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Der Einfluss von Querschotten auf das Verhalten von Kastentrigern
mit Rechteckquerschnitt

The Influence of Cross-Thies on the Behaviour of Box Girders of Rectangular
Section

L’influence de parotis transversales sur le comportement de poutres en carsson a
section rectangulaire

J. D. JANSSEN F. E. VELDPAUS
Prof. Dr. Ir. Ir.
Laboratorium fir technische Mechanik, Technische Hochschule Eindhoven NL

1. Einleitung

Fiir die Berechnung des in Fig. 1.1 gezeichneten Kastentrigers mit Recht-
eckquerschnitt, der am Ende x =0 eingespannt, am Ende x ={ durch Normal-
spannungen &, (s) und Schubspannungen 7 (s) belastet ist, ist es im allgemei-
nen nicht gestattet, nur die in Fig. 1.2 gezeichneten Spannungsresultierenden
zu betrachten. '

Dies bedeutet, dass an einem Spannungssystem wie in Fig. 1.1, ausser den
resultierenden Kriaften und Momenten, auch bestimmte Gleichgewichtssysteme
wichtig sind. Theoretisch und experimentell ist nachweisbar [2], dass die
Beriicksichtigung der sogenannten axialen und transversalen Bimomente, B
bzw. Q, eine hinreichend genaue Beschreibung der Realitit ergibt. Mit diesen
Spannungsgrossen B und @ hingen die Verwdlbung bzw. die Querschnitts-
verformung als Verschiebungsgrissen zusammen [1].

Insbesondere wird manchmal der Einfluss der Querschnittsverformung
nicht beriicksichtigt [3,4]. Dieses Verfahren ist nur dann erlaubt, wenn die
Querschnittstreue unter gegebener Belastung mittels (vieler) Querschotte und
eines Querschotts an der Krafteinleitungsstelle gewihrleistet ist.

Im nachfolgenden wird der Einfluss von Querschotten auf das Verhalten
der Kastentrager behandelt. Daraus resultieren Richtlinien fiir die Anwen-
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a.'x (s)

e S

X

Fig. 1.2. Die in der klassischen Theorie interessanten Belastungsgréssen.

dung von Querschotten. Ausserdem wird der Zustand untersucht, der auftritt,
wenn die Belastung zwischen Querschotten eingeleitet wird.

Der Einfluss der Querschnittsverformung und die Wirkung von Schotten
ist schon ofters in wissenschaftlichen Abhandlungen erértert worden, z. B. in
den Arbeiten von V. Vrasov [1], J. JANSSEN [2], G. LAcHER [5], F. RESINGER
[6], R. DaABROWSKI [7] und P. Csonka [8].

Analog zur Arbeitsweise in [2] stiitzt sich die Theorie auf das Prinzip der
minimalen potentiellen Energie. Mit der Formulierung in Matrizenschreib-
weise entsteht eine iibersichtliche und leicht programmierbare Darstellung
der Berechnung. _

Der Spannungs- und Verformungszustand infolge N, ﬁy, D,, M und M,
(Fig. 1.2) héngt nicht zusammen mit den Spannungen und Verformungen
infolge M,, B und @, und kann mit der Theorie nach Bernoulli-Navier hin-
reichend genau beschrieben werden. Deshalb kénnen wir uns auf Belastungen
durch M,, B und @ beschrinken. Fiir einen Kastentriger mit doppelt-sym-
metrischem Querschnitt bedeutet dies, dass die auftretenden Spannungen und
Verschiebungen mit Riicksicht auf beide Symmetrieachsen des Querschnitts
antimetrisch sind.
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2. Bezeichnungen

67

Fiir alle Bezeichnungen in dieser Arbeit beziehen wir uns auf [11] mit
Ausnahme der Grossen E*, v*, h, kg und £, :

F* = Elastizitatsmodul

v¥* = Querdehnungszahl
h = Starke

by — E*  h3b b,

B 7 3(1+v¥%) apa,
o= 8 B* blbzhao'

K 14v* c

der Querschotte,

3. Einige Ergebnisse fiir Kastentriiger mit verformbarem Rechteckquerschnitt

In [1] und [2] wurde eine Theorie aufgestellt, die fiir Kastentriger ohne
Querschotten verwendbar ist. Wir werden die Resultate kurz zusammenfassen.
Wenn u (x,s) und v(x,s) die Verschiebung in axialer Richtung bzw. Um-
laufsrichtung bedeuten (F'ig. 3.1), so darf man nach der Grundhypothese dieser

Theorie schreiben:

u(x,s) =B (x)@(s),

v(x,8) =F(x)h(s)+x(x)m(s).
Fir die Funktionen ¢, A und m der Umlaufskoordinate s (Fig. 3.1) gilt:

