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Stochastic Analysis for Time-Dependent Load Transfer in Reinforced
Concrete Columns

Analyse aléatoire du transfert de la charge en fonction du temps dans les colonnes
en acier-béton

Stochastische Amnalyse fiir zeitabhingige Lastiibertragung in Stahlbetonstiitzen

A. B. 0. SOBOYEJO
Faculty of Engineering, University of Lagos, Lagos, Nigeria

Introduction

A stochastic process model is developed for the phenomenon of time-
dependent load transfer from concrete to steel in reinforced concrete columns
subjected to a constant axially sustained loading. This phenomenon is caused
mainly by the mechanisms of creep and shrinkage in concrete.

Having developed a mathematical model, a stochastic process model is then
developed. The choice of the stochastic process model depends on the actual
physical mechanisms of creep and shrinkage in reinforced concrete columns,
and on the nature of the mathematical model developed. The stochastic pro-
cess model is a probabilistic model which gives a mean value function which is
functionally the same as the mathematical model; it also gives more useful
information than the deterministic model, since it gives not only the mean
value function, but also the variance and the covariance functions. The
variance function gives a measure of the variation of the process from its
mean value at any time #>0; while the covariance function describe the
degree of correlation between the values of the process at any two times s
and ¢{, where 0 <s <.

The variance function enables statements to be made concerning the upper
and lower bounds for the phenomenon of time-dependent load transfer in
reinforced concrete columns. Moreover, the variance function enables state-
ments to be made concerning the possible deviations from the mean value
function, for the phenomenon of time-dependent load transfer in reinforced
concrete columns.
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The ability to predict not only the upper and lower bounds but also the
possible deviations from the mean value, for this phenomenon should have
useful application in practice. '

The results of the stochastic process model developed are compared with
results obtained in recent experimental work in this field; and very good
agreements are obtained.

Deterministic Model

When a reinforced concrete column is subjected to a constant axially
sustained loading, it can be shown that the instantaneous loads taken up by
the concrete and the steel, at the initial time of loading, can be represented
by (see Fig. 1)

AC EC
B(0)= Py (1)
A B, .
BO) =Py g i g 2)
where P,(0) = load on the concrete at the initial time of loading which in

this case is considered as time ¢=0;

(0) = load on the steel at the initial time of loading t=0;

total load taken up by the column;

R area of steel;

area of concrete;

modulus of elasticity of steel;

. = modulus of elasticity of concrete; this value is assumed to be
constant.
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Fig. 1. Reinforced concrete column
under constant axial loading.
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It has been shown [1,2,3,4] that due to the mechanisms of creep and
shrinkage, there is a gradual transfer of load from concrete to steel in rein-
forced concrete columns, under constant axially sustained loadings. It is
reasonable to assume that the following relationship [4, 5] holds at any small
increment of time, di.

Change in creep and shrinkage strains of concrete
= Change in Elastic Recovery Strain of steel,
+ Change in Elastic Recovery Strain of concrete;

that is,
P dP, dP,
(» cl(:)) de (t)+ds (1) = I:E’(i) - ”E(t),

where ¢ (t) = specific creep strain for concrete at any time ¢=0, it has the

. . stramn . . . .
dimensions Stress ’ Smce 1t represents creep strain per unit stress;

tres
s (t) = shrinkage strain at any time ¢{= 0 for the concrete.

Moreover, since the increase of load on the steel must be equal to the
decrease of load on the concrete, in order to maintain equilibrium, therefore;

dP,(t)+dP,(t) = 0. (4)

It is also reasonable to assume (5) that shrinkage strain and creep strain func-
tions are related by
s(t) =k(s)c(?), 120, (5)

where [ (s) is approximately a constant which can be derived from experimental
data by finding the ratio between the shrinkage strain and the creep strain
at any time. The value of k(s) will depend very much on factors (6) which
can influence both shrinkage and creep.

