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Calcul des ponts biais ä poutres multiples

Berechnung der schiefen Brücken aus nebeneinanderliegenden Balken

Finite Element Solution of Skew Multibeam Bridges

J. JIROUSEK
Dr ing. SIA. Chaire de statique et de resistance des materiaux de

l'Ecole Polytechnique Federale de Lausanne

Introduction

La presente etude concerne les ponts ä poutres multiples sans entretoises
formes par un Systeme de poutres prefabriquees placees l'une a cöte de l'autre
et liees le long de la portee (voir par exemple flg. 1). L'obliquite de l'ouvrage
en plan est obtenue par un decalage des extremites des poutres. La liaison
entre les poutres est realisee par le remplissage des logements (shear key)
amenages le plus souvent dans la partie superieure des joints (flg. 2). Si la
precontrainte laterale est faible ou inexistante, les deformations de l'ouvrage
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Fig. 1. Pont biais ä poutres multiples.
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Fig. 2. Geometrie de la section; charnieres fictives formees par le remplissage des joints.

et le retrait entrainent un decollement des clavettes de remplissage des joints.
La rigidite transversale, et par consequent aussi la possibilite de transmission
des moments transversaux disparaissent. Selon l'hypothese, tres generalement
admise en pratique1), on peut alors considerer que les poutres sont liees le long
de la portee par des charnieres longitudinales sans frottement. C'est egalement
ce que nous ferons dans 1'etude qui va suivre.

A cause des complications mathematiques, les methodes connues2) basees

sur l'hypothese des charnieres se limitent presque en totalite ä des ponts
rectangulaires. De plus, on suppose aussi presque toujours que toutes les

poutres ont la meme section. D'apres ce que nous savons, les travaux con-
cernant les ponts biais se limitent ä ceux (voir [9], [10] et [16])3) qui ne traitent
que le cas oü les charnieres entre les poutres sont au niveau des centres de
cisaillement des sections.

Le but de la presente etude est de montrer les possibilites d'application de
la methode des elements finis au calcul des ponts biais ä poutres multiples.
Vu l'utilisation croissante des ordinateurs dans la pratique, on peut envisager
que l'elaboration d'un programme Standard de calcul des ponts biais (en
general avec des poutres de sections inegales) permettrait de resoudre la
majorite des problemes.

Afin d'obtenir une Solution suffisamment simple, il a fallu formuler cer-
taines hypotheses simplificatrices. Celles-ci sont en l'occurrence toujours bien
satisfaites pour les poutres-caissons mais le sont en general beaucoup moins

pour les poutres a section ouverte. La methode de calcul developpee dans ce

travail s'applique donc essentiellement aux ponts a poutres de section fermee.

x) Voir le «National Cooperative Highway Research Program Report 83» (1970) du
«Highway Research Board», Etats-Unis.

2) Voir la bibliographie de la fin de l'article.
3) Les chiffres entre crochets renvoient ä la bibliographie de la fin de l'article.
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La technique de calcul par elements finis utilises ici se base sur la subdivision
en plan de chaque poutre en une serie de macro-elements trapezoidaux et sur
les fonctions de deplacement de ces elements. Ces fonctions assurent aussi bien
la compatibilite des deformations des elements de la meme poutre que celle
des poutres elles-memes aux joints. Partant du theoreme du minimum de

l'energie potentielle, on developpe la matrice de rigidite de 1'element liant les
forces nodales aux deplacements nodaux. Ceux-ci sont ensuite calcules ä partir
des conditions d'equilibre aux nceuds de l'assemblage.

Ire Partie: Theorie

1. Formulation du probleme et hypotheses de base

Considerons un pont biais ä poutres multiples sans entretoises (flg. 1). Les

poutres peuvent etre de section differente mais constante le long de la portee.
L'ouvrage n'est pas precontraint lateralement, ou cette precontrainte est
negligeable. II s'agit d'etudier l'interaction des poutres sous l'effet des charges
verticales et du tassement des appuis, et de developper une methode pratique
de calcul.

Hypotheses de base:

a) Les sections transversales des poutres possedent un axe vertical de symetrie.
b) Les liaisons entre les poutres sont equivalantes ä des charnieres longitudinales

travaillant sans frottement.
c) Toutes les charnieres liant les poutres entre elles se trouvent dans le meme

plan horizontal (flg. 2).

d) L'obliquite en plan de l'ouvrage n'est pas excessive, de sorte que les dimensions

des sections biaises des poutres, parallelement aux lignes d'appui,
sont petites vis-a-vis de la longueur des poutres.

e) La section transversale des poutres est indeformable dans son plan.

f) Les appuis sont constitues de facon a ne pas entraver le gauchissement des
sections d'appui.

D'autres hypotheses auxiliaires seront formulees au cours du developpement

de la methode de calcul.