P (s) =y(s)z(s),
h(s) _{ b, fir z=+b,,
[ by fiir y=+b, de
m(s)-{_bl fur z=J_rb1} ds”
bz
th| S
- Fo
—Profillinie
b
S
— 5 >y
1 ] t
b l
o -
Fig. 3.1. Der Tragerquerschnitt. bo bz

(3.1)
(3.2)

(3.3)

(3.4)

(3.5)



68 J. D. JANSSEN - F. E. VELDPAUS

Als Schnittgréssen treten nur das axiale Bimoment B (x), das Torsionsmoment
M (x) und das transversale Bimoment ¢ (x) auf. Wenn in einem Querschnitt
axiale Normalspannungen o (2, s) und Schubspannungen 7 (x,s) bestehen (z. B.
Fig. 1.1), so lasst sich fir B, M und @ schreiben:

B(x) =i;[o(x,s)<p(s)dF, (3.6)

M (x)=[7(x,s)h(s)dF, (3.7)
F

Q (x) =I£T(x,s)m(8)dF. (3.8)

Mittels des Prinzips der minimalen potentiellen Energie ist das Resultat
der Ansitze fiir die Verschiebungen (3.1) und (3.2) ein System dreier linearer
Differentialgleichungen in 8, & und « [2]. Die allgemeine Losung dieser Glei-
chungen enthilt sechs Integrationskonstanten, die als Komponenten eines
Spaltenvektors C aufgefasst werden kénnen. Mit den Matrizen W (x) und F (x)
von der Ordnung (3 x 6) kann die allgemeine Losung folgenderweise geschrie-
ben werden:

[ B(x)

wx)=| @) | =W(k)C, (3.9)
|« (@) _
B (z) ]

flx) = | M(x) | = F(x)C. (3.10)
| @ () _

Die Koeffizienten von W (x) und F (z) sind von VLasov in [1] (S. 240 und
241) gegeben worden. Es sind lineare Kombinationen der folgenden Funk-
tionen der axialen Koordinate:

1, z, cosh (xx)sin (yx), cosh (xx)cos(yx), sinh (xz)cos(yx), sinh (ax)sin (yx).

Die Konstanten « und y sind vollig bedingt durch die Abmessungen des
Querschnittes und die Querdehnungszahl v. Es gilt [2, 9]:

a? =od(l+e), (3.11)
v =of(l—e) (3.12)
1 3 1313
it & =—‘/ 172 , 3.13
! =2 T2 0363 (b s+ b ) (by B+ 5, ) R

1 }/3 L+v ity (byty +byty) (brts+by1h)* (3.14)

¢ TRI3(1—y) b2DE (b, 13+ by 13)

8
Weil B und @ Gleichgewichtssysteme sind, wird in «einiger Entfernung»
von der Stelle wo B und @ eingeleitet werden, der Einfluss dieser Belastung
vernachlissigbar sein. Wir konnen eine Lénge [, mit der Eigenschaft definie-
ren, dass in einer Entfernung /, vom belasteten Querschnitt keine merkliche
Wirkung von B und ¢ resultiert. Dies bedeutet, dass fiir einen Kastentréger
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mit Lange [ grosser als [, die Spannungen und Verformungen am Ende x=0
von den mit Verwoélbung (B, ) und Querschnittsverformung (¢, ) zusammen-
héingenden Randbedingungen am Ende x=I[ nicht merklich beeinflusst wer-
den. Derartige Kastentriager werden wir «unendlich lang» nennen. Nach [11]
konnen wir ansetzen:

I, = (3.15)

m
=

Die axialen Membranspannungen sind dem axialen Bimoment B (x) und
der Funktion ¢ (s) proportional. Die Extremwerte treten mithin in den Eck-
punkten des Trégerquerschnittes auf. Die Schubspannungen koénnen als die
Summe der mit M (x) und % (s) und mit ¢ (z) und m (s) proportionalen Beitrige
betrachtet werden. Die Querschnittsverformung verursacht in Langsschnitten
ausserdem biegende Momente, deren Grosse mit «(x) proportional ist. Die
Extremwerte dieser Momente treten in den Eckpunkten auf.

4. Der Einfluss mehrerer, in gleichem Abstand gestellter Querschotte

4.1. Ewnleitung

Zur Bestimmung des Einflusses von Querschotten betrachten wir einen
Kastentrager mit in gleichem Abstand gestellten Querschotten (Fig. 4.1). Der
Trager ist am Ende =0 eingespannt und am Ende x=! belastet durch ein
Torsionsmoment M, das durch ein Endschott eingeleitet wird. Jedes Quer-
schott ist starr in der Ebene der Schotte und villig flexibel senkrecht zur Ebene.