Eqgs. (3), (4) and (5) can be solved with the initial conditions ¢ (f)=s(f)=0
when ¢=0, to give the following results, for the load on the concrete P,(¢),
and the load transferred from the concrete to the steel 4 P (), at any time
t=0; ‘

P(t) =P (0)efh_8(1—eb®) >0, (6)
AP (t) = (F,(0)+8) (L —e ), t=0, (7)
__ PE _
where 6_1+(n—1)p’ S=Fk(s)A4,
. E
and p = steel ratio, 7w = E—“

c
Moreover, the load on the steel P, (¢) at any time ¢=0, can be expressed as:

F ()= F(0)+4P(), tz0. (8)
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The specific creep strain will be assumed to have a function of the type (3):

t
C(t)=m, t20, (9)
where 4 and B are constants for a given mix of concrete and age of application
of load on the concrete. '

In this development, it is assumed that the modulus of elasticity of con-
crete B, is a constant. This is not strictly so, however, it is possible to consider
the effect of the variation of E, with time in this problem (5), this derivation
will not be considered here in order to simplify the mathematical development.

Effect of Time of Loading

When the column is subjected to a sustained loading beginning at time
T =0, then the load transferred from the concrete to the steel 4 P (¢), which
has been affected by the shrinkage of the concrete through, the total time
t= 0, and the creep of the concrete which only comes into consideration during
the time period from 7 to ¢, can be expressed as:

AP () = S(1—et®) 4 P (T) (1 —ebet=1)), t=T20: (10)
while the loads P,(t) and P,(t) on the concrete and steel are given respec-
tively as:

B(t)=B(T)-4P(), t2T20, (11a)
and P, (t) = P(T)+4 P (1), t2T72=0. (11b)

Useful Simplification for the Mathematical Deterministic Model

It is good enough in most practical structural engineering applications to
assume that the quantity,

(-T)

Bc(t_T)zeA—i—B(t—T)’ t=2T=20,
g%(t—T), t=zT2=20, (12)
~u(—T) t=zT=20,
where ,u=—j~. (13)

The quantity pu can be regarded as a constant for any reinforced concrete
column under known working conditions for the concrete. Known working
conditions for the concrete may be such factors as the external temperature
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which is assumed constant here, moisture, or any other factors which can
affect creep characteristics of the concrete and thereby affect the value of 4
for the concrete.

Eq. (12) is good enough for most normal practical structural engineering
applications because experimental results for creep data normally show that (5):

g—(t— T) < 1.00
particularly after a long time.
Using the results of Eqgs. (12) and (13), the results given by Eqgs. (10),

(11a) and (11b) can now be expressed as:

AP({t)=S(1—e )+ P(T)(1—ertD)  >2T>0, (14) -
P(t) =P(T)-A4P(l), = R(T)erD—S(l—est), 12T20,  (15)
Pt) =FP(T)+4P(@), =P (T)+S(A—et)+ P (T)(1—erl=D),
(16)
t=1T2=0.

Similar modifications can be made to the results given by Eqs. (6) and (7).

The results given by Eqs. (14), (15) and (16) provide very useful bases in
the formulation of a reasonable stochastic process model for the problem of
time-dependent load transfer in reinforced concrete columns.

-Formulation of Stochastic Process Model

The nature of the variations in the time-dependent load transfer due to
the mechanisms of creep and shrinkage in reinforced concrete columns sub-
jected to axially sustained loadings, suggest that a stochastic process model is
appropriate to describe such a phenomenon (5). The results of the deterministic
model and the physical nature of the phenomenon are very useful guides in
the choice of the appropriate statistical model.

In this development it is assumed that the steel is inert and that it does not
experience any appreciable time-dependent deformations at the environment
in which the system is operating. Also it is assumed that the operating tem-
perature of the column remains essentially constant.

Effect of Mechanism of Creep Alone

Creep strains of concrete can be assumed to be resisted by the presence of
the inert steel, and that as a result of ths resistance, the steel becomes more
highly stressed, while the stress in the concrete decreases with time. Since
concrete creep can be assumed to be proportional to the applied stress on the
concrete, or to some power of the applied stress (8), the rate of creep will be
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reduced more and more as the load continues to be transferred from the con-
crete to the steel. Even in short-period tests on reinforced concrete the creep
rate decreases appreciably within a few minutes of loading, and it is thought
that this effect is due partly to the transfer of load within the specimen. The
creep rate is further reduced as the age of the concrete increases owing to the
increase in the ‘“‘resistance to flow’’ of the cement in the concrete (7).

