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Calcul des ponts biais a poutres multiples
Berechnung der schiefen Briicken aus nebeneinanderliegenden Balken

Finate Element Solution of Skew Multibeam Bridges

J. JIROUSEK

Dr ing. STA. Chaire de statique et de résistance des matériaux de
I’Ecole Polytechnique Fédérale de Lausanne

Introduction

La présente étude concerne les ponts a poutres multiples sans entretoises
formés par un systéme de poutres préfabriquées placées 1'une & co6té de I’autre
et liées le long de la portée (voir par exemple fig. 1). L’obliquité de 1’ouvrage
en plan est obtenue par un décalage des extrémités des poutres. La liaison
entre les poutres est réalisée par le remplissage des logements (shear key)
aménagés le plus souvent dans la partie supérieure des joints (fig. 2). Si la
précontrainte latérale est faible ou inexistante, les déformations de 1’ouvrage

h N~ r
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Fig. 1. Pont biais & poutres multiples.
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Niveau thegrique Remplissage
des charnieres (Shear key)
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G = centre de gravité de la section
S = centre de cisaillement dela section

Fig. 2. Géométrie de la section; charniéres fictives formées par le remplissage des joints.

et le retrait entrainent un décollement des clavettes de remplissage des joints.
La rigidité transversale, et par conséquent aussi la possibilité de transmission
des moments transversaux disparaissent. Selon I’hypothése, tres généralement
admise en pratiquel), on peut alors considérer que les poutres sont liées le long
de la portée par des charniéres longitudinales sans frottement. C’est également
ce que nous ferons dans 1’étude qui va suivre.

A cause des complications mathématiques, les méthodes connues?) basées
sur ’hypothése des charniéres se limitent presque en totalité & des ponts
rectangulaires. De plus, on suppose aussi presque toujours que toutes les
poutres ont la méme section. D’aprés ce que nous savons, les travaux con-
cernant les ponts biais se limitent & ceux (voir [9], [10] et [16])3) qui ne traitent
que le cas ou les charniéres entre les poutres sont au niveau des centres de
cisaillement des sections.

Le but de la présente étude est de montrer les possibilités d’application de
la méthode des éléments finis au calcul des ponts biais & poutres multiples.
Vu I'utilisation croissante des ordinateurs dans la pratique, on peut envisager
que I’élaboration d’un programme standard de calcul des ponts biais (en
général avec des poutres de sections inégales) permettrait de résoudre la
majorité des problémes.

Afin d’obtenir une solution suffisamment simple, il a fallu formuler cer-
taines hypothéses simplificatrices. Celles-ci sont en 1’occurrence toujours bien
satisfaites pour les poutres-caissons mais le sont en général beaucoup moins
pour les poutres a section ouverte. La méthode de calcul développée dans ce
travail s’applique donc essentiellement aux ponts & poutres de section fermée.

1) Voir le «National Cooperative Highway Research Program Report 83» (1970) du
«Highway Research Board», Etats-Unis.

2) Voir la bibliographie de la fin de Iarticle.

3) Les chiffres entre crochets renvoient & la bibliographie de la fin de ’article.
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La technique de calcul par éléments finis utilisés ici se base sur la subdivision
en plan de chaque poutre en une série de macro-éléments trapézoidaux et sur
les fonctions de déplacement de ces éléments. Ces fonctions assurent aussi bien
la compatibilité des déformations des éléments de la méme poutre que celle
des poutres elles-mémes aux joints. Partant du théoréme du minimum de
I’énergie potentielle, on développe la matrice de rigidité de 1’élément liant les
forces nodales aux déplacements nodaux. Ceux-ci sont ensuite calculés a partir
des conditions d’équilibre aux nceuds de ’assemblage.

Ire Partie: Théorie

1. Formulation du probleme et hypothéses de base

Considérons un pont biais a poutres multiples sans entretoises (fig. 1). Les
poutres peuvent étre de section différente mais constante le long de la portée.
L’ouvrage n’est pas précontraint latéralement, ou cette précontrainte est
négligeable. 11 s’agit d’étudier 1’interaction des poutres sous 1’effet des charges
verticales et du tassement des appuis, et de développer une méthode pratique
de calcul.

Hypothéses de base:

a) Les sections transversales des poutres possédent un axe vertical de symétrie.

b) Les liaisons entre les poutres sont équivalantes a des charnieres longitudi-
nales travaillant sans frottement.

¢) Toutes les charnieres liant les poutres entre elles se trouvent dans le méme
plan horizontal (fig. 2).

d) L’obliquité en plan de I’ouvrage n’est pas excessive, de sorte que les dimen-
sions des sections biaises des poutres, parallelement aux lignes d’appui,
sont petites vis-a-vis de la longueur des poutres.

e) La section transversale des poutres est indéformable dans son plan.

f) Les appuis sont constitués de fagon & ne pas entraver le gauchissement des
sections d’appui.

D’autres hypotheses auxiliaires seront formulées au cours du développe-
ment de la méthode de calcul.

2. Efforts internes des poutres et énergie potentielle de déformation

Considérons une poutre de 1’ouvrage (voir par exemple la fig. 3 out G désigne
le centre de gravité de la section et S son centre de torsion). Dans le cas particulier
ou S se confond avec G et ou les charniéres entre les poutres se trouvent au
niveau des centres de torsion et si les sections ne se gauchissent pas, les charges



92 J. JIROUSEK

| Mz
| N 1 ' L}L)
X,U = X -t .
a, || l S My
Y,V v ’>)/ |
N 14 iy i

zZ,W

Fig. 3. Composantes des déformations (u, v, w, ¢) et efforts internes d’'une poutre du pont.

verticales appliquées sur 'ouvrage n’engendrent qu’une flexion verticale et
une torsion des poutres autour de S. Alors, les points du plan horizontal passant
par les charniéres ne se déplacent pas dans ce plan (u=v=0) et les forces
d’interaction d’une poutre sur ’autre, par ’'intermédiaire des charniéres, sont
toutes verticales. Par contre, dans le cas général o ces conditions simplifica-
trices ne sont pas réalisées, les points du plan passant par les charniéres subissent
des.déplacements horizontaux et les forces d’interaction ont, en plus des com-
posantes verticales, des composantes horizontales latérales et longitudinales
(respectivement perpendiculaires et paralléles aux axes des poutres). Ainsi,
les poutres sont en général soumises non seulement a la flexion verticale et
a la torsion, mais aussi & la flexion horizontale et aux efforts normaux.