2. Efforts internes des poutres et energie potentielle de deformation

Considerons une poutre de l'ouvrage (voir par exemple la flg. 3 oü G designe
le centre de gravite de la section et S son centre de torsion). Dans le cas particulier
oü S se confond avec G et oü les charnieres entre les poutres se trouvent au
niveau des centres de torsion et si les sections ne se gauchissent pas, les charges
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Fig. 3. Composantes des deformations (u, v, w, ijj) et efforts internes d'une poutre du pont.

verticales appliquees sur l'ouvrage n'engendrent qu'une flexion verticale et
une torsion des poutres autour de S. Alors, les points du plan horizontal passant
par les charnieres ne se deplacent pas dans ce plan (u v 0) et les forces
d'interaction d'une poutre sur l'autre, par 1 'intermediaire des charnieres, sont
toutes verticales. Par contre, dans le cas general oü ces conditions simplifica-
trices ne sont pas realisees, les points du plan passant par les charnieres subissent
desdeplacements horizontaux et les forces d'interaction ont, en plus des

composantes verticales, des composantes horizontales laterales et longitudinales
(respectivement perpendiculaires et paralleles aux axes des poutres). Ainsi,
les poutres sont en general soumises non seulement ä la flexion verticale et
ä la torsion, mais aussi ä la flexion horizontale et aux efforts normaux.

La figure 3 montre les efforts internes de la section transversale d'une
poutre dans ce cas general. On designe par My, Mz les moments flechissants,

par T le moment de torsion, par Qy, Qz les efforts tranchants et par N l'effort
normal. Les composantes des deplacements selon les directions du Systeme
global d'axes x, y, z sont respectivement u, v et w (flg. 3). De plus, \jj designe
la rotation autour de l'axe de la poutre.

Avec les Conventions de la figure 3, les moments de flexion, le moment de

torsion et l'effort normal s'expriment en fonction des deformations par

Mv EIy dx* '

Mz F T d*vs
z dx* '

T GJW-Ecd44
dx dxA

N EAdy.
dx

(la)

(lb)

(lc)

(ld)

D'autre part, le bimoment du aux contraintes normales de torsion non
uniforme (torsion flechie) vaut

B -EC d^fj
dx2 ' (le)
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Dans ces relations,

Iy, Iz moment d'inertie de la section par rapport ä l'axe principal parallele
respectivement ä y et z et passant par G [cm4];

J moment de rigidite de torsion uniforme (Saint-Venant) [cm4];
C moment d'inertie sectorielle [cm6];
A — aire de la section [cm2];

ws, vs deplacements lateraux w et v du centre de torsion de la section;
uG deplacement longitudinal u du centre de gravite de la section.

En negligeant l'effet des contraintes tangentielles dues a la flexion, ainsi

que Celles dues a la torsion flechie, l'energie potentielle des efforts internes
(energie potentielle de deformation) de la poutre s'ecrit

¦*.©+B(-£M£)]*-

Dans cette expression, 3^ G J -~ est la partie du moment de torsion selon

Saint-Venant, tandis que la torsion flechie s'exprime en fonction du bimoment
B.

3. Hypotheses simplificatrices

Avant de developper notre methode de calcul, nous formulerons encore
deux hypotheses simplificatrices, tirees de l'analyse detaillee des proprietes
des ouvrages en question:

1. On a vu au paragraphe precedent que, dans le cas general, les charges verti¬
cales engendrent aussi une flexion horizontale des poutres. Cette flexion
provoque le long des poutres des deplacements horizontaux vs vs(x),
differents d'une poutre a l'autre. Mais, puisqu'on suppose en meme temps
que les sections transversales des poutres restent indeformables dans leur
plan (les elements de l'ouvrage travaillent comme des poutres et non pas
ä la maniere d'une ossature plissee), on doit admettre que dans le plan
horizontal passant par les axes des charnieres, les deplacements v de toutes
les poutres doivent etre egaux. Puisque l'assemblage des poutres est
toujours tres rigide dans ce plan, il est logique d'admettre que les deplacements v
au niveau des charnieres sont negligeables vis-a-vis des deplacements verticaux w.

dx.
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Fig. 4. Relation entre le deplacement
lateral vs et la rotation *p de la section.

Vs=-Zs>

II en resulte (voir la flg. 4) que le deplacement horizontal v8 du centre de rotation

de n'importe quelle poutre est du uniquement ä sa distorsion ifs et s'exprime
simplement sous forme

v8 -z8iff. (3)

2. La Solution se simplifie considerablement si l'on admet que les charnieres

n'empechent pas les fihres adjacentes de deux poutres voisines de glisser longi-
tudinalement Vune par rapport ä Vautre. (Ce glissement correspond ä la
difference de deformations dues ä la flexion et au gauchissement des

sections). Ceci implique que l'on peut supprimer le dernier terme de l'equation
(2), puisque les efforts normaux des poutres seront dorenavant nuls. La
difference des deplacements longitudinaux des fibres adjacentes, due ä la flexion,
est tres petite, et tant qu'il ne s'agit pas de sections ouvertes, il en est de

meme pour l'effet du gauchissement. La confrontation des resultats nume-
riques donnes plus loin (2e partie, probleme 3) montre que la possibilite de

glissement longitudinal ne se manifeste pratiquement pas et que cette
hypothese simplificatrice peut etre adoptee avec confiance pour l'analyse
des ouvrages ä partir de poutres a section pleine ou fermee auxquelles est
consacree cette etude. Elle serait, en revanche, beaucoup moins satis-
faisante pour les systemes de poutres ä section ouverte, dont le gauchissement

est beaucoup plus important.