The deterministic model shows that the load on the concrete P, (¢), the load
on the steel P, (¢), and the load transferred from the concrete to the steel
4 P (t), are all functions of many variables including creep; and since creep
itself can be assumed to be a random variable (9), therefore it is reasonable
to assume that the quantities P,(¢), P,(¢), and 4 P (t) are all random variables
(10). Furthermore, it can be shown from Eq. (15), that the rate of the function
P, (t), when shrinkage is neglected, can be expressed as:

d%t(t) = —pP(T)ertD = _y P (1), (>T20. a7)
where B(t) = B(T)e =D, t2Tz0 (18)

is the load on the concrete at any time, due to the effect of creep mechanism
alone.

Eqgs. (17) and (18) are the characteristic deterministic behavior of any
“Markov homogeneous linear death process’’ [11], which can be used as the
stochastic process model to describe the mechanism of creep in reinforced
concrete columns subjected to sustained axial loading.

The statistical properties of “the Markov homogeneous linear death pro-
cess”’ will be used to formulate the prediction equations for the phenomenon
of creep mechanism in this study. Experimental and analytical results [2, 4, 5]
confirm the validity of Eqs. (17) and (18). This means that the greater the
initial load P,(7') on the concrete, the greater the subsequent load P, (t) on
the concrete at any time ¢, and that this load on the concrete depends on the
internal mechanism of creep in the concrete.

Therefore, the following expression is proposed for the load on the concrete:

P(t)=P(TYX(t-T), t>T2=0, (19)

where the process [ (t—T'); (t—T) = 0] can be regarded as ‘‘the Markov homo-
geneous linear death process’’, with unit initial value, and also represents the
contribution of the internal creep mechanism to the whole process. It is assumed
here that the initial load P, (7') on the concrete is a constant, the model devel-
oped here has been extended to account for the case when the initial load on
the concrete is a random variable (5).

The moment functions of the process {P,(t),t= T = 0} can now be expressed
as (11):
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M, (t) = E[P,(t)] = P,(T),
E[X(¢-T)]=F(T)ertD,  12T20,
o} (t,) = Var [P, (t)] = P(T),
Var[X (t—T)] = P,(T) e rt-D (1 —ertD), t=T2=20,
o} (t,s) = Cov [P, (t), P,(s)] = P(T),
Cov[X(t—T),X(s—t)] = B,(t)e rED (1 —er6D) (20c¢)
0<(s—t)s(t—="T),
where M, (f) = the mean or expected value,
o3 (t,t) = the variance function,
o}

and (t,s) = the covariance function, of the load P,(t) on the concrete

due to creep mechanism alone.

A Markov process implies a process which does not depend on what has
happened in the past trials of the process, but only on what is happening at
the present time. This is the characteristic nature of any Markov process, and
in this problem this behavior is quite evident (see Fig. 2).

RN Rl = RAr) e
or R=Rir) e el

where P (1)= B(r) e kT , 52120

L\

R(T)

P.(t) LOAD ON CONCRETE DUE TO
CREEP MECHANISME ALONE

T T t TIME

Fig. 2. Load variation on concrete due to creep alone.

The assumption that the Markov process is homogeneous is also a reasonable
one for this problem, since the duration of the time interval, e.g. (t—7;) is
very important in the evaluation of the load on the concrete at any time (see
Fig. 2). In other words, the load P,(f) on the concrete is a function of the
time difference (¢t —7;) between the initial time =, and the latter time ¢ under
consideration.

The linearity assumption for the Markov process is also a reasonable one
for this problem because KEq. (17) shows that the rate function is a linear
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function of the load on the concrete. This is a characteristic feature of any
Markov homogeneous linear process.

The assumption that the process is a ‘‘death process’’ follows directly from
the fact that the load on the concrete is a decreasing function of time, as it is
depicted by the physical nature of the problem under study.

Extension of Stochastic Process Model to Account for Combined Effects of Creep
and Shrinkage Mechanisms

The results already obtained can benefit by extension of the stochastic
process model to account for the effect of shrinkage mechanism. The time-
dependent load which is transferred from the concrete to the steel due to the
combined mechanisms of creep and shrinkage is greater than that due to creep
alone [2,4, 5, 6]. Eq. (14) shows this very clearly, that is:

Pt)=FP(T)(1—erED) L S(1—er), tzT20,

(Creep Effect) (Shrinkage Effect)
(see Eq. (14)).