La figure 3 montre les efforts internes de la section transversale d’une
poutre dans ce cas général. On désigne par M,, M, les moments fléchissants,
par 7' le moment de torsion, par @,, @, les efforts tranchants et par N D’effort
normal. Les composantes des déplacements selon les directions du systeme
global d’axes z, ¥, z sont respectivement u, v et w (fig. 3). De plus, i désigne
la rotation autour de 1’axe de la poutre.

Avec les conventions de la figure 3, les moments de flexion, le moment de
torsion et 1’effort normal s’expriment en fonction des déformations par

d?wg

M,=-B1,°55, . (1a)
M, = —Ezzﬁ‘%@, (1b)
T = GJ;M Eo‘;‘f (1c)
N = EACiZ;' (1d)

D’autre part, le bimoment dii aux contraintes normales de torsion non uni-
forme (torsion fléchie) vaut

dzz,b ’
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Dans ces relations,

I1,,I, = moment d’inertie de la section par rapport & I’axe principal paralléle
respectivement & y et z et passant par G [em?];

J = moment de rigidité de torsion uniforme (Saint-Venant) [cm?];
C = moment d’inertie sectorielle [cm®];

A = aire de la section [em?];

wg,vg = déplacements latéraux w et v du centre de torsion de la section;
U = déplacement longitudinal » du centre de gravité de la section.

En négligeant 1’effet des contraintes tangentielles dues a la flexion, ainsi
que celles dues a la torsion fléchie, 1’énergie potentielle des efforts internes
(énergie potentielle de déformation) de la poutre s’écrit

l
U=y | [ (=) + (- )
0

nffen(-Efr ()

l
1 d?wg\? d?vg\?
EHE%(—W) + L~ )
0

4 GJ(ﬂ)erEo(—ﬂ)erEA (%)2] dx.

dx dax? dx

Dans cette expression, Ty = G/J d%f est la partie du moment de torsion selon

Saint-Venant, tandis que la torsion fléchie s’exprime en fonction du bimoment

B.
3. Hypotheses simplificatrices

Avant de développer notre méthode de calcul, nous formulerons encore
deux hypothéses simplificatrices, tirées de ’analyse détaillée des propriétés
des ouvrages en question:

1. On a vu au paragraphe précédent que, dans le cas général, les charges verti-
cales engendrent aussi une flexion horizontale des poutres. Cette flexion
provoque le long des poutres des déplacements horizontaux vg=vg(x),
différents d’une poutre a ’autre. Mais, puisqu’on suppose en méme temps
que les sections transversales des poutres restent indéformables dans leur
plan (les éléments de ’ouvrage travaillent comme des poutres et non pas
a la maniere d’une ossature plissée), on doit admettre que dans le plan
horizontal passant par les axes des charniéres, les déplacements v de toutes
les poutres doivent étre égaux. Puisque I’assemblage des poutres est tou-
jours treés rigide dans ce plan, il est logique d’admettre que les déplacements v
aw mweau des charnieres sont négligeables vis-a-vis des déplacements verticaux w.
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Fig. 4. Relation entre le déplacement
latéral vg et la rotation ¢ de la section.

Il en résulte (voir la fig. 4) que le déplacement horizontal vg du centre de rota-
tion de n’importe quelle poutre est dd uniquement a sa distorsion s et s’exprime
simplement sous forme

vg = —2gib. | (3)

2. La solution se simplifie considérablement si 1’on admet que les charniéres
n’empéchent pas les fibres adjacentes de deux poutres voisines de glisser longi-
tudinalement Uune par rapport a DUautre. (Ce glissement correspond a la
différence de déformations dues & la flexion et au gauchissement des sec-
tions). Ceci implique que 1’on peut supprimer le dernier terme de 1’équation
(2), puisque les efforts normaux des poutres seront dorénavant nuls. La diffé-
rence des déplacements longitudinaux des fibres adjacentes, due & la flexion,
est trés petite, et tant qu’il ne s’agit pas de sections ouvertes, il en est de
méme pour 'effet du gauchissement. La confrontation des résultats numé-
riques donnés plus loin (2e partie, probléme 3) montre que la possibilité de
glissement longitudinal ne se manifeste pratiquement pas et que cette
hypothése simplificatrice peut étre adoptée avec confiance pour 1’analyse
des ouvrages a partir de poutres & section pleine ou fermée auxquelles est
consacrée cette étude. KElle serait, en revanche, beaucoup moins satis-
faisante pour les systémes de poutres & section ouverte, dont le gauchisse-
ment est beaucoup plus important.

4. Subdivision de U'ouvrage en macro-éléments et introduction des fonctions de
déplacements

Pour analyser I’ouvrage par la méthode des éléments finis, on le remplace
par un assemblage de macro-éléments selon la figure 5. Chaque poutre est, en
général, subdivisée dans le plan en une série de M macro-éléments trapézoidaux
de longueur

A=M.

On utilisera deux systémes d’axes dans le plan (voir figures 5 et 6; le systéme
dit «global» formé des axes z, y orthogonaux, et le systéme dit «local» formé
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Fig. 5. Assemblage d’éléments finis.

Fig. 6. Systémes d’axes «global»
et systéme «local».

par les axes biais 7, 7, liés & un élément particulier. Le plan des deux systémes
correspond & celui des axes des charnieres liant les poutres (voir aussi la fig. 3).