Wir werden fiir zwei Tréager, deren Querschnitt in Fig. 4.5 gezeichnet ist
und deren Liange gleich [, bzw. 0,4, ist, die axiale Membranspannung o,
infolge des axialen Bimomentes B, die Schubspannung , infolge des trans-
versalen Bimomentes ¢ und die Biegespannung o, infolge der Querschnitts-

Fig. 4.1. Kastentriger mit 5 Querschotten (einschliesslich Endschotte).
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verformung in Abhéngigkeit von  berechnen. Interessant ist auch der Abstand,
iber den die Wirkung der Wélbbehinderung bei x =0 wahrnehmbar ist.

Wird das Torsionsmoment M, mittels eines Endschotts eingeleitet und
bestehen keine anderen Querschotten, so ist die Vergleichspannung in der
Einspannung maximal.

Ebenso ist der Spannungszustand in der Einspannung am geféhrlichsten,
wenn die Querschnittstreue mittels gentigend vieler Querschotte garantiert ist.
Es ist zu erwarten, dass auch fiir das in Fig. 4.1 gegebene Problem der Quer-
schnitt x = 0 fiir die Stidrke des Trigers massgebend sein wird. Die Spannungen
in diesem Querschnitt sind durch das axiale Bimoment B,= B (r=0), das
transversale Bimoment @,= @ (x=0) und das Torsionsmoment M,= M, vollig
bestimmt. Wir werden den Kinfluss der Anzahl der Querschotte auf B, und
@, untersuchen.

Selbstverstdandlich werden zur Losung des Problems wie in Fig. 4.1 elek-
tronische Rechenmaschinen eingeschaltet. Es liegt nahe, Ubertragungsmatrizen
zu gebrauchen, mit denen die interessanten Verschiebungs- und Schnittgrossen
in einem bestimmten Querschnitt in den namlichen Grossen in einem anderen
Querschnitt ausgedriickt werden. Auf diese Weise wire es moglich 8, &, B, M
und @ fiir x =0 auszudriicken in 8, ¢, B, M und @ fiir x =1. Indessen veranlasst
diese Methodik eine Reihe numerischer und andersartiger Komplikationen,
die nicht einfach zu 16sen sind.

Ein besseres Verfahren erhilt man, wenn man von der Methode der finiten
Elemente ausgeht. Dabei werden die «Verschiebungen» B8, ¢ und « in den
Knotenpunkten des Trigers als die Unbekannten des Problems betrachtet. In
Fig. 4.2 ist ein Kastentragerelement mit Knotenpunkten (= Querschnitten)
1 und 2 gezeichnet.

Knotenpunkt

®

Fig. 4.2. Trégerelement.

Knotenpunkte werden immer lokalisiert in Querschnitten, in denen «Kréfte»
B, M, @ oder «Verschiebungen» B, ¢, x einen vorgeschriebenen Wert haben.
Infolgedessen werden wir bei jedem Querschott einen Knotenpunkt festlegen.
Mittels (3.9) und (3.10) kann die Steifigkeitsmatrix ¢, dieses Elementes
berechnet werden, denn diese Matrix gibt den Zusammenhang zwischen den
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Verschiebungen S, & und « und den Schnittgrossen B, M und ¢ ih den Knoten-
punkten des Elementes. Es gilt:

w(0)] _ [W(0)
ooyl = L] o .
—f(O)] _ [—-F(0)
il = rw)e 2
Mit der Losung von C aus (4.1)
W(0)1~ [w(0)
=lww| [ow) 3
kann fir (4.2) geschrieben werden:
—f(O)] _ [=F )] [W(0)] " [w(0)
I A e I 4
Folglich gilt fiir die Steifigkeitsmatrix @), :
_[=FO)] W)}
o= "r)lwn] - 4

Mit der in der Methode der finiten Elemente iiblichen Arbeitsweise ldsst
sich die totale Steifigkeitsmatrix fiir die gesamte Konstruktion zusammen-
setzen, wobei alle geometrischen Bedingungen erfiillt werden. Im vorliegenden
Problem bedeutet dies beispielsweise, dass in jedem Querschnitt mit Quer-
schott « den Wert null haben soll.

Auch diese Arbeitsweise bringt numerische Komplikationen mit sich, da in
der totalen Steifigkeitsmatrix Koeffizienten enthalten sind, die in ihrer Grosse
ganz verschieden sind. Die Ursache ist in der Differenz zwischen der Torsions-
steifigkeit und den interessanten Steifigkeiten bei Verwodlbung und Quer-
schnittsverformung zu suchen. Diese Schwierigkeiten konnen jedoch einfach
und zweckmissig gelost werden.

Das dargestellte Verfahren wurde fiir den elektronischen Rechenautomaten
EL-X 8 der Technischen Hochschule Eindhoven programmiert [9, 10].