4. Subdivision de l'ouvrage en macro-elements et introduction des fonctions de

deplacements

Pour analyser l'ouvrage par la methode des elements finis, on le remplace

par un assemblage de macro-elements selon la figure 5. Chaque poutre est, en
general, subdivisee dans le plan en une serie de M macro-elements trapezoidaux
de longueur

M
On utilisera deux systemes d'axes dans le plan (voir figures 5 et 6; le Systeme

dit «global» forme des axes x, y orthogonaux, et le Systeme dit «local» forme
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Fig. 5. Assemblage d'elements finis.
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X A

par les axes biais x, rj, lies a un element particulier. Le plan des deux systemes
correspond ä celui des axes des charnieres liant les poutres (voir aussi la flg. 3).

D'apres la figure 6, les relations entre les coordonnees globales du Systeme
et les coordonnees locales d'un element s'expriment par

x x0 + x + b rj ig ot,

y y0 + bv-

Soit w le deplacement vertical au niveau des charnieres (z 0);

w (x, rj) (1 - 7]) Wx (x) + rjw2 (x), (4)

oü wx (x), w2 (x) sont les deplacements verticaux des charnieres entre les nceuds

Ax, Bx, respectivement A2, B2. Pour exprimer les derives de w(x,r)) par rapport
ä x et y, on ecrit:

cv tw>y\ cv [x9w\
dw_ ^\x,v) dw

__
^\x,v}

dx
\x9y)

Sy 3(^1'a
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oü Q(...) sont les jacobiens de transformation. En designant pour simplifier

d_

dx (•••) (•••)'

on trouve

(l-rj)w[ + rjW2,
dw
dx

Pour ?] |onen tire

ws (w)^=1/2 \(wx + w2),

(dw

1

9
/ 77=1/2

* -($17=1/2
(M^ — tt>2) — \ tg a (tüj + w'2

et avec (3) on a encore

vs j {w^-w^ + \zstgcc(w^ + w'i).

(4a)

(4b)

(5a)

(ob)

(5c)

(5d)

Soit maintenant pour i 1, 2 les fonctions de deplacement des charnieres

pour un element
w. wi(x) Bwt,

B [f1(x) f2(x) fz(x) h(x)]ou

(6)

(6a)

est la matrice de quatre fonctions

f1(x)=~(A*~-3xZA + 2x*),

f2(x)=-^2(xAZ-2x*A+xZ),

fAx)=~(Zx24-2x*),
(6b)

et w,

w

W

9b%

(6c)

est le sous-vecteur de quatre parametres nodaux inconnus.



CALCUL DBS PONTS BIAIS A POUTKES MULTIPLES 97

Les fonctions / (x) ont ete choisies, afin de satisfaire aux conditions

/i(0) =1,
/i(0) =0,

A'^) o,

/2(0) =o,
/2(0) =i,
/a(^) <>,

/s(0) =0,
/i(0) =0,

/4(0) =o,
/i(0) =0,

En meme temps, les parametres du nceud (egaux respectivement au deplacement

w et ä la rotation 99 de la charniere en ce point) seront toujours communs
ä tous les elements autour du meme nceud. Ainsi, les fonctions de deplacement (6)
assureront automatiquement, aussi bien la continuite des deplacements ws, vs
et des pentes */f, 99 entre les macro-elements de la meme poutre, que la compa-
tibilite des deplacements w entre les poutres de l'ouvrage. Notons toutefois
(voir 5d) qu'on ne peut pas assurer aussi automatiquement la continuite des

pentes -r^ entre les elements des que le pont n'est plus rectangulaire (tga=#0).
La consequence de cette imperfection, qui d'ailleurs ne peut intervenir que
si %=t=0, est toutefois minime. Dans la deuxieme partie (probleme 5), nous
demontrerons que l'interaction des poutres n'est que tres peu influencee par
la position zs des charnieres et par consequent aussi par la flexion horizontale
des poutres, de sorte qu'il n'est pas necessaire de rechercher une tres grande
precision.

5. Matrice de rigidite du macro-element

Soit S le vecteur des forces nodales (figure 7) et w le vecteur des parametres
nodaux d'un element

-s>-

M
Z
M
Z
M

.4l

Bl

M

z
M

Bi
B-2

{:;} -

wAx

<PA!

9B!
WA2

<PA2

WB2

L <Pb2

(7a,b)

On cherche la relation
kw, (8)

oü k est la matrice de rigidite d'ordre 8x8. On la determine en utilisant le
theoreme du minimum de l'energie potentielle.

Pour exprimer l'energie potentielle de deformation Ui (voir (2), oü selon
les hypotheses adoptees, on negligera l'effet de N) on introduira le vecteur
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Fig. 7. Element fini
et ses forces nodales.

m \

Mv
Ts
Mz
B

EI„
OJ

EL
EG

-ws

-»'s
-V

De.

En utilisant les Eqs. (5), (6) et (7b)

-±B'-ltg«B'
C '

-Wo

V

-Vs

-r
de sorte que

-\B'
-B'-^tgccB"

_^B"_^tgaB'" ^ß"-§tgaB"

-B" + $tg«B"
1
B" + ltgaß"

{;¦}=

(9)

Cw, (10)

Ui \\cTmdx %wTj CTDCdxw
0 0

(l'indice T signifie que la matrice doit etre transposee). L'energie potentielle
des efforts exterieurs etant

la Variation de l'energie potentielle totale U Ui+Ue donne

jCTDCdxw-S 0,
o

d'oü (voir (8)) la matrice de rigidite

k=$CTDCdx. (11)
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La matrice de rigidite k obtenue selon (11) est donnee dans les tableaux 1

et 2. Pour des raisons pratiques, on l'exprime sous la forme

k k + Ak, (12)

oü k (tableau 1) est la matrice fondamentale representant uniquement l'effet
de la flexion verticale et de la torsion de Saint-Venant et A k (tableau 2) est
la matrice complementaire representant la correction due ä l'effet de la flexion
horizontale et de la torsion flechie.