Shrinkage forces can be considered as systems of internal forces in the con-
crete specimen.

The results of the deterministic solution (5) proposed in this work and
actual observed results [1, 2,4, 8], show that a functional relationship of the
form:

APty =P(TY(1-X(@¢-T)1+S[1-X ()], t=T2=0, (21)
(Creep Effect) (Shrinkage Effect)

where S =k (s) 4,, can be proposed for the load transferred from the concrete
to the steel. It is also assumed that the same process in the concrete accounts
for the mechanisms of creep and shrinkage; the only difference is that while
the creep contribution occurs at ¢=7 =0, the shrinkage contribution occurs
at ¢=0. Moreover, the two processes {X ((—7); (t—7")=0} and {X (¢); £= 0}
can also be considered as ‘“homogeneous Markov linear death processes’’, with
unit initial values.

The values of S=£k(s) 4, can usually be evaluated from actual data. As far
as the total load transferred from concrete to steel is concerned; the quantity
F,(T) which is the initial load on the concrete can be regarded as the maximum
load which can be transferred from the concrete to the steel; while the quantity
S=k(s)A, can be regarded as the maximum shrinkage load capacity for the
concrete, which of course, is the maximum shrinkage load which can be trans-
ferred from the concrete to the steel.

Using the results of the deterministic analysis and the properties of “homo-
geneous Markov linear death process’’, the moment functions of the process
{4 P (t); t=T =0} can be expressed simply as (11):
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M) =E[AP@H)]=F(T)(1—ertD)+S(1—-ew), t2T20, (22a)
02 (1,1) = Var[d P (t)] = B,(T)e-#t=D (1 — e=h(=D)) 4 8 g=p! (1 — e~~1),
(22D)
t=T2>0,
o2(t,s) = Cov[Ad P (t),4d P(s)] = P,(T)e +t1 (1 e rE-D) .
+ Se #t(1 —e k), t—T)z(s—1t)=0, (22¢)
where M (t) = the mean or expected value;

o (t,t) = the variance function;

and o?(t,s) = the covariance function;

for the total load transferred from the concrete to the steel.

The quantities P,(7') and S=Fk(s)A, are considered here as constants,
which can be evaluated from experimental data.

The relationships given by Eqgs. (15) and (16), which are:

P({t)=P(T)—AP(t), t=T=0 and P.(t)=P(T)+4P(t), t=Tz0

and the results given by Eqs. (22a,b, and ¢), can now be used to obtain the
moment functions for the process { £, (¢), t= 7' = 0} for the load on the concrete,
and the process {P,(t); t= T = 0} for the load on the steel.

Use of Stochastic Process Model in Predicting Upper and Lower Bounds for Loads

For instance, if a scatter of one standard deviation from the mean value is
assumed, then the upper and lower bounds for 4 P (t) which is the load trans-
ferred from the concrete to the steel, can be expressed as, M () +o (¢,t) and
M (t) — o (t, 1) respectively at any particular time, t= 7' = 0. Moreover, the upper
and lower bounds for P,(¢) which is the load on the concrete at any time, can
be expressed as K [P, (¢)]+o(t,t) and E[P,(¢t)]—o(t,t); while the upper and
lower bounds for P, (¢) which is the load on the steel at any time, can be
expressed as K [P, ()] +o (¢, t) and K [P, (t)] —o (¢,1).

The ability to make this type of conclusion should have great applications
in many practical structural engineering situations.

Long-Time Correlation Between Creep and Shrinkage Loads

After a long time of loading, the ratio of the loads transferred from the
concrete to the steel, due to the mechanisms of shrinkage and creep can be

represented by:

_ 8 k)4, _ k@)
b= BT T DA, " Ty (23)
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where P, (T)={,(T)A,, S=k(s)4, and f,(T) is the initial stress on the
concrete when it is loaded. The quantity # can be regarded as a constant for
a given reinforced concrete column under given operating conditions, and
under a given constant external loading. This is a very useful parameter in
many practical structural engineering problems, since it is always important
to know how to evaluate long time creep and shrinkage characteristics of
reinforced concrete columns.