4.2. Kastentrdiger mit Linge | grésser 1,

Ist die Lénge des Tragers in Fig. 4.1 grosser als [, (siehe Gleichung (2.15)),
so ist der Einfluss der Woélbbehinderung am Rande x =0 vernachliassigbar fiir
die Verschiebungen und Spannungen am Rand x=I[. Das axiale und trans-
versale Bimoment in der Einspannung (B,, bzw. ¢),) ist dann unabhéngig von
der Lange des Tréagers. Sind in einem Triger mit [ >/, in gleicher Distanz I,
Querschotte befestigt, so kann die Wirkung der Schottendistanz leicht berech-
net werden.

Fiir Trager ohne Querschott — und daher auch dann wenn der Schottabstand
lsz 1, ist — gilt fiir das Problem von Fig. 4.1 [11]:
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By(\) = —4p <M fir Ax1, (4.6)
X0
Qo(A) = 4peM fir Ax1 (4.7)
mit: A=l (4.8)
0 .
4.9
byt + byt 9

Ist die Querschnittstreue durch geniigend viele Querschotte gewihrleistet
(A — 0), so gilt [11]:
}/ 2e€

By() = —p——M fir X0, (4.10)

Qo (A) = ,LLMO fir A—0. (4.11)

Fiir Werte von A zwischen 0 und 1 kann fiir B, (X) und @, (\) berechnet werden:
By(A) = By (1) +[B,(0)— By (1)1 (A €), (4.12)

Qo (A) = Qo (1) +[@o (0) =@y (1)1 2 (A, €). (4.13)

In Fig. 4.3 und 4.4 sind f; und f, gegeben als Funktionen von A mit ¢ als
Parameter. Wir bemerken, dass f, und f, nur von A und e abhiingig sind.

Man erkennt, dass die Einspanngrossen durch den Einbau von Querschot-
ten, verglichen mit der Situation ohne Schotten, betrichtlich zunehmen kon-
nen. Dies bedeutet folglich auch, dass die Spannungssituation im Triger durch
Querschotte gefihrlicher werden kann.

Die Torsionssteifigkeit des Trigers nimmt beim Aufstellen von Querschotten
nur sehr wenig zu.

F
1,0 € = 0,001
0,9
0,8

0,7

0,6
0,51
0,4
0,3
0,2

0,1

O ol 02 03 04 0,5 06- 07 08 09 1,0

Fig. 4.3. fy=f, (\, ¢).
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o 0, 0,2 0,3 0,4

05 06 07 08 09 1,0

—_—\

Fig. 4.4. fy=fy (A €).

In Fig. 4.6, 4.7 und 4.8 sind fiir einen Triager mit einem Querschnitt nach
Fig. 4.5 die interessantesten Spannungen gegeben als Funktion der axialen
Koordinate bei einer Belastung von einem Torsionsmoment M, = 2000 Nm.
In diesen graphischen Darstellungen tritt der Schottabstand als Parameter

200 200
b e
50 5 Léange 2300 mm
50 Abmessungen
Fig. 4.5. Querschnitt des Tragers. 5 112, T0In,
Tox 1,0¢
[N/mm2] o 250 580 B 000 1250 1500 _ 1750__ 2000
— x[mm]

-1,0

-2,0

1 T | % 1 ) -
Ls=Alo |

L= L9= 2300mm |

’§ o

Fig. 4.6. ogz=0agz (%, A).
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3 1} 1 T I

Te y Ls= A lo J
[ Vm?] | L=lo=2300mm |

2
T¢=7p;73=>5 N/mm?
A=z0

A =0,125
[
\ A=0,25
“i
O L A | 1] 1
500 1000 1500 2000
x [mm]
Fig. 4.7. Te = Te (x, A).
0,25
o I
[ Wmm?] 500 ———1000 1500 2000  x[mm]
0 ——. n i i .
A=0
-0,25
X=0,125 \=0,250
=0,%0 “ T K# —
)\: !,O - L_L_s; Lo
-0,75 L=16=2300mm |

-1,25

-1,50

Fig. 4.8. ap ==0op (x, A).

auf. Die Bredtsche Schubspannung betrigt 5 N/mm?2. Fiir diesen Trager gilt
lp=2300mm und €=0,012. Zu bemerken ist, dass A=0 unendlich vielen
Schotten entspricht. Fir A=0,125 ist der Schottabstand /,=287 mm.

Aus diesen Darstellungen geht hervor, dass sich mit zunehmender Schott-
anzahl der Abstand, woriiber die Abweichung von der Bredtschen Theorie
infolge Wolbbehinderung fiir =0 wahrnehmbar ist, deutlich vermindert. Dies
bedeutet, dass die in Fig. 4.6, 4.7 und 4.8 fiir /,=575mm (A=0,25) gezeich-
neten Kurven auch fiir Triger mit grosserer Liange, z. B. 1000 mm verwend-
bar sind.