6. Matrice de rigidite de Vassemblage et calcul des efforts internes

Une fois connue la matrice de rigidite d'un macro-element, l'etablissement
de la matrice de rigidite de l'assemblage (fig. 5) n'est plus qu'une question de
routine. Apres avoir trouve par inversion les parametres nodaux aux nceuds
de l'assemblage, on peut proceder au calcul des efforts internes.

Soit n le vecteur des efforts internes aux extremites x 0etx A del 'element

MzA
BA

TfA
QZA

M

B,

VB

zB

*SB

QzB

-EIvw'a(Q)

-EC<P"(0)
OJifi'(0)

-ECx)j'"{0)
- ZAi - ZA2

-EIyw%{A)
-EIsv%{A)
-EC<f,"(A)

GJiP'(A)
-ECf{A)

zbx + ZB2

(13)

oü Ts et Tf sont respectivement les parties du moment de torsion T dues ä la
torsion de Saint-Venant et ä la torsion flechie.

Pour exprimer les deformations ws, vs, i/j et leurs derives par rapport ä x,
on utilisera les relations (5) et (6). Pour les forces nodales Z, compte tenu des

equations (7) et (8), on se servira directement des lignes correspondantes de

la matrice de rigidite k k + Ak donnee aux tableaux 1 et 2. On exprimera
ainsi le vecteur n en fonction des parametres nodaux aux angles de 1'element
sous la forme

n Fw, (14)

oü F est la matrice de coefficients d'ordre 12 x 8 (voir tableau 3) et w le
vecteur de huit parametres nodaux definis par l'equation (7b).

En examinant l'equation (13), on se rend compte que le vecteur n ne con-
tient pas l'effort tranchant Qy. Son absence est due au fait que les hypotheses
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simplificatrices adoptees au paragraphe 3 rendent impossible la determination
des reactions horizontales entre les poutres au niveau des charnieres de liaison.
Notons que les valeurs de Qy sont tres faibles et pratiquement sans importance.

En appliquant ä tour de röle la relation (14) aux elements d'une poutre du
pont, on constate en general une legere oscillation des efforts obtenus
respectivement ä l'extremite droite de 1'element (j) et ä l'extremite gauche de
1'element (j + 1) (et ceci meme en l'absence des charges isolees qui pourraient justi-
fier une certaine discontinuite). Cette petite imperfection est propre ä la
methode habituelle des elements finis. Une meilleure approximation sera
obtenue en prenant les moyennes arithmetiques des valeurs de gauche et de
droite.

2e Partie: Analyse numerique et applications

Pour faciliter le calcul pratique des ponts biais a poutres multiples sans
entretoises, nous avons elabore un programme Standard en langage PORTRAN
pour l'ordinateur (programme PBPMSE). Ce programme, base sur la theorie
developpee dans la premiere partie de ce travail, calcule pour le pont donne,
avec les charges et les tassements d'appui choisis, les deformations (w,<p) et
les efforts internes (My, Mz, B, Ts, Tf, Qz) dans les poutres de l'ouvrage. Le
nombre d'elements M l: A peut etre choisi en fonction de la precision voulue.
Nous n'entrerons pas dans les details, qui feront l'objet d'un mode d'emploi
mis plus tard ä la disposition des clients du centre de calcul de l'EPF-L.

Dans le texte qui suit, on donne les resultats de quelques-uns des nombreux
problemes resolus ä l'aide du programme PBPMSE. Les trois premiers ont
ete choisis pour verifier la theorie, en confrontant nos resultats avec ceux de
la litterature connue. Les autres exemples nous ont permis d'etudier quelques
questions interessant la pratique.

Probleme 1: Confrontation des calculs avec l'experience

Pour la premiere verification de la theorie, nous avons choisi le modele d'un
pont rectangulaire ä cinq poutres (figure 8a) qui a fait l'objet d'une etude
experimentale de J. Kopecky [14]. Le modele etait realise en resine polyester
durcie (extroplex) et les charnieres etaient representees par des encoches

minces, fraisees dans la plaque compacte du materiau.
Pour les dimensions de la section transversale des poutres et les qualites

physiques du materiau (B,G), la reference [14] donne EIy GJ. Les
charnieres etant ä mi-hauteur des sections, on a % ö et les inerties Iz n'inter-
viennent pas (voir le tableau 2). De plus, si l'on neglige pour les sections
pleines le petit effet de la torsion non uniforme (C 0), la matrice de rigidite
supplementaire A k est nulle. Ainsi, pour le cas envisage, la matrice de rigidite
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- P 25 dkg

a)
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EIy GJ

1' 2 3
r-12,5 dkg

4 V5 6 7 8

b) 10 II 12 • \ .14 15 16
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18

27 E
u
m

36 ~"
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54

8x 3,75cm

Fig. 8 a) Modele du pont rectangulaire de l'essai de Kopecky [14].
b) Assemblage d'elements iinis (M S) pour l'analyse numerique du meme ouvrage.

k des elements sera representee uniquement par la matrice fondamentale Je

du tableau 1.

