues of
matrix C. Moi is then compared with the assumed M^. If the ratio -1 is

different from unity, the procedure is repeated until M\i assumed becomes
close enough to the calculated Moi.

A Computer programme for all the theoretical work of the four phases has
been written for the IBM system 360/50 at the University of Windsor.

Observations

1. An example of an 8 WFSl is investigated and the results are compared
with previously published results as follows:

a) The theoretically obtained results of references [5,13] are in good agreement
with the results of the present investigation when the same assumptions
are taken into consideration.
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Fig. 5. Moment-curvature-thrust relationship for 8WF31 (^ 36, EstIE 0.022 and €stj^y=\2).
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Fig. 6a. Lateral torsional buckling strength curves for a 8 WF 31 (0-^ 36, EstjE 0.022 and
estjey 12).

1 Failure by excessive bending considering residual stresses - 2, 3, 4 Failure by lateral torsional
buckling - 2 neglecting residual stresses - 3 neglecting pre-buckling displacements — 4 con¬

sidering residual stresses and pre-buckling displacements.
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Fig. 6b. Lateral torsional buckling strength curves for a 8 WF 31 (0-^ 36, EstjE 0.022 and
€,«/*„ 12).

1 Failure by excessive bending considering residual stresses — 2, 3, 4 Failure by lateral torsional
buckling - 2 neglecting residual stresses - 3 neglecting pre-buckling displacements - 4 con¬

sidering residual stresses and pre-buckling displacements.

b) The experimentally obtained results of reference [7] for -=- 0.12 show good
¦Ly

agreement with the present investigation.

2. The domains of the different strain configurations is shown in Fig. 5

pof the M-P-<f> relationships. They indicate that for -p- 0.4 to 0.8 the prevalent

configurations are numbers 1, 2 and 3 for the elastic and plastic ranges followed
P l P \

by configuration 8 for the strain hardening ränge. With low ratio of p- l-p- 0.21

the configurations are numbers 1, 2, 3, 5 and 13. These results help in executing
phase I by assuming the most probable strain configuration.

3. The effect of residual stresses, pre-buckling deflection, and strain hardening
P

can be seen in Figs. 6a, b, c for -=- 0.2, 0.4 and 0.6. The curves in each figure

relate the (-p!r) to the slenderness rate I—I. Curve 1 is for failure due to excessive

bending and considering residual stresses. Curves 2, 3 and 4 illustrate
failure due to lateral torsional buckling with curve 2 for neglected residual
stresses and considered pre-buckling, curve 3 for considering residual stresses
and neglecting pre-buckling and curve 4 for both considered residual stresses

anp pre-buckling displacements.
Each of the curves is seen to be built of elastic, plastic and strain hardening
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Fig. 6c. Lateral torsional buckling strength curves for a 8 WF 31 (0^ 36, Est\E 0.022 and
€8tl€V= 12).

1 Failure by excessive bending considering residual stresses - 2, 3, 4 Failure by lateral torsional
buckling — 2 neglecting residual stresses — 3 neglecting pre-buckling displacements — 4 con¬

sidering residual stresses and pre-buckling displacements.

ranges. The effect of the residual stresses, pre-buckling, and strain hardening
can be discussed further as follows:

a) Effect of Pre-Buckling Displacement

The pre-buckling displacement vi appears in the differential equation added
to y0 and multiplied by P, P(^ + 2/0)- This term is proportional to the loading,
therefore calculating the pre-buckling has relatively small effect for small

Pratios of -p- curve (see Figs. 6a, b,c), its effect disappears completely when
P y P

-j5- 0. For a constant ratio -p-, the displacement vi is greater than y0 in the
Py Py
elastic ränge while vi is too small when compared to y0 in the inelastic ränge.
Therefore, the buckling load calculated with the pre-buckling displacement vt
has maximum reduction in the elastic ränge (Figs. 6 a, b,c). Compare curve 4

with curve 3.

b) Effect of Residual Stresses

Figs. 6a, b,c show that residual stresses has negligible effect on the lateral
torsional buckling in the elastic ränge. However, they reduce the maximum
moment that can be reached before the start of the inelastic ränge (compare
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point a2 with point a3 in Fig. 6b). Within the inelastic ränge, the residual
stresses have considerable effect on the lateral torsional buckling because they
extend the yielding zone in the cross-section leading to reduction in the bending
and warping rigidities.

c) Effect of Strain Hardening

The present analysis is for mild steel, with —=12; the maximum strain in

the strain hardening ränge is limited to twelve times the yield strain, ey. The

strain hardening has an effect only in short columns where — <8. Such short

columns are of little practical interest. However, for high tensile steel or
aluminium alloy with stress-strain relationship different from that of mild

steel, i.e. — <12 and/or ^> 0.022, the effect of strain hardening will be
€y £J

considerable and extends to slender columns.