4.3. Kastentrdager mit Linge [ kleiner [,

Auch fiir kurze Trager (I<l,) lasst sich die Wirkung von Querschotten
analysieren. Obwohl es keineswegs notwendig ist, werden wir uns auch jetzt
auf die Situation mit in gleichem Abstand gestellten Schotten beschrinken.
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Die Parameter, die das Verhalten des Trégers bestimmen, sind //l,, [/l
und e. Mit Riicksicht auf die Ubersichtlichkeit der Resultate werden wir uns
auf einen Wert von €, nimlich € =0,012 beschrinken. Dieser Wert stimmt z. B.
mit dem Querschnitt in Fig. 4.5 iiberein.

In Fig. 4.9, ... 4.13 sind einige interessante Resultate fiir den Triger in

Fig. 4.5 dargestellt, belastet mit einem Torsionsmoment M, =2000 Nm. Die
in diesen graphischen Darstellungen gegebenen Daten konnen auf Trager mit
anderen Abmessungen einfach transformiert werden, da nur die genannten
Parameter massgebend sind. Die Fig. 4.9 und 4.10 zeigen den Einfluss von
Schottabstand /, und Tragerlinge ! (bezogen auf /;) auf die Extremwerte der
axialen Normalspannung und der zusétzlichen Schubspannung im Querschnitt
x=0, wo die Verwolbung behindert ist. Sowohl die Anwesenheit von Quer-

—ogx (0) 4 101 Oax (O)
[Wmmd | © 2z | WL
8 L 7. ’4/27’ Vs y// w '
- L—Q=o’4 1 x Ls
. L .06 L L
My=2000Nm
5t
L.
4 Lo—
3 lo
2
|
o}
0,25 0,50 0,75 1,0 Ls
L
s 1
Flg 4.9. Oagx — OCazx S’
105"
Te (O
[NV/mm?] Ty + T (0)
7 o
L e
Y =0,4 5// 1,25 N/mm2
2 B= mm
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schotten wie auch die Kiirzung des Trigers ergeben eine Steigerung der unter-
suchten Spannungen. In Fig. 4.11,... 4.13 ist fiir einen Triger mit //[,=0,4
der Verlauf der interessanten Spannungen in axialer Richtung gegeben mit
dem Schottabstand als Parameter.

Hierdurch ldsst sich feststellen, dass die Membranspannungen infolge einer

250 500 750 920

x {mm]

L__;Ls=>\Lo

L =0,4L45= 920mm

Tax

-8
. ls . l
Fig. 4.11. 04z = 0az |2, -] mit — = 0,4.
l A
5,
Te
[N/mmz] Y JI T i
Ls .o 4 L—"'Ls: Mo )
L | L=0,4Lo= 920mm|
2
L Ls-0,125
| L—Ls-=0,25
Ls _
N
e
(0] 200 400 600 800 920
—
x[mm]

. l
Fig. 4.12. 7o=1, (a: Ts) mit L 0,4.

lo "
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ob 021
x[mm]
—
[N/mmd] o 200 400 600 800 920
A=0,125 —X=0
-0,2 X =0,250
} A | I
Ls= Ao !
-0,4 ,L=0,4 Lo=920mm |
A=| ‘
-0,6
%
-0,8
-1,0
- 1,2

Fig. 4.13. op=o0p (sc i) mit — = 0,4.

wachsenden Anzahl von Schotten in der Einspannung erheblich zunehmen
konnen, wiahrend die maximale Biegespannungen nachlassen.

Zusammenfassend kann man schliessen, dass nicht nur fiir Triger mit
[>1,, sondern auch fiir kurze Triager (Il <[,) der Spannungszustand durch
Querschotte ungiinstig beeinflusst wird.

5. Wirkung einer nicht mittels Querschott eingeleiteten Belastung

5.1. Einleitung

In den vorigen Kapiteln wurde angenommen, dass die Belastung, insbe-
sondere das Torsionsmoment, mittels eines Querschotts eingeleitet wird. In
der Praxis wird diese Situation nicht immer auftreten, da z. B. die Einleitungs-
stelle der Belastung variabel ist. Deshalb werden wir den Spannungszustand
analysieren, der in einem Triager mit Querschotten auftritt, wenn dieser zwi-
schen den Schotten belastet wird. Dabei ist eine Belastung mit einem trans-
versalen Bimoment insbesondere fiir die Praxis von Bedeutung.