Le calcul du modele a ete execute pour deux reseaux differents d'elements
finis: celui de la figure 8b (Jf 8), et le reseau deux fois plus fin (ilf=16).
Excepte dans la region voisine de la charge concentree P (figure 8 a), les deux
calculs conduisent a des resultats peu differents. La figure 9 montre que les
resultats du second calcul (M 16) concordent bien avec les valeurs
experimentales.

On remarquera sur la figure 9 que sous la charge concentree P, le

diagramme des moments flechissants presente une pointe tres aigue qui, pro-
bablement, influence considerablement la repartition des moments entre les

poutres du pont. Ce fait devrait etre pris en consideration dans le calcul d'un
pont reel, oü de vraies charges concentrees n'existent pas. Remplacer une
charge repartie par des charges isolees pourrait conduire ä des resultats assez
differents.

Probleme 2: Gonfrontation avec d'autres methodes de calcul

Comme seconde verification de notre methode, nous avons choisi le pont
biais de la figure IIa, forme de sept poutres-caissons prefabriquees de type
KL61-18 (figure 10a), soumis ä une charge uniformement repartie p=lt/m2.
Ce probleme a dejä ete resolu par d'autres methodes approchees (voir [9] et
[16]), dont les resultats sont confrontes avec les nötres dans le tableau 4 (pour
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Moments flechissants My (kgcm) Moments de torsion T (kgcm)
Poutre I

Poutre I

HL

\. 13 |C P5 ^
N.J^ — ?S »

s/^\ r- i- «=>. + 4/

L^
jr

Y
X^JiS" CD ~r ¦*-" AT

°T^ — **. 00 + AS

csi
10

—

Fig. 9. Confrontation des resultats du calcul du pont de la figure 8 avec les resultats experimen¬
taux obtenus sur le modele (valeurs en parentheses et diagrammes en traitille).

Jf=16). On remarquera que nos resultats concordent, en general, tres bien
avec les deux autres Solutions approchees.

Notons que les deux methodes [9] et [16] considerent, ä priori, que les
charnieres entre les poutres se trouvent au niveau des centres de rotation 8
(ce qui est approximativement vrai pour les poutres-caissons KL 61-18) et
negligent le petit effet de la torsion flechie. Dans l'application de notre methode,
qui est plus generale, nous avons par consequent pose zs 0 et C 0. On verra
plus loin 1'influence de ces approximations.

Probleme 3: Verification des hypotheses simplificatrices

Les deux problemes precedents concernaient des ponts avec charnieres au
niveau des centres de rotation. Dans ces cas, 1'influence des hypotheses
simplificatrices, enoncees au paragraphe 3 de la premiere partie de ce travail, n'appa-
raissait pas, puisque les poutres ne flechissaient que dans le plan vertical et le
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a)

GsS ¥
ÜT
70 10

KL 61-18

Iy= 3,444-10-2 m4
J =5,900-10-2 m4

n£ l
G S

26 5

36 in

B IV-36

7^ 0,1587-106m4
Iz 0,1163-106m4
J 0,1979-106m4
C 0,3114-106 in4

Fig. 10. Quelques exemples reels de poutres-eaissons prefabriquees.

a) KL 61-18 (Tchecoslovaqme) pour les portees jusqu'ä 20 metres.
b) B IV-36 (Etats-Ums) pour les portees jusqu'ä 88 ft.

I9m

vi 2 3 4 5 6 7 8 N9

\j0 \ll \l2 \l3 \l4 \l5 \I6 \l7 \J8

7?

\l9 \20 \2I \22 \23 X,24 \25 \26 \27
X28 \29 \30 \3I \32 \ \ \ \\33 \34 \35 \36

X.37 \38 \39 \40 \4I \42 \43 \44 \45
\^46 \47 \48 \49 ^\50 \5I \52 \53 N£4

\55 \56 \57 \58 \59 \60 \6I \62 \63
X64 \65 \66 \67 \68 \69 \70 \7I \\ 8x2,375m \

FTg. IIa) Pont bTaTS forme de sept poutres-caissons KL 61-18.
b) Assemblage d'elements fims (M S) pour l'analyse numerique de l'ouvrage.
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fait de negliger de plus la torsion flechie imposait des deplacements longitu-
dinaux u automatiquement nuls au niveau des charnieres.

Pour verifier la validite de ces hypotheses simplificatrices, nous avons
etudie le pont rectangulaire de la figure 12 a, constitue par dix poutres-caissons
americaines de type B IV-36. Selon la figure 10b, la position theorique des

charnieres se trouve ä peu pres a douze pouces au-dessus des centres de rotation.

Les inerties Iy, Iz et le moment d'inertie sectorielle C sont donnes dans
la meme figure. Etant donne que la conversion des unites americaines en cm
(rr lin 2,54001 cm) donnerait des chiffres peu commodes pour le calcul,
nous avons conserve les unites originales, les pouces.

1000"

-2-
-3-
-4-
-5 -
-6 -
-7-
-8-
-9-
-10-

VTff

1000

10x36"

Fig. 12. Pont rectangulaire et pont biais formes de dix poutres-caissons B IV-36. Dimensions
en pouces (1" 1 pouce 2,54 cm).

Comme charge du pont, nous avons considere la charge lineaire p p1simrj
appliquee successivement:

a) sur la bordure exterieure (indice 0) de la poutre I,
b) au milieu de la largeur de la poutre I.