D’apres la figure 6, les relations entre les coordonnées globales du systéme
et les coordonnées locales d’un élément s’expriment par

x=2xy+Z+bntga,
Y=Yotbn.
Soit w le déplacement vertical au niveau des charniéres (z =0);
w (@, 7) = (1 =) w, () +nw, (), (4)

ol w, (Z), w, (%) sont les déplacements verticaux des charniéres entre les noeuds
A,, B, respectivement A4,, B,. Pour exprimer les dérivés de w (¥, ) par rapport

a x et y, on écrit:
w, Yy o [T w
(%,n) ow ‘5(9?,1))

Zy) 0y =Y\
(E"']) r\S\(i’ﬂ)

3w__
ox

R | R
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ou J(...) sont les jacobiens de transformation. En désignant pour simplifier

L=y
on trouve
%D=(1-n)w{+nwéa (4a)
T = = o) = tg (1 = )i+ ). (D)
Pour n=1 on en tire
Wg = (W)pyja = 3 (W1 +wy), (5a)
v =(5a) .= Hred, (5b)
b= (5y) .= g e Rt ), (50)
et avec (3) on a encore
v = 2 (10— wy) + h2g tg o (] +05). (5d)

Soit maintenant pour ¢=1, 2 les fonctions de déplacement des charniéres
pour un élément

w; = w; (T) = Bw;, (6)
ou B =[}(@) (@) f3(@) f,@)] (6a)
est la matrice de quatre fonctions

1) = (43— 324427,
/o (@) = %(zAz—nm +79),
. (6b)
2@ = 3824 - 2),
@) = o (~T2A4+3),
:
= P4
et w, = wi (6¢)
PB;

est le sous-vecteur de quatre paramétres nodaux inconnus.
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Les fonctions f(Z) ont été choisies, afin de satisfaire aux conditions

/1(0) =1, f2(0) =0, f3(0) =0, f4(0) =0,
f1(0) =0, 2(0) =1,  [3(0) =0,  f4(0) =0,
f1d)=0, f,(d)=0, fid)y=1, {,(4)=0,
fi(d) =0, 2(4) =0,  f3(d)=0,  fy(d)=1.

En méme temps, les paramétres du nceud (égaux respectivement au déplace-
ment w et & la rotation ¢ de la charniére en ce point) seront toujours communs
a tous les éléments autour du méme nceud. Ainsi, les fonctions de déplacement (6)
assureront automatiquement, aussi bien la continuité des déplacements wg, vy
et des pentes i, @ entre les macro-éléments de la méme poutre, que la compa-
tibilité des déplacements w entre les poutres de 1’ouvrage. Notons toutefois
(voir 5d) qu’on ne peut pas assurer aussi automatiquement la continuité des

pentes %7;3 entre les éléments dés que le pont n’est plus rectangulaire (tg o = 0).

La conséquence de cette imperfection, qui d’ailleurs ne peut intervenir que
si 2g+0, est toutefois minime. Dans la deuxieme partie (probléme 5), nous
démontrerons que l’'interaction des poutres n’est que trés peu influencée par
la position zg des charniéres et par conséquent aussi par la flexion horizontale
des poutres, de sorte qu’il n’est pas nécessaire de rechercher une trés grande
précision.

5. Matrice de rigidité du macro-élément

Soit S le vecteur des forces nodales (figure 7) et w le vecteur des parameétres
nodaux d’un élément

ZA1 W wAl

M A, P4,

ZBI wB1

S M w

S = {---Jﬁ} T QR B 1 >’ w = { ----- 1} — 3 .(.P.El > 7a,’ b
S, ZA'Z w, W4, ( )

M Ay P4,

ZBz Wpg,

L MBQ J QDBQ J
On cherche la relation

S=Fkw, (8)

ou k est la matrice de rigidité d’ordre 8 x8. On la détermine en utilisant le
théoréme du minimum de 1’énergie potentielle.

Pour exprimer 1’énergie potentielle de déformation U, (voir (2), ou selon
les hypotheéses adoptées, on négligera 1’effet de IN) on introduira le vecteur
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Zy, Zs,
NS
AF&» : (
‘ : (D" N\ (P™
Axle b B2
b
Fig. 7. Elément fini
et ses forces nodales.
Ja
M, EI, —w}
T GJ .
mE=Am, (T EI, _y [~ De )
B EC| | =y
En utilisant les Eqgs. (5), (6) et (7b)
’_wg‘ [~ _%Bll -—%B” .
v —blB'_%tgaB" = ZIB’—%tgaB”
? w,|
= 9 ' D 2y . 2o R =3 l
c _vg —%SBII—%@tgaB’,/ é ?bLgBll_z_éStgaB/// {wz} Cw’ ( O)
” 1 14 " | 1 14 4
4 4
de sorte que Ui=%[e"mdz = 3wT{CTD Cdxw
0 0

(I’indice 7T signifie que la matrice doit étre transposée). L’énergie potentielle
des efforts extérieurs étant

U,=—-w’S,
la variation de 1’énergie potentielle totale U=U;+ U, donne
4
[CTDCdzw—-S =0,
0
d’ou (voir (8)) la matrice de rigidité

Y|
k=({CrDCdz. (11)
0
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La matrice de rigidité k obtenue selon (11) est donnée dans les tableaux 1
et 2. Pour des raisons pratiques, on I’exprime sous la forme

E=k+A4dk, (12)

ou k (tableau 1) est la matrice fondamentale représentant uniquement 1’effet
de la flexion verticale et de la torsion de Saint-Venant et 4 k (tableau 2) est
la matrice complémentaire représentant la correction due a 1’effet de la flexion
horizontale et de la torsion fléchie.

6. Matrice de rigidité de Uassemblage et calcul des efforts internes

Une fois connue la matrice de rigidité d’un macro-élément, 1’établissement
de la matrice de rigidité de 1’assemblage (fig. 5) n’est plus qu’une question de
routine. Aprés avoir trouvé par inversion les parameétres nodaux aux nceuds
de I’assemblage, on peut procéder au calcul des efforts internes.