Wenn der Abstand zwischen der Einleitungsstelle der Belastung und dem
nichsten Querschott grosser ist als [, kann die Wirkung der Schotte auf den
Spannungsverlauf in der Umgebung der Einleitungsstelle vernachlédssigt wer-
den. :

In Fig. 5.1 und 5.2 sind einige Belastungssituationen weiter ausgearbeitet.
Massgebend fiir die Membranspannungen sind die Schnittgrossen B und @,
weil die Biegespannungen vom Produkt ¢« eindeutig bestimmt werden. Die
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maximale Biegespannung ist z.B. gleich 7 31ex Pir die Bedeutung von ¢, «

£2
und ¢ siehe [2] und [11].
Die Resultate in Fig. 5.1 und 5.2 gelten fiir alle Trager mit e < 1 (siehe [11]).
Anhand von Fig. 5.1 und 5.2 kann man feststellen, dass das Behindern
oder Nichtbehindern der Verwolbung bei einer Belastung mit einem trans-
versalen Bimoment von grosster Bedeutung ist. Behindert man die Verwol-
bung, so nimmt die maximale axiale Membranspannung mit einem Faktor
1,566 zu, wihrend die maximale Biegespannung mit einem Faktor 2 abnimmt.
Wenn die Belastung in einer Entfernung weniger als [, vom nichsten
Querschott angreift, so wird das Verhalten des Trigers in der Gegend der
Einleitungsstelle durch die Stelle und die Anzahl der iibrigen Querschotte und
deshalb durch den ganzen Triager mitbestimmt.
Den wirklichen Verlauf der Spannungen zwischen zwei aufeinanderfolgen-
den Querschotten eines Trigers (z. B. der Teil zwischen 4 und B in Fig. 5.3a)
liasst sich dadurch begrenzen, indem man jenen Teil (einschliesslich der zwei

1,0
0,8
Q
016 _B;:O >
M=0 Lo
0,4 _ ao B ’y
Q
0,21
_ cK
0 | ooQ 2 3 q
V} - aox
-0,2¢ Q _
-0,4

Fig. 5.1. Dimensionslose Schnittgréssen in Abhéngigkeit von ay®.

0,6
0,4

0,24

—-0,21

-0,4

Fig. 5.2. Dimensionslose Schnittgréssen in Abhéingigkeit von aq2.



EINFLUSS VON QUERSCHOTTEN BEI KASTENTRAGERN 79

Querschotte) isoliert und zwei Probleme 16st, namlich die Probleme mit und
ohne Wolbbehinderung an der Stelle der Querschotte (Fig. 5.3b bzw. 5.3¢)
und mit der gegebenen Belastung Q. Wir werden uns im folgenden auf diese
Probleme beschrinken. Dabei wird in 5.2 der Einfluss der Angriffsstelle x=¢q
von @ analysiert, falls die Linge des Teils (Querschottenabstand) 21, ist (siehe
Fig. 5.4), und nachher in 5.3 den Einfluss der Lange 2! des Tragerteils be-
trachten, falls die Belastung @ in der Mitte angreift (siehe Fig. 5.7).

Freie Verwdolbung (B=0) Wolbbehinderung (8=0)
Fig. 5.3. Charakteristische Probleme, falls der Querschottenabstand kleiner als I, ist.

2lo XX
S¢
B=0
oder "\\ X
B=0 a
|

Fig. 5.4. Belastung mit einem Bimoment @ mit beliebiger Angriffsstelle =g, falls der Quer-
schottenabstand grosser ist als 2 7,.

Schott
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5.2. Querschottenabstand 2 1, und verdinderlicher Angriffspunkt der Belastung Q

Wir werden nun die Wirkung von ¢/l, auf den Spannungszustand mit ver-
schiedenen Randbedingungen genauer betrachten.
Da der Schottabstand 21, ist, werden die Bedingungen am Rand x=2I,

(bzw. x=0) keine Rolle spielen, wenn ¢ </, (bzw. q¢=1,) ist.
Ck

In Fig. 5.5 und 5.6 sind die Grossen %]'j und G gegeben fiir q/l, = 0,25,

x0
0,50 und 1,00.
Aus diesen Figuren folgt, dass der Spannungszustand am gefdhrlichsten
ist fiir ¢/l,=1.

B=0

o B
T 0,3 q _

02

0,1 Lo lo

0,5 1,0 2,0

-0,

B B
Fig. 5.5a. “"Q_ = %—(lf,zq-), falls B(x =0) =B (x =21 =0.
0 0

-0l

-0,2

-0,3

9B oyBfx

Fig. 5.5b. o =-5—(E,%),fausﬁ(x=0)=ﬁ(x=2lo)=0-
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cK
% @ | 08T

O'4W

0,21

0,5 1,0 X
—_— e ——
lo
Fig. 5.6a. —< — c"_(lf,li), falls B (z = 0) = B (z = 21,) = 0.
oo @ g @ Vo ‘o
CK 0,6
‘106
0,4
0,2
0
0,5
Fig. 5.6b. —< =—°i_(lfl1) falls B (x = 0) = B (x = 21,) = 0.
oy @ Q@ Vo Yo

9.3. Querschottabstand kleiner als 21, und Belastung tn der Mitte

Der Einfluss des Abstandes zwischen den Schotten, 2/, bei einem in der
Mitte mit einem transversalen Bimoment @ belasteten Trigerteil, wie in
Fig. 5.7, kommt in den Fig. 5.8a, 5.8b, 5.9a und 5.9b zum Ausdruck. Die
auftretenden Biege- und Membranspannungen sind maximal im Querschnitt,
wo () eingeleitet wird (x/l=1,0). Werden die Querschotte niiher zueinander
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Schott
B=0
oder
B=0

Fig. 5.7. Belastung mit einem, in der Mitte angreifenden, Bimoment Q, falls der Querschott-
abstand kleiner ist als 21,.

gestellt, so nehmen die Biegespannungen ab, weil sich der Querschnitt weniger
verformt. Die axialen Normalspannungen fiir /I =1,0 erreichen einen Extrem-
wert fiir einen bestimmten Wert von [/{,, wie aus Fig. 5.8a und 5.9a hervor-
geht.