La raison de ce choix est que pour une charge sinusoidale, on trouve rela-
tivement facilement la Solution exacte du probleme (voir [12]). Les equations
sont applicables uniquement pour des ponts rectangulaires a poutres de meme
section. Pour faciliter leur application, nous les avons programmees.

Le tableau 5 resume les resultats des deux calculs, la Solution exacte et le
calcul approche par notre methode (M=16). En accord avec les hypotheses
simplificatrices du paragraphe 3, les resultats du calcul exact confirment que
les deplacements lateraux sont vraiment tres petits vis-ä-vis des deplacements
verticaux w. Sous premier cas de charge, ce rapport est par exemple 19:10888
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pour la premiere poutre et 19:4477 pour la derniere poutre du pont. D'autre
part, le calcul des contraintes normales confirme la tres faible influence des

efforts normaux. Ainsi par exemple, alors que dans la poutre I le moment
flechissant My max engendre la contrainte

Mymaxh T5950Pl
°Mymax- j^ 2 _ 158700 AU1Pl'

la contribution de l'effort normal est

°H»a* ^fS ^ 0,018Pl,

ce qui ne represente que 0,85% de aM max. Ajoutons que les resultats de notre
methode (deformations, efforts internes) concordent tres bien avec les resultats
du calcul exact.

Notons encore au sujet des contraintes normales que, en plus de Celles dues

aux moments My et aux efforts normaux N, d'autres contraintes normales
viendront s'ajouter, qui seront dues aux moments Mz et aux bimoments B.
Par notre methode, on trouve (toujours pour la meme section et le meme cas
de charge)

Mzmax b 540 Pl ono.°MzmaX =—J^- 2 U63ÖÖ18 0'084^-

Avec \B\max 4:5p1, et |a;|max 36in2 (oü |ou|maa. est la valeur absolue de la
coordonnee sectorielle aux angles de la section)

\B\ 45%i^=L^hL 311400
36 0,005 Pl.

La contribution des bimoments B est donc pratiquement sans importance.

Probleme 4: Influence de la position des charnieres

Dans le cas d'un veritable pont ä poutres-caissons prefabriquees et assem-
Wees par le remplissage des joints («shear key») il regnera probablement
toujours une certaine imprecision quant ä la position exacte des charnieres par
lesquelles on remplace approximativement l'effet d'une teile jonction. II est
interessant de savoir dans quelle mesure la position des charnieres influence
l'interaction des poutres.

Nous avons examine les deux ponts (rectangulaire et biais) de la figure 12

et avons execute le calcul de chacun d'eux pour deux positions zs differentes
des charnieres:

a) zs 12in (charnieres pres de la surface des poutres d'apres la figure 10b);
b) % 0 (charnieres au niveau du centre de torsion des poutres).
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La poutre I a ete soumise a un groupe de trois charges concentrees: Px

0,25 Q, P2 0,50Q et P3 0,25# appliquees respectivement aux 7/16, 8/16 et
9/16 de la portee. (Leur effet correspond approximativement ä une charge Q

uniformement repartie sur un troncon central de 1/8 de la portee. Notons
toutefois que les charges nodales equivalentes ä une teile charge repartie, au
sens des travaux virtuels, comprendraient encore des couples nodaux de forces.
Mais la difference pratique n'est pas tres grande.)

Les resultats du calcul pour les deux positions des charnieres sont resumes
dans le tableau 6. (Le calcul a ete execute avec les elements finis de longueur
A Z/16.) Pour le niveau inferieur des charnieres, les fleches de la poutre chargee

et des poutres voisines accusent une legere augmentation, tandis que pour
les poutres situees pres de l'autre bord du pont les fleches ont une legere ten-
dance ä diminuer. Les differences ne sont pas toujours apparentes avec le
nombre de decimales choisi. En ce qui concerne les efforts internes, on constate
sur la poutre chargee (respectivement sur la poutre voisine) une legere augmentation

des moments flechissants, ceci au profit des poutres plus eloignees oü

Tableau 6. Influence de la position zs des charnieres sur Vinteraction des poutres. Pont
rectangulaire et pont biais de la figure 12. Poutre I chargee par un groupe de trois forces concentrees:
Pi iQ, P2 i Q et Pz ^Q, appliquees respectivement ä 7/16, 8/16 et 9/16 de la portee

Pont rectangulaire (a 0)

R
105 Elwil/2):Q My{ii2): Ql Mz{i/2): Ql -L max • 0? '

zS=\2" zs 0 25=12" zs 0 25=12* zs 0 zs=12" zs 0

I
II

III
IV
V

VI
VII

VIII
IX
X

0,2014
0,1815
0,1583
0,1395
0,1244
0,1124
0,1032
0,0964
0,0921
0,0899

0,2016
0,1816
0,1584
0,1395
0,1244
0,1123
0,1031
0,0964
0,0920
0,0898

0,0442
0,0365
0,0290
0,0242
0,0209
0,0185
0,0167
0,0155
0,0147
0,0143

0,0444
0,0365
0,0289
0,0242
0,0209
0,0184
0,0167
0,0155
0,0147
0,0143

0,0015
0,0023
0,0014
0,0010
0,0007
0,0005
0,0004
0,0002
0,0001
0,0000

0
0
0
0
0
0
0
0
0
0

0,0080
0,0149
0,0128
0,0109
0,0090
0,0072
0,0055
0,0039
0,0023
0,0008

0,0080
0,0149
0,0128
0,0109
0,0090
0,0072
0,0055
0,0039
0,0023
0,0008

Pont biais (<% 40°)