Soit n le vecteur des efforts internes aux extrémités =0 et z =4 de 1’élément

(M, [-EI,w;0)]
MzA —' E]z vg‘ (O)
B, _ECY (0)
T, G.J ' (0)
I}A _ EO¢,!I/ (0)
QzA _ZA _ZA

n — 13 - | R > T, ;,--~-»2-»-« 9 ]-3

M,, ——EIywS(A)k (13)
M. E1,vg(4)
B, —ECY" (1)
Tsg GJ ' (4)
T}B _ EOIL’” (A)

( QzB J \ ZB1+ZB-z

ou Ty et T, sont respectivement les parties du moment de torsion 7' dues a la
torsion de Saint-Venant et & la torsion fléchie.

Pour exprimer les déformations wg, vg, ¢ et leurs dérivés par rapport a z,
on utilisera les relations (5) et (6). Pour les forces nodales Z, compte tenu des
équations (7) et (8), on se servira directement des lignes correspondantes de
la matrice de rigidité k=k+ Ak donnée aux tableaux 1 et 2. On exprimera
ainsi le vecteur n en fonction des parameétres nodaux aux angles de 1’élément

sous la forme
n=Fw, (14)

ou F est la matrice de coefficients d’ordre 12X 8 (voir tableau 3) et w le vec-
teur de huit parameétres nodaux définis par 1’équation (7b).

En examinant 1’équation (13), on se rend compte que le vecteur n ne con-
tient pas ’effort tranchant @,. Son absence est due au fait que les hypothéses
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simplificatrices adoptées au paragraphe 3 rendent impossible la détermination
des réactions horizontales entre les poutres au niveau des charniéres de liaison.
Notons que les valeurs de @, sont trés faibles et pratiquement sans importance.

En appliquant a tour de réle la relation (14) aux éléments d’une poutre du
pont, on constate en général une 1égére oscillation des efforts obtenus respec-
tivement a ’extrémité droite de 1’élément (j) et & I’extrémité gauche de 1’élé-
ment (j+ 1) (et ceci méme en 'absence des charges isolées qui pourraient justi-
fier une certaine discontinuité). Cette petite imperfection est propre a la
méthode habituelle des éléments finis. Une meilleure approximation sera
obtenue en prenant les moyennes arithmétiques des valeurs de gauche et de
droite.

2e Partie: Analyse numérique et applications

Pour faciliter le calcul pratique des ponts biais a poutres multiples sans
entretoises, nous avons élaboré un programme standard en langage FORTRAN
pour 'ordinateur (programme PBPMSE). Ce programme, basé sur la théorie
développée dans la premiére partie de ce travail, calcule pour le pont donné,
avec les charges et les tassements d’appui choisis, les déformations (w, ¢) et
les efforts internes (M,, M,, B, Ty, T;, ,) dans les poutres de 1’ouvrage. Le
nombre d’éléments M =1:4 peut étre choisi en fonction de la précision voulue.
Nous n’entrerons pas dans les détails, qui feront 1’objet d’'un mode d’emploi
mis plus tard & la disposition des clients du centre de calcul de I’EPF-L.

Dans le texte qui suit, on donne les résultats de quelques-uns des nombreux
problémes résolus a 1’aide du programme PBPMSE. Les trois premiers ont
été choisis pour vérifier la théorie, en confrontant nos résultats avec ceux de
la littérature connue. Les autres exemples nous ont permis d’étudier quelques
questions intéressant la pratique.

Probleme 1: Confrontation des calculs avec I’expérience

Pour la premiére vérification de la théorie, nous avons choisi le modéle d’un
pont rectangulaire & cinq poutres (figure 8a) qui a fait 1’objet d’une étude
expérimentale de J. KorEckyY [14]. Le modéle était réalisé en résine polyester
durcie (extroplex) et les charniéres étaient représentées par des encoches
minces, fraisées dans la plaque compacte du matériau.

. Pour les dimensions de la section transversale des poutres et les qualités
physiques du matériau (E, ), la référence [14] donne K I,=GJ. Les char-
niéres étant & mi-hauteur des sections, on a zg=0 et les inerties I, n’inter-
viennent pas (voir le tableau 2). De plus, si 1’on néglige pour les sections
pleines le petit effet de la torsion non uniforme (C' =0), la matrice de rigidité
supplémentaire 4 k est nulle. Ainsi, pour le cas envisagé, la matrice de rigidité
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Fig. 8 a) Modele du pont rectangulaire de I'essai de KorrEcky [14].
b) Assemblage d’éléments finis (M =8) pour 'analyse numérique du méme ouvrage.

k des éléments sera représentée uniquement par la matrice fondamentale k
du tableau 1.

Le calcul du modéle a été exécuté pour deux réseaux différents d’éléments
finis: celui de la figure 8b (M =8), et le réseau deux fois plus fin (M =186).
Excepté dans la région voisine de la charge concentrée P (figure 8a), les deux
calculs conduisent & des résultats peu différents. La figure 9 montre que les
résultats du second calcul (M =16) concordent bien avec les valeurs expéri-
mentales.

On remarquera sur la figure 9 que sous la charge concentrée P, le dia-
gramme des moments fléchissants présente une pointe tres aigué qui, pro-
bablement, influence considérablement la répartition des moments entre les
poutres du pont. Ce fait devrait étre pris en considération dans le calcul d’un
pont réel, ou de vraies charges concentrées n’existent pas. Remplacer une
charge répartie par des charges isolées pourrait conduire & des résultats assez
différents.