Ist die Verwolbung in den Endquerschnitten behindert, so sind die auftre-
tenden Biegespannungen im allgemeinen kleiner als mit freier Verwdlbung.

Schott i:o,a
i 80 o L
0,3 L
wonf | Sehot Lo~
Q
0,2} 1 L—Z: 1,0
-I'—‘;=O,5
L.
ot [P
o] .
0,25 0,5 0,75 1,0
_.—____—..5-
L
-0t
. oo B Bf{x 1
Fig. 5.8a. ‘5 — “0_ (T’ T)’ falls B(x =0) = B(x = 21,) =0.
)
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1 03y Schott
% B -
3
0,2t
o1t
o}
-0,
-0,2
Bz 1
Fig. 5.8b. 222 = %2 (" °)  falls Bz =0) =B (x = 21,) = 0.
Q Q 1’1,

Aus Fig. 5.8b und 5.9b ergibt sich der Einfluss des Behinderns oder Nicht-
behinderns der Verwolbung auf die axialen Normalspannungen.

Die Deutung der graphischen Darstellungen kann — fiir Triger mit kon-
stanter Wandstéirke — vereinfacht werden mittels der in [2] und [11] gegebenen
Gleichungen fiir die Extremwerte der axialen Normalspannung (o,,) und der
Biegespannung (o) in einem Querschnitt.

% B %@
Our = — 3 V3 (1 —12) 2= o (5.1)
3 ck 0(0@ ,
O'sb == Z S——y t2 (5.2)
%o
075 Schott
cK T Schott
= B=0
aOQ \ : L _
TO-O,S
0,5
’ L=10
(0]
L_
L7038
025
T°=O,2
0 0,25 05 0.75 Xy
X
-
. c !
Fig. 5.9a. < = % (flf l—), falls B (v = 0) = B (v = 21,) = 0.
oo @ “oQ 0
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075}

CK

OCQQ
Schott
B=0 ¥

0,5¢%

0,251

) 0,25 0,50 0,75 0
- - .’C—

CK CK

Fig. 5.9b. 2% = _(f,i),fallsﬁ(x:O):ﬁ(xzzzo)=o.
g @ oy @ L7

6. Die nicht-idealen Querschotte

Im vorhergehenden wurde stets vorausgesetzt, dass jedes Querschott in
der Ebene starr und senkrecht zur Ebene vollig flexibel sei. Wir werden unter-
suchen unter welchen Umsténden diese Voraussetzung anwendbar ist.

Schott, Dicke h

Fig. 6.1. Kastentriger mit nicht-idealem Querschott.

In der Theorie fir Kastentriger ohne Querschotte oder mit idealen Quer-
schotten (siehe z.B. [1, 2,7]) gilt fiir die axialen Verschiebungen u:

u=B()yz, (6.1)

wobei 3 (x) den axialen Verlauf der Verwolbung charakterisiert. Auch wenn es
im Trager nicht-ideale Querschotte gibt, kann man voraussetzen, dass Ver-
schiebungen an den Rédndern der Schotte ebenfalls durch diese Formel gegeben
werden.

Nach der Theorie der Plattenbiegung konnen derartige Verschiebungen an
den Réndern auftreten, wenn die Platte auf die in Fig. 6.2 gezeichnete Weise
belastet wird.



EINFLUSS VON QUERSCHOTTEN BEI KASTENTRAGERN 85

TR LG G B

12 140 e
— L — & @
ot | Y

. ST — 2b| .
-+ —>> ﬂ_ﬂke h
e W A S P S

RN ERE \ schott by |

Fig. 6.2. Belastung der Querschotte.

Am Trager wird ein Gleichgewichtssystem angreifen, das wir als axiales
Bimoment B, mit der Grosse (siehe Fig. 6.3)

* 7,3
2 &k (6.2)

Bs = 3 mbd’zﬁ

betrachten konnen, wobei h, b; und b, in Fig. 6.2 gegeben und £* und v* die
Materialeigenschaften der Schotte sind.

Fig. 6.3. Durch die nicht-ideale Querschotte verursachte zusétzliche Belastung des Trigers.