1.4 max. strain 7 times yield strain

1.2

T

6
P-^-=0.40
Py

1.0
\

- i\
i
X

- Est/E=0.l

<

0.8

\
%

\
\ \\ \

X \

Est/E=0.0

0.6

^*"»- \

P i NU i
b

1

1

< i

• 1

0.4
1 ±-\

• 'W d \

< > M0

.i

1 1

0.2

n

Dimension in inch

b 6.5
d=l2.0
t 0.625
w= 0.437

1 1

es \

1 -ifiL.
10 15 20 25 30

Fig. 7. Lateral torsional buckling strength curves for an aluminium alloy section Alcan No. 28021.
Comparing the Calculations with Est/E 0.10 and 0.0.

(Considering pre-buckling displacement and assuming no residual stresses, oy 27 ksi,
E 10,000 ksi, €8tl*v LO).
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TP

To investigate the effect of the ratio — on the lateral torsional buckling
strength, an aluminium alloy section (Alcan 28021) is examined considering
TP

-^=0.1 and 0.0 and — 1.0. A comparison of the two curves in Fig. 7 shows

that the strain hardening has appreciable effect on the lateral torsional buckling.

Conclusions

This paper examines the problem of lateral torsional buckling of uniaxially
loaded beam-columns. The main points of conclusion are:

1. The lateral torsional buckling reduces the strength of beam-columns
considerably in the inelastic ränge.

2. Residual stresses have negligible effect on the buckling load in the elastic
ränge but they reduce the buckling load considerably in the inelastic ränge.

3. The effect of pre-buckling displacements is not always insignificant and
being neglected may lead to considerable errors on the unsafe side.

4. The strain hardening of mild steel has appreciable effect only on short
columns (where — < 8).
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Notation

The following Symbols are used in this paper:
A area of cross section;
Bx,By bending rigidity about the x- and ^/-axis respectively;
b width of flange;
[C] Square matrix;
CT St. Venant's torsional rigidity;
Cw Warping rigidity;
d depth of wide-flange section;
D — half depth of the web;
E modulus of elasticity;
Esi strain hardening modulus;
[/] identity matrix;
K1,K2,KS= factors defining the dimensions of the cross-section (see Fig. 3);
L length of the beam-column;
M0 applied end moment
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Mcr actual critical end moment;
MQi calculated critical end moment;
M\i assumed critical end moment;
M0max maximum end moment due to lateral torsional buckling;
Mx applied moment on a section about the #-axis;
Mx applied moment on a section at which yielding first occurs in

flexure (P 0);
P axial load;
P axial load causing yielding over the entire cross-section;

rx radius of Gyration about #-axis;
t flange thickness;
u, v displacements in the x- and ^/-directions;

vi pre-buckling displacements in the plane of the applied moment;
w web thickness;

x,y,z system of axis used;

\X\ matrix containing eigenvectors;
y0 distance from the centroid, to the shear center;
ß rotation of the cross-section about the shear center;
€ axial strain;

strain corresponding to the axial force, P;
€m axial strain due to bending;
€R residual strain;

maximum compressive residual strain;
maximum tensile residual strain;

€8t strain at the onset of the strain hardening;
€y yield strain;
o stress;

oR residual stress;

or maximum compressive residual stress;

<jr maximum tensile residual stress;
<j)x curvature about the x-axis;
(j>x curvature about the #-axis corresponding to initial outer Aber

yielding (P 0);
[A] matrix containing eigenvalues;
6 end rotation;
$or2dA Wagner effect.
A

€{

€rc

cr*
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Summary

The problem of elastic and inelastic lateral-torsional buckling is examined
for perfectly straight wide-flange beam-columns subjected to axial force and

equal end moments about the major axis. The residual stresses and pre-
buckling displacements are considered together with the strain hardening.
The investigation is conducted using finite difference approximation and trial
and error procedure.

Resume

Le probleme du flambage elastique et non elastique lateral et torsionnel
est etudie pour des colonnes droites ä larges semelles, exposees ä des forces
axiales et ä des moments egaux dans Taxe majeure. On y tient compte des

tensions residuelles et des deplacements de preflambage ensemble avec le

durcissement ä Fallongement. L'etude est faite en utilisant les differences
finies approchees et la methode d'essais et des defauts.

Zusammenfassung

Das Problem des elastischen und unelastischen seitlich-torsionellen Knik-
kens wird für vollkommen gerade breitflanschige Stützen untersucht, die
axialen Kräften und gleichen Endmomenten in der längeren Achse ausgesetzt
sind. Dabei werden die Restspannungen und Vorknick-Verschiebungen
zusammen mit der Streckhärtung betrachtet. Die Untersuchung wird unter
Benützung der endlichen Differenzen-Annäherung und der Versuchs- und
Fehlermethode durchgeführt.
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