Probléme 2: Confrontation avec d’autres méthodes de calcul

Comme seconde vérification de notre méthode, nous avons choisi le pont
biais de la figure 11a, formé de sept poutres-caissons préfabriquées de type
KL 61-18 (figure 10a), soumis a une charge uniformément répartie p=1t/m?2.
Ce probleme a déja été résolu par d’autres méthodes approchées (voir [9] et
[16]), dont les résultats sont confrontés avec les notres dans le tableau 4 (pour
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Moments fléchissants M, (kgem) Moments de torsion 7' (kgem)
Poutre I

\

(18,9}

- =79 - -1

19,1

248 (24,9
21,8 (28,2)

25,8 (24,2)

é 23,4 (239) /

Fig. 9. Confrontation des résultats du calcul du pont de la figure 8 avec les résultats expérimen-
taux obtenus sur le modeéle (valeurs en parenthéses et diagrammes en traitillé).

M =16). On remarquera que nos résultats concordent, en général, trés bien
avec les deux autres solutions approchées.

Notons que les deux méthodes [9] et [16] considérent, & priori, que les
charniéres entre les poutres se trouvent au niveau des centres de rotation S
(ce qui est approximativement vrai pour les poutres-caissons KL 61-18) et
négligent le petit effet de la torsion fléchie. Dans ’application de notre méthode,
qui est plus générale, nous avons par conséquent posé zg=0 et €' =0. On verra
plus loin 'influence de ces approximations.

Probleme 3: Vérification des hypothéses simplificatrices

Les deux problémes précédents concernaient des ponts avec charniéres au
niveau des centres de rotation. Dans ces cas, I'influence des hypothéses simpli-
ficatrices, énoncées au paragraphe 3 de la premiére partie de ce travail, n’appa-
raissait pas, puisque les poutres ne fléchissaient que dans le plan vertical et le
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100 cm
a) 94
|
i
.ﬁ KL 61-18
85 I, = 3,444-10"2m*
J = 5,900-10"2m*
iz
allio] 70
T
98cm
2x0,375"
b) l
. T | 55
i 3 | i
3 I : . B 1V-36
G‘IS
R S L P s I,=0,1587-10%in*
! I, =0,1163-10¢in*
| J =0,1979.108in4
\ i C =0,3114.108in?
E 55
P
5" 26" ﬁ[5“
36 in

Fig. 10. Quelques exemples réels de poutres-caissons préfabriquées.

a) KL 61-18 (Tchécoslovaquie) pour les portées jusqu’a 20 métres.
b) B IV-36 (Etats-Unis) pour les portées jusqu’a 88 ft.

°r>‘ = - i 3 J 7
J,/Q/E Iy . ]\1 xim

N v s
B w . J
[ L 2 N
19m
| 2 3 4 5 6 7 8 9
b) \IO ] 12 13 14 15 \16 Sw \18
\/@ 20 2| 22 23 24 25 26 27
\ze 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 7xim
46 47 48 49 \50 5| 52 53 54
55 56 57 58 59 60 6l 62 63
64 65 66 67 68 69 70 7l 2 1
8x2,375m

Fig. 11 a) Pont biais formé de sept poutres-caissons KL 61-18.
b) Assemblage d’éléments finis (M =8) pour I’analyse numeérique de ’ouvrage.
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fait de négliger de plus la torsion fléchie imposait des déplacements longitu-
dinaux # automatiquement nuls au niveau des charniéres.

Pour vérifier la validité de ces hypothéses simplificatrices, nous avons
étudié le pont rectangulaire de la figure 12a, constitué par dix poutres-caissons
américaines de type BIV-36. Selon la figure 10b, la position théorique des
charnieres se trouve a peu prés & douze pouces au-dessus des centres de rota-
tion. Les inerties /,, I, et le moment d’inertie sectorielle ¢' sont donnés dans
la méme figure. Etant donné que la conversion des unités américaines en cm
(1”=1in = 2,54001 cm) donnerait des chiffres peu commodes pour le calcul,
nous avons conservé les unités originales, les pouces.

a) i © 1T
o i
2
i 3 ‘
g H !
v 5 10x36"
it 6
t m 7 f
i = s !
‘ 9
{ X 10 J‘
i 1000" J
-
b) ; 0
[
' AN ]Im 2 3 RN
| 4o°\ T 4 "
N v 5 10x36
. mm 6 AN
7
xzn]Ix "
9
N X 10 v
L (000" J
g 1

Fig. 12. Pont rectangulaire et pont biais formés de dix poutres-caissons B IV-36. Dimensions
en pouces (1”=1 pouce = 2,54 cm).

x

Comme charge du pont, nous avons considéré la charge linéaire p=p, sins ]

appliquée successivement:

a) sur la bordure extérieure (indice 0) de la poutre I,
b) au milieu de la largeur de la poutre 1.

La raison de ce choix est que pour une charge sinusoidale, on trouve rela-
tivement facilement la solution exacte du probléme (voir [12]). Les équations
sont applicables uniquement pour des ponts rectangulaires a poutres de méme
section. Pour faciliter leur application, nous les avons programmeées.

Le tableau 5 résume les résultats des deux calculs, la solution exacte et le
calcul approché par notre méthode (M =16). En accord avec les hypothéses
simplificatrices du paragraphe 3, les résultats du calcul exact confirment que
les déplacements latéraux sont vraiment tres petits vis-a-vis des déplacements
verticaux w. Sous premier cas de charge, ce rapport est par exemple 19:10888
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pour la premiere poutre et 19:4477 pour la derniére poutre du pont. D’autre
part, le calcul des contraintes normales confirme la trés faible influence des
efforts normaux. Ainsi par exemple, alors que dans la poutre I le moment
fiéchissant M, ., engendre la contrainte

Mymaz b _ 16950p,

— ymaxr " — — 2 1
OMymez =F T3 T 7158700 AP
la contribution de ’effort normal est
N 13p
UNmax = gaw = 7101 OO]‘ pl’

ce qui ne représente que 0,85%, de oy 4, Ajoutons que les résultats de notre
méthode (déformations, efforts internes) concordent trés bien avec les résultats
du calcul exact.