Application of Method Developed to the Prediction of Time-Dependent Stresses
in Reinforced Lightweight Concrete Columns (4, 12)

The method developed here has been used by the author [12] to predict
the time-dependent stresses in reinforced lightweight concrete columns. The
recent data [4] obtained by HorLm and P1sTRANG have been used by the author

T ,
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[12]. The results obtained by HoLm and P1sTRANG for time-dependent shrinkage
and creep for the concrete used are given in Fig. 3; while the actual experi-
mental time-dependent load transfer in the column is given by Fig. 4.

It is desired to use the present development to evaluate the stresses in the
concrete and steel, and the predicted upper and lower values for these stresses,
after one year; and then compare the results with actual experimental data [4].

The basic data [4] for the test results are as follows: Column cross section
(gross);

10in. X 10 in. A4 = A4,+A4,=100sq.in.
Steel cross-section: 4, No. 8 bars. A, = 3.14sq.in.
Steel ratio p = 0.0314
Column load P = 100 kips
Steel Elastic Modulus E, = 30.5x10°psi
Concrete Elastic Modulus E, = 291x108psi
Modular Ratio, steel to concrete: n = %15 = 10.5
Load on 6 in. diameter test cylinders F,; = 25 kips
Time dependent cylinder strain (creep and

shrinkage after 1 year) p+s = 960X 10-%in. per in.
Shrinkage — only cylinder strain (after 1 year) s = 420X 10~%in. perin.
Creep — only cylinder strain (after 1 year) p .= 540x10-%in. perin.

Initial Elastic Column Stresses

P A E
Concrete: L (0) = — el = T770psi.
feO) = 4~ 4 .+ A.T, P
Steel: ; /s (0) = ZB Y EA:E;; 7= 8080 psi.
S [ [ S S

Concrete Cylinder Creep Stress

P, 25,000 s
four = W= = 885 psl.

A K 2
ZXG

Specific Creep Strawn for 6 in. Diameter Cylinder at One Year (¢ = 365 days)

540 x 106
c(t) =c(365) = d a

=7 - SEE = 0.610 X 1078 in. per in. per psi.
eyl

Time Dependent Creep and Shrinkage Strains Adjusted for a 10 In. x 10 In.
Column Size

The authors [4] reported a size effect co-efficient of 0.8, and this was
determined by comparing shrinkage specimens (10 in. X 10 in. square sections
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compared with 6 in. diameter cylinders), the same ratio is applied to creep
calculations as well, because the inhibiting effect of size is approximately the
same for both creep and shrinkage mechanisms. The value of 0.8 is comparable
to that reported by other investigators [2, 13].

Adjusted value for specific creep strain at one year

c(365) = 0.8X0.610 X 107% = 0.488 X 106 per in. per psi.
Adjusted value for shrinkage strain at one year

§(365) = 0.8 X420 107% = 336 x 106 in. per in.,

_ pE, 1S
b= 1Tm-np ~ T3P
k(s) = s _ 292 psi (see Eq. (5)).

¢ ()

The value of k(s) =292 psi is the best fit to the actual data supplied by HoLm
and PisTrana [4].

When ¢=365 days, c(¢)=0.488x107% in. per in. per psi, as shown above.
Therefore, the following result follows (at ¢t =365 days):

6

10
_ - —6
pt =0,(t) = (0.488 x 10 )(1.35

) = 0.36 (see Eq. (12)).

Moreover, the value of S=Fk(s) 4, is given by:
S = k(s) A, = (292) (0.9686 X 100)1b. = 28200 1b.,

while the value of h = k (s) (see Eq. (23))
f(T)
_k(s) 202
becomes, h = ) " 770 0.38.

The following value can now be obtained for the load on the concrete,
after one year:

B = [B,(t)] = P,(0)e#t— 8 (1—en)
= (770X 96.86) (0.67) — (28200) (0.33) = 42,000 lb.

The mean stress on the concrete after one year now becomes

42,000
96.86

= 440 psi.

The mean load on the steel at =365 days and 7'=0 is

E [P ()] = B, (0)+ B, (0) (L —e#) + S (1 —e#?)
= 8080 X 3.14) + (770 X 96.86) (0.33) + (28200) (0.33) ~ 58,000 Ib.
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The mean stress on the steel after one year now becomes

58,000
3.14

= 18,500 psi.

The expected total load transferred from concrete to steel during the one
year period is

AP (t) = P,(0)—P,(t) = 75,000 — 42,000 = 33,000 1b.