I 0,1802 0,1804 0,0408 0,0410 0,0012 0 0,0146 0,0146
II 0,1576 0,1577 0,0325 0,0326 0,0021 0 0,0200 0,0200
III 0,1309 0,1310 0,0241 0,0241 0,0010 0 0,0165 0,0166
IV 0,1086 0,1087 0,0187 0,0188 0,0007 0 0,0134 0,0135
V 0,0905 0,0905 0,0150 0,0150 0,0004 0 0,0108 0,0108

VI 0,0760 0,0760 0,0123 0,0123 0,0003 0 0,0086 0,0087
VII 0,0646 0,0646 0,0102 0,0102 0,0002 0 0,0067 0,0067

VIII 0,0559 0,0559 0,0087 0,0087 0,0001 0 0,0052 0,0052
IX 0,0494 0,0494 0,0075 0,0075 0,0001 0 0,0038 0,0038
X 0,0446 0,0446 0,0066 0,0066 0,0000 0 0,0026 0,0026
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la difference reste toutefois trop petite pour etre mise en evidence avec le
nombre de decimales utilise. Les moments de torsion T restent pratiquement
inchanges. II est, par contre, naturel que la position des charnieres influence
fortement les moments de flexion Mz. Mais, comme on l'a deja vu dans le

probleme 3, vis-ä-vis des moments My, leur contribution aux contraintes
normales er n'est pas tres importante.

Probleme 5: Influence du biais sur Vinteraction des poutres

Une opinion assez repandue en pratique admet que l'effet du biais sur
l'interaction des poutres du pont est negligeable. Ceci dit, on applique les

memes coefficients de repartition transversale pour un pont biais que pour un
ouvrage rectangulaire. Pour verifier dans quelle mesure se justifie cette simpli-
fication, nous avons considere les deux ponts de la figure 12 a, b qui corres-
pondent respectivement aux angles d'obliquite a 0° et a 40°.

Dans un premier cas, nous avons suppose une charge uniforme p appliquee
simultanement sur toutes les poutres du pont. Dans un pont rectangulaire,
eile provoque dans toutes les poutres les memes moments flechissants avec
maximum Mymax 0,125 pl2. Les moments de torsion T sont nuls. Dans un
pont biais, les moments de flexion My engendres par la meme charge sont plus
petits, mais il apparait des moments de torsion T. En analysant les diagrammes
de My de la figure 13 oü nous avons porte les resultats de notre calcul (pour

My:pls

- 0,025

0,075

0,100

0,125 0,250 0.375 0,500 0,625 0,750 0,875 1,000 x

max

0,0285
0,0321

0,0347
0,0363

0372

Fig. 13. Diagrammes des moments flechissants My et valeurs maxima des moments de torsion
T pour les cinq premieres poutres du pont biais de la figure 12b. Poutres-caissons B IV-36,
charge uniformement repartie p par unite de longueur de chaque poutre. En traitille: effet de

la meme charge sur un pont rectangulaire.
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Fig 14 Effet du tassement wx -
1000

l de l'angle supeneur gauche du pont biais de la figure 12 b

(dix poutres Caissons B IV 36 de portee 1= 1000 m) Diagrammes des moments flechissants

porte independamment par chacune d'elles, etant donne que le remplissage
des joints ne s'effectue qu'apres la mise en place des poutres. Notons toutefois
que chaque poutre isolee beneficiera de l'effet favorable du biais, qui se mani-
festera par une certaine dimmution des moments flechissants (ä peu pres 18%
dans le cas envisage). Ceci est du au fait que l'effet du biais des appuis equi-
vaut, dans une certaine mesure, a un encastrement partiel. Pour ce qui est des

surcharges, notons, par exemple, que les normes francaises pour les ponts
routiers prevoient comme surcharge du type A une charge uniformement
repartie. Vis-a-vis d'un ouvrage rectangulaire, celle-ci beneficierait donc pleine-
ment de la reduction des moments de flexion My (21% dans notre cas).

Un second cas de charge a ete envisage sous la forme de charges Q consti-
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1000

l de l'angle supeneur gauche du pont biais de la figure 12 b

(dix poutres-caissons B IV 36 de portee l 1000 in) Diagrammes des moments de torsion.

tuees par des charges lineaires p Q :Al reparties uniformement sur les petits
troncons A 1 1:16. Nous les avons appliquees ä tour de röle au milieu des

joints r 0, 1, 2, 3, 4 et 5. Notons que par la combinaison de telles charges,
nous pouvons exprimer par exemple l'effet des roues d'un vehicule roulant
sur le pont. Les resultats du calcul, qui a ete execute avec des elements finis
de longueur A=l: 16, sont resumes dans le tableau 7. En plus des moments
flechissants au milieu de la portee, nous avons confronte les valeurs approchees
des moments maxima Mymax et les maxima des valeurs absolues des moments
de torsion l^7^^. On constate que, vis-a-vis du pont rectangulaire, les moments
flechissants du pont biais sont beaucoup plus petits et les moments de torsion
plus grands.