Notons encore au sujet des contraintes normales que, en plus de celles dues
aux moments M, et aux efforts normaux N, d’autres contraintes normales
viendront s’ajouter, qui seront dues aux moments M, et aux bimoments B.
Par notre méthode, on trouve (toujours pour la méme section et le méme cas
de charge)

M

_ zmax
oM mar — I

b 540p,
2 116300

18 = 0,084 p, .

2
Avec |B|,.=45D;, et |w|pe=36iIn% (0l |w|,q, est la valeur absolue de la
coordonnée sectorielle aux angles de la section)

Blus 45
mar 311400

36 = 0,005 p,.

O\ Blmax =

La contribution des bimoments B est donc pratiquement sans importance.

Probléme 4: Influence de la position des charniéres

Dans le cas d’un véritable pont & poutres-caissons préfabriquées et assem-
blées par le remplissage des joints («shear key») il régnera probablement tou-
jours une certaine imprécision quant a la position exacte des charniéres par
lesquelles on remplace approximativement 1’effet d’une telle jonction. Il est
intéressant de savoir dans quelle mesure la position des charniéres influence
D’interaction des poutres.

Nous avons examiné les deux ponts (rectangulaire et biais) de la figure 12
et avons exécuté le calcul de chacun d’eux pour deux positions zg différentes
des charniéres:

a) zg = 12in (charnieres pres de la surface des poutres d’aprés la figure 10b);

b) zg = 0 (charniéres au niveau du centre de torsion des poutres).
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La poutre I a été soumise & un groupe de trois charges concentrées: P, =
0,25Q, P,=0,50Q et P,=0,25(¢) appliquées respectivement aux 7/16, 8/16 et
9/16 de la portée. (Leur effet correspond approximativement & une charge ¢
uniformément répartie sur un troncon central de 1/8 de la portée. Notons
toutefois que les charges nodales équivalentes & une telle charge répartie, au
sens des travaux virtuels, comprendraient encore des couples nodaux de forces.
Mais la différence pratique n’est pas trés grande.)

Les résultats du calcul pour les deux positions des charniéres sont résumés
dans le tableau 6. (Le calcul a été exécuté avec les éléments finis de longueur
4=1/16.) Pour le niveau inférieur des charniéres, les fléeches de la poutre char-
gée et des poutres voisines accusent une légere augmentation, tandis que pour
les poutres situées pres de 1’autre bord du pont les fléches ont une légere ten-
dance a diminuer. Les différences ne sont pas toujours apparentes avec le
nombre de décimales choisi. En ce qui concerne les efforts internes, on constate
sur la poutre chargée (respectivement sur la poutre voisine) une légére augmen-
tation des moments fléchissants, ceci au profit des poutres plus éloignées ou

Tableaw 6. Influence de la position zs des charniéres sur Uinteraction des poutres. Pont rectan-
gulaire et pont biais de la figure 12. Poutre I chargée par un groupe de trois forces concentrées:
P1=%@Q, P2=4Q et Pz=1%Q, appliquées respectivement ¢ 7/16, 8/16 et 9/16 de la portée

Pont rectangulaire (oc=0)

10 B lwqyyy: @ Myap: @1 M;a9: Q1 Tmaz: Q1

R s
zS:12” 2,5':0 Zs=12” Zs=0 zs=12” ZSZO ZSZIQ” z,g:O
I 0,2014 0,2016 0,0442 0,0444 0,0015 0 0,0080 0,0080
I1 0,1815 0,1816 0,0365 0,0365 0,0023 0 0,0149 0,0149
111 0,1583 0,1584 0,0290 0,0289 0,0014 0 0,0128 0,0128
Iv 0,1395 0,1395 0,0242 0,0242 0,0010 0 0,0109 0,0109
Vv 0,1244 0,1244 0,0209 0,0209 0,0007 0 0,0090 0,0090
VI 0,1124 0,1123 0,0185 0,0184 0,0005 0 0,0072 0,0072
VII 0,1032 0,1031 0,0167 0,0167 0,0004 0 0,0055 0,0055
VIII 0,0964 0,0964 0,0155 0,0155 0,0002 0 0,0039 0,0039
IX 0,0921 0,0920 0,0147 0,0147 0,0001 0 0,0023 0,0023
X 0,0899 0,0898 0,0143 0,0143 0,0000 0 0,0008 0,0008

Pont biais (¢ = 40°)

I 0,1802 0,1804 0,0408 0,0410 0,0012 0 0,0146 0,0146
II 0,1576 0,1577 0,0325 0,0326 0,0021 0 0,0200 0,0200
IIT 0,1309 0,1310 0,0241 0,0241 0,0010 0 0,0165 0,0166
Iv 0,1086 0,1087 0,0187 0,0188 0,0007 0 0,0134 0,0135
A\ 0,0905 0,0905 0,0150 0,0150 0,0004 0 0,0108 0,0108
VI 0,0760 0,0760 0,0123 0,0123 0,0003 0 0,0086 0,0087
VII 0,0646 0,0646 0,0102 0,0102 0,0002 0 0,0067 0,0067
VIII 0,0559 0,0559 0,0087 0,0087 0,0001 0 0,0052 0,0052
IX 0,0494 0,0494 0,0075 0,0075 0,0001 0 0,0038 0,0038
X 0,0446 0,0446 0,0066 0,0066 0,0000 0 0,0026 0,0026
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la différence reste toutefois trop petite pour étre mise en évidence avec le
nombre de décimales utilisé. Les moments de torsion 7' restent pratiquement
inchangés. 1l est, par contre, naturel que la position des charnieres influence
fortement les moments de flexion M,. Mais, comme on 1’a déja vu dans le
probléme 3, vis-a-vis des moments M, leur contribution aux contraintes nor-
males o n’est pas trés importante.

Probléme 5: Influence du biais sur Uinteraction des poutres

Une opinion assez répandue en pratique admet que l’effet du biais sur
l'interaction des poutres du pont est négligeable. Ceci dit, on applique les
mémes coefficients de répartition transversale pour un pont biais que pour un
ouvrage rectangulaire. Pour vérifier dans quelle mesure se justifie cette simpli-
fication, nous avons considéré les deux ponts de la figure 12a,b qui corres-
pondent respectivement aux angles d’obliquité «=0° et «=40°.