The variance function for the stresses on the concrete can be expressed as
[6, 12]:

o2(t,t) =f (T)e rtD(1 —erED) L k(s)e r (1 —eHY), t=T120,
and when ¢ = 365 days and 7' =0.

a2 (t, 1) ={fc(T)+k(s)}e (1 —e )
= (770 +292) (0.33) (0.67) = 240 (psi)?,

hence o, (¢,t) =~ 15.5 psi.

Therefore, assuming a scatter of one standard deviation from the mean
value, the upper and lower values for the stresses in the concrete can be
expressed as:

440+ 15.5 psi and 440 —15.5 psi or 456 psi and 425 psi, while the mean
value is 440 psi. The mean stress of 440 psi on the concrete, corresponds to a
load of 42,000 1b. on the concrete. This result compares very well with the
actual experimental value of exactly 42,000 1b. obtained in the data of HoLm
and P1sTraNG [4].

The upper and lower values of 456 psi and 425 psi on the concrete, corre-
spond to loads of 44,000 lb. and 41,000 lb. respectively on the concrete. These
values mean that since the total external axial load acting on the concrete is
100,000 Ib., then the upper and lower loads on the steel are given respectively
as 59,000 1b. and 56,000 1b. These values mean upper and lower stress values
of 19,000 psi and 18,000 psi respectively on the steel. The mean value of the
load on the steel, which is approximately given as 58,000 lb. compares very
well with the actual experimental value of exactly 58,000 lb. obtained in the
data of HoLMm and PisTraNG [4].

Furthermore, the predicted upper and lower values for loads and stresses
on the concrete and steel, are useful additional information.

Conclusion

The following major results can be mentioned in the conclusion to this work:

1. It is possible to formulate a realistic, probabilistic, stochastic model for the
phenomenon of time-dependent load transfer in reinforced concrete columns.
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2. The stochastic model enables meaningful and realistic predictions to be
made concerning the possible upper and lower bounds, in the values of
resulting stresses occuring during the phenomenon of time dependent load
transfer in reinforced concrete columns.

3. The ability of the stochastic model to predict not only the mean value, but
also the possible bounds about the mean value, for the phenomenon under
study should have useful applications in structural engineering practice.

4. The results obtained by the use of stochastic process model compare very
well with actual experimental results.
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Summary

A stochastic process model is proposed for the phenomenon of time-depen-
dent stress transfer from concrete to steel in reinforced concrete columns,
subjected to axial loading. The phenomenon is caused by the mechanisms of
creep and shrinkage. The importance of the stochastic model is brought out,
in that it is now possible to have more meaningful information concerning the
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phenomenon under study. Furthermore, the importance of the model in
practical problems involving the estimation of possible longtime stresses in
structures is mentioned. The results of the stochastic model are compared
with practical test results, and good agreements are obtained.

Résumé

On propose un modele de procédé aléatoire pour le phénomene de transfert
de la sollicitation en fonction du temps du béton & 1’acier dans les colonnes
en acier-béton soumises & des charges axiales. Le phénoméne est causé par le
fluage et le retrait. L’importance du modéle aléatoire est démontrée en tant
qu’il permet de gagner une information plus importante du phénomeéne a
étudier. En plus, 'importance du modele pour les problemes pratiques, com-
prenant 1’estimation de sollicitations de longue durée dans les structures est
mentionnée. Les résultats au modéle sont comparés a ceux obtenus en pra-
tique et une bonne concordance a été constatée.

Zusammenfassung

Es wird ein stochastisches Modell zu einem Verfahren iiber das Phénomen
der zeitbedingten Beanspruchungs-Ubertragung von Beton auf Stahl in Stahl-
betonstiitzen unter axialer Belastung vorgeschlagen. Das Phénomen wird
durch Kriechen und Schrumpfen verursacht. Mittels des stochastischen
Modells wird es jetzt moglich, wichtige Erkenntnisse iiber das genannte
Phinomen zu gewinnen. Ferner wird die Bedeutung des stochastischen Modells
bei praktischen Problemen unter Einschluss moglicher langzeitiger Bean-
spruchungen an Bauwerken hervorgehoben. Die Ergebnisse am Modell werden
mit den praktischen Versuchsresultaten verglichen, wobei sich eine gute
Ubereinstimmung zeigte.
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