Notons encore que sur un pont biais la position longitudinale la plus defa-
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vorable d'une charge Q (pour engendrer les plus grands moments possibles
My max max) ne se trouve, en general, pas au milieu de la portee. En procedant
par tatonnements, nous avons trouve par exemple que si la charge Q.se deplace
le long du bord exterieur (indice 0) de la poutre I, le moment My max max apparait
quand la charge se trouve ä peu pres a 1/161 ä gauche du centre. Le moment
Mymaxmax ainsi obtenu vaut 488-10~4$Z (contre 484 10~4QZ pour la charge
au milieu de portee). La difference n'est donc pas tres importante.

Probleme 6: Effet du tassement des appuis

Comme derniere application, nous avons etudie l'effet du tassement d'appui
sur le pont biais de la figure 12b. Nous avons suppose que 1'angle gauche de
l'extremite gauche du pont (x 0, y 0) a subi une denivellation egale a Z/1000.
Ainsi l'extremite gauche du bord exterieur de la poutre I est descendue de
l: 1000, tandis que l'extremite gauche du bord interieur (attachee par le Joint 1

ä la poutre II) est restee en place. Pour obtenir l'effet de ce tassement, il
suffit de substituer au deplacement nodal du nceud 1 la valeur w1 l: 1000.

Le calcul a ete execute avec des elements finis de longueur A =1:16. Les
resultats (moments de flexion My et moments de torsion T) sont representes
dans les figures 14 et 15. Quant aux moments flechissants, on remarquera que
le tassement affecte essentiellement la region autour du nceud 1, tandis
qu'ailleurs ces moments restent relativement faibles. Par contre, les moments
de torsion sont assez eleves et presque constants sur la totalite de la poutre I.
La torsion des autres poutres est peu importante.

Conclusion

Le present travail propose une Solution approchee du calcul des ponts biais
ä poutres multiples sans entretoises. Ses hypotheses simplificatrices sont, en
regle generale, bien remplies pour les ponts ä poutres de section pleine ou
fermee (poutres-caissons).

Les fonctions de deplacement choisies pour les elements finis comprennent
tous les modes rigides de deplacement et sont susceptibles de donner toutes
les deformations correspondant ä une valeur constante des efforts internes.
En general, elles assurent aussi automatiquement la compatibilite des
deformations entre les elements, si cette compatibilite est etablie aux nceuds de

l'assemblage. Dans le cas d'un pont biais, cette compatibilite n'est toutefois
pas complete pour les derivees des deplacements horizontaux v. Cette petite
imperfection n'intervient d'ailleurs que si les charnieres entre les poutres se

trouvent au-delä du niveau des centres de rotation des sections. Etant donne
la faible influence du niveau des charnieres sur les resultats, son effet est
minime. Mis ä part cette petite imperfection, notre modele est donc du type
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«deplacement eonforme». Un tel modele est plus rigide et son energie de
deformation est plus petite que la valeur exacte. Partant dans le cas d'un ouvrage
rectangulaire (oü la compatibilite est parfaite), notre Solution converge vers
la Solution exacte de la construction idealisee dans le sens des hypotheses
admises.

Dans le cas d'un ouvrage biais, le probleme de la convergence est plus
complique. Dans la mesure oü l'on diminue la longueur des elements et oü

chaque element s'approche de l'etat de contrainte constant, la petite discon-
tinuite des derivees des deplacements horizontaux v diminue et disparait ä la
limite. Notons toutefois que le calcul d'un ouvrage biais ne converge vrai-
semblablement que vers des valeurs tres proches de la Solution exacte, et ceci

pour la raison suivante: l'adoption de fonctions de deplacement sous la forme
donnee par l'equation (4) signifie que dans la bände limitee par les bords
longitudinaux d'une poutre, le deplacement vertical w est lineaire le long des

droites paralleles aux lignes d'appui. Dans le cas d'un pont biais, ceci revient
a l'hypothese des «sections biaises rigides». Or, cette hypothese n'est exacte
qu'au droit des appuis, ä moins que les poutres-caissons ne soient dotees de

diaphragmes rigides paralleles aux lignes d'appui.
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Resume

L'etude presentee concerne l'application de la methode des elements finis
au calcul des ponts biais ä poutres multiples. On considere un Systeme de

poutres prefabriquees placees l'une a cöte de l'autre et liees le long de la portee
par des rotules longitudinales sans friction. Dans la premiere partie du travail,
on developpe la matrice de rigidite d'un macro-element trapezoidal. La seconde

partie du travail montre les resultats des analyses numeriques et quelques
applications pratiques.

Zusammenfassung

Die vorgelegte Arbeit behandelt die Anwendung der Methode der endlichen
Elemente zur Lösung der schiefen Brücken bestehend aus nebeneinanderliegenden

vorgefertigten Balken. Die Verbindungen zwischen den Balken werden

als längliche Zylindergelenke angesehen. Im ersten Teil der Arbeit wird
die Steifigkeitsmatrix der endlichen schiefwinkligen Elemente entwickelt. Im
zweiten Teil folgen die Ergebnisse von Vergleichsberechnungen und einige
praktische Anwendungen.

Summary

The paper is dealing with the finite element Solution of skew multibeam
bridges. It is assumed that the bridge consists of precast beams placed side

by side and connected to each other along the span by hinges. In the first
part of the paper is derived the stiffhess matrix of a skew finite element. The
second part shows the results of test examples and some practical applications.
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