Dans un premier cas, nous avons supposé une charge uniforme p appliquée
simultanément sur toutes les poutres du pont. Pans un pont rectangulaire,
elle provoque dans toutes les poutres les mémes moments fléchissants avec
maximum M, . ..=0,125pl? Les moments de torsion 7' sont nuls. Dans un
pont biais, les moments de flexion M, engendrés par la méme charge sont plus
petits, mais il apparait des moments de torsion 7'. En analysant les diagrammes
de M, de la figure 13 ol nous avons porté les résultats de notre calcul (pour

-nl2
My.p|

0,125 0,250 0,375 0,500 0,625 0,750 0,875 ‘I,OOO X
T

o

0,025

0,050

0,075

0,100

0,125

Fig. 13. Diagrammes des moments fléchissants M, et valeurs maxima des moments de torsion

T pour les cing premiéres poutres du pont biais de la figure 12b. Poutres-caissons B IV-36,

charge uniformément répartie p par unité de longueur de chaque poutre. En traitillé: effet de
la méme charge sur un pont rectangulaire.
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Tableaw 7. Influence du biais sur Uinteraction des poutres. Dix poutres-caissons B IV -36 de
portée 1 = 1000 in. Charge Q répartie sur 1/16 de la portée et appliquée au centre du joint
r=0,1,2...

104 My : QI au centre de la portée

Charge @ appliquée sur le joint r

Fon- r=0 1 2 3 4 5
tre

a=0°| 40° 0° 40° 0° 40° 0° 40° 0° 40° 0° 40°

I} 525 484 443 406 326 277 266 212 225 169 197 137
II | 362 308 407 371 384 345 285 239 237 187 204 151
IIT | 290 229 302 255 367 328 355 315 264 218 222 172
IV | 242 180 249 197 273 227 346 305 340 299 254 208
V| 209 144 213 158 228 177 258 212 336 295 334 293
VI | 184 117 188 129 198 145 218 168 252 206 334 293
VII | 167 98 170 108 178 121 192 140 216 166 254 208
VIIT | 155 83 157 92 164 104 176 120 194 142 222 172
IX | 147 71 149 80 155 91 166 106 182 125 204 151
X | 143 62 145 70 151 81 161 94 176 113 197 137

10¢max My,: Q1

I 525 484 443 406 326 299 266 234 225 193 197 163

II | 362 341 407 371 384 345 285 256 237 205 204 171
III | 290 263 302 276 367 328 355 315 264 234 222 189
IV | 242 204 249 219 273 244 346 305 340 299 254 224
V| 209 177 213 182 228 196 258 228 336 295 334 293
VI | 184 150 188 154 198 165 218 185 252 222 334 293
VII | 167 130 170 133 178 143 192 158 216 183 254 224
VIII | 155 116 157 120 164 127 176 141 194 160 222 189
IX | 147 106 149 110 155 118 166 129 182 147 204 171
X | 143 102 145 106 151 113 161 125 176 140 197 163

104 max |T']: Q!

I| 170 240 24 111 15 71 11 59 10 50 9 43
I | 149 199 149 202 46 112 34 82 29 70 27 61
IIT | 128 164 129 168 130 175 60 119 48 92 45 81
IV | 109 133 109 138 110 145 112 154 69 126 63 102
A\ 90 107 90 111 92 118 94 127 96 143 81 134
VI 72 85 72 89 74 95 76 104 78 114 81 134
VII 55 69 55 70 56 75 58 82 60 92 63 102
VIIT 39 53 39 53 40 58 41 64 43 71 45 81
IX 23 39 23 39 24 43 24 47 26 54 27 61
X 8 25 8 27 8 29 8 33 9 38 9 43

M =1:4=16), on constate que les valeurs maxima des moments fléchissants ont
diminué d’environ 219, .

En pratique, la charge uniforme qui pourra étre prise en considération pour
la répartition transversale des effets dus a 1’interaction des poutres sera le plus
souvent le poids propre du tablier. Par contre, le poids propre des poutres sera
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Fig. 14. Effet du tassement w, = 1600 I de I'angle supérieur gauche du pont biais de la figure 12b

(dix poutres-caissons B IV-36 de portée = 1000 in). Diagrammes des moments fléchissants.

porté indépendamment par chacune d’elles, étant donné que le remplissage
des joints ne s’effectue qu’apres la mise en place des poutres. Notons toutefois
que chaque poutre isolée bénéficiera de 1’effet favorable du biais, qui se mani-
festera par une certaine diminution des moments fléchissants (4 peu preés 189,
dans le cas envisagé). Ceci est dit au fait que 1’effet du biais des appuis équi-
vaut, dans une certaine mesure, & un encastrement partiel. Pour ce qui est des
surcharges, notons, par exemple, que les normes francgaises pour les ponts
routiers prévoient comme surcharge du type 4 une charge uniformément
répartie. Vis-a-vis d’un ouvrage rectangulaire, celle-ci bénéficierait donc pleine-
ment de la réduction des moments de flexion M, (219, dans notre cas).

Un second cas de charge a été envisagé sous la forme de charges @ consti-
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Fig. 15. Effet du tassement w; = 1000 ! de I’angle supérieur gauche du pont biais de la figure 12b

(dix poutres-caissons B IV-36 de portée I = 1000 in). Diagrammes des moments de torsion.

tuées par des charges linéaires p =@ : 41 réparties uniformément sur les petits
trongons 47=1:16. Nous les avons appliquées & tour de réle au milieu des
joints r=0, 1, 2, 3, 4 et 5. Notons que par la combinaison de telles charges,
nous pouvons exprimer par exemple l’effet des roues d’un véhicule roulant
sur le pont. Les résultats du calcul, qui a été exécuté avec des éléments finis
de longueur 4=17:16, sont résumés dans le tableau 7. En plus des moments
fléchissants au milieu de la portée, nous avons confronté les valeurs approchées
des moments maxima M, ,, .. et les maxima des valeurs absolues des moments
de torsion |7'|,,,,. On constate que, vis-a-vis du pont rectangulaire, les moments
fléchissants du pont biais sont beaucoup plus petits et les moments de torsion
plus grands.

Notons encore que sur un pont biais la position longitudinale la plus défa-
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vorable d’une charge @ (pour engendrer les plus grands moments possibles
M, oz maz) D€ s€ trouve, en général, pas au milieu de la portée. En procédant
par tatonnements, nous avons trouvé par exemple que si la charge ¢).se déplace
le long du bord extérieur (indice 0) de la poutre I, le moment M, .., ;- 2PParait
quand la charge se trouve & peu pres a 1/167 a gauche du centre. Le moment
M, 1parmaz dinsi obtenu vaut 488-10~ @[ (contre 484-10-* Q! pour la charge
au milieu de portée). La différence n’est donc pas trés importante.

Probléme 6: Effet du tassement des appuis

Comme derniére application, nous avons étudié 1’effet du tassement d’appui
sur le pont biais de la figure 12b. Nous avons supposé que 1’angle gauche de
Pextrémité gauche du pont (x =0, ¥y =0) a subi une dénivellation égale & 7/1000.
Ainsi I'extrémité gauche du bord extérieur de la poutre I est descendue de
1:1000, tandis que ’extrémité gauche du bord intérieur (attachée par le joint 1
a la poutre II) est restée en place. Pour obtenir 1’effet de ce tassement, il
suffit de substituer au déplacement nodal du neeud 1 la valeur w, =1:1000.

Le calcul a été exécuté avec des éléments finis de longueur 4=17:16. Les
résultats (moments de flexion M, et moments de torsion 7') sont représentés
dans les figures 14 et 15. Quant aux moments fléchissants, on remarquera que
le tassement affecte essentiellement la région autour du nceud 1, tandis
qu’ailleurs ces moments restent relativement faibles. Par contre, les moments
de torsion sont assez élevés et presque constants sur la totalité de la poutre I.
La torsion des autres poutres est peu importante.

Conclusion

Le présent travail propose une solution approchée du calcul des ponts biais
a poutres multiples sans entretoises. Ses hypothéses simplificatrices sont, en
regle générale, bien remplies pour les ponts & poutres de section pleine ou
fermée (poutres-caissons).

Les fonctions de déplacement choisies pour les éléments finis comprennent
tous les modes rigides de déplacement et sont susceptibles de denner toutes
les déformations correspondant & une valeur constante des efforts internes.
En général, elles assurent aussi automatiquement la compatibilité des défor-
mations entre les éléments, si cette compatibilité est établie aux nceuds de
I’assemblage. Dans le cas d’un pont biais, cette compatibilité n’est toutefois
pas compléte pour les dérivées des déplacements horizontaux v. Cette petite
imperfection n’intervient d’ailleurs que si les charniéres entre les poutres se
trouvent au-deld du niveau des centres de rotation des sections. Etant donné
la faible influence du niveau des charniéres sur les résultats, son effet est
minime. Mis & part cette petite imperfection, notre modéle est donc du type
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«déplacement conforme». Un tel modeéle est plus rigide et son énergie de défor-
mation est plus petite que la valeur exacte. Partant dans le cas d’un ouvrage
rectangulaire (ou la compatibilité est parfaite), notre solution converge vers
la solution exacte de la construction idéalisée dans le sens des hypothéses
admises.

Dans le cas d’un ouvrage biais, le probléme de la convergence est plus
compliqué. Dans la mesure ot 1’on diminue la longueur des éléments et out
chaque élément s’approche de 1’état de contrainte constant, la petite discon-
tinuité des dérivées des déplacements horizontaux v diminue et disparait & la
limite. Notons toutefois que le calcul d’'un ouvrage biais ne converge vrai-
semblablement que vers des valeurs trés proches de la solution exacte, et ceci
pour la raison suivante: ’adoption de fonctions de déplacement sous la forme
donnée par l’équation (4) signifie que dans la bande limitée par les bords
longitudinaux d’une poutre, le déplacement vertical w est linéaire le long des
droites paralléles aux lignes d’appui. Dans le cas d’un pont biais, ceci revient
a I’hypothése des «sections biaises rigides». Or, cette hypothése n’est exacte
qu’au droit des appuis, & moins que les poutres-caissons ne soient dotées de
diaphragmes rigides paralléles aux lignes d’appui.
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Résumé

L’étude présentée concerne I’application de la méthode des éléments finis
au calcul des ponts biais & poutres multiples. On considére un systéme de
poutres préfabriquées placées I'une a c6té de 1’autre et liées le long de la portée
par des rotules longitudinales sans friction. Dans la premiére partie du travail,
on développe la matrice de rigidité d’un macro-élément trapézoidal. La seconde
partie du travail montre les résultats des analyses numériques et quelques
applications pratiques.

Zusammenfassung

Die vorgelegte Arbeit behandelt die Anwendung der Methode der endlichen
Elemente zur Losung der schiefen Briicken bestehend aus nebeneinander-
liegenden vorgefertigten Balken. Die Verbindungen zwischen den Balken wer- -
den als lingliche Zylindergelenke angesehen. Im ersten Teil der Arbeit wird
die Steifigkeitsmatrix der endlichen schiefwinkligen Elemente entwickelt. Im
zweiten Teil folgen die Ergebnisse von Vergleichsberechnungen und einige
praktische Anwendungen.

Summary

The paper is dealing with the finite element solution of skew multibeam
bridges. It is assumed that the bridge consists of precast beams placed side
by side and connected to each other along the span by hinges. In the first
part of the paper is derived the stiffness matrix of a skew finite element. The
second part shows the results of test examples and some practical applications.
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