Von der Bedeutung dieser Belastung ldsst sich ein Eindruck gewinnen,
wenn man einen Triager mit der Linge grosser als /, mit einem axialen Bimo-
ment B belastet und die Verwdélbung in den beiden Lagen in Fig. 6.4a und

6.4b vergleichen.

\

] Ideales Schott \‘;h o
= chott mit

& (r=0) “~_ Dicke h

B, B
a b

Fig. 6.4. Triager mit einer idealen und nicht-idealen Querschotte (Fig. a, bzw. Fig. b), belastet
mit einemn Bimoment B.

B
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Falls B, und B, die Verwolbung charakterisieren und das Querschott ideal
ist (Fig. 6.4a) bzw. eine bestimmte Steifigkeit senkrecht zur Ebene hat (Fig.
6.4b), so gilt fiir den Zusammenhang zwischen ,, 8, und B:

B =2a,0yp;, (Fig. 6.4a) (6.3)

B = 2ay 00, (1+kg) (Fig. 6.4b) (6.4)

mit: ay = 5 B30 (byty +byty), (6.5)
E*h3b, b,

5= Sty ) m (6.6)

Wenn ¢, und %, gleich ¢ sind und sowohl Triger wie Schotte dieselben
Materialeigenschaften haben, gilt:

hG

Aus (6.7) geht hervor, dass kg viel kleiner ist als 1, wenn das Querschott
als Platte betrachtet werden kann, also A < b; und A < b, und wenn ~ und ¢
Grossen gleicher Ordnung sind.

In dhnlicher Weise kann man analysieren, unter welchen Umstinden das
Querschott in der Ebene als starr betrachtet werden kann.

Wenn der Querschnitt deformiert, wird die Schotte an den Réndern mit
Schubspannungen belastet, die ein Gleichgewichtssystem @ bilden. Wir be-
rechnen die Querschnittsverformung « fiir die beiden in Fig. 6.5 gezeichneten
Situationen. Es gilt:

Q = —ﬂ;’ (Flg. 653:) (68)
Q=-"2(1+1,) (Fig. 6.5D) (6.9)
20
. LEBE
M = 1
i ¢ AT (0, B+5,8) {6: 10}
S E*b,byha, '
_ 11
k, e (6.11)
kein Schott Schott
a
£.4) Q 922
a b

Fig. 6.5. Tréger ohne und mit Endschott |(Fig. a, bzw. Fig. b), belastet mit einem Bimoment Q.
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Fiir einen Kastentriger mit ¢, =t{,=¢, mit E*=F und »*=v kann man
statt (6.11) schreiben:

k, = 5,47%'/@[)2%’3}“&. (6.12)

Aus (6.12) und (6.9) kann man schliessen, dass x, hinsichtlich «; vernach-
lassigt werden kann.

Weil fiir ibliche Abmessungen der Schotte kg <1 und k, > 1 ist, wird mit
einem idealen Querschott die Realitdt hinreichend gut beschrieben. Ubrigens
ist es sehr wohl mdglich, das wirkliche Verhalten der Schotte in den Rechen-
programmen [9] und [10] zu beriicksichtigen.

7. Schlussbemerkungen

Unter der Annahme, dass sich der Trigerquerschnitt in einer bestimmten
Weise deformieren kann, ist es moglich, den EKinfluss von Querschotten auf
den Spannungsverlauf zu analysieren.

Wenn die Belastung mittels eines Querschotts eingeleitet wird, so wird die
Stiarke des Tragers durch zusétzliche Querschotte ungiinstig beeinflusst (siehe 4.).

Wird die Belastung, und insbesondere ein transversales Bimoment, zwi-
schen zwei Querschotten eingeleitet, so konnen die in 5. dargestellten Figuren
bei der Berechnung des optimalen Abstandes zwischen den Querschotten zu
Hilfe gezogen werden. A

Im allgemeinen kann man den Schluss ziehen, dass es wenig zweckvoll ist,
den Abstand zwischen den Schotten kleiner als 0,57, zu wéhlen.
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Zusammenfassung

Der Einfluss von Querschotten auf den Spannungs- und Verformungs-
zustand diinnwandiger Kastentrager mit Rechteckquerschnitt wird untersucht.
Diese Analyse stiitzt sich auf die Torsionstheorie nach Vlasov. Dabei wird
der Frage, unter welchen Umstédnden die Verformung des Trigerquerschnitts
vernachlidssigbar klein ist, besondere Aufmerksamkeit geschenkt. Hieraus
ergeben sich Richtlinien fiir die Anwendung von Querschotten. Namentlich
zeigt sich, dass der Spannungszustand ungiinstiger werden kann, wenn mehrere
Querschotten angebracht werden.

Summary

The influence of cross-ties on the behaviour of thin walled box girders of
rectangular section is examined. This analysis is founded on the torsion theory
of Vlasov. Special attention is paid to the circumstances under which the
deformation of the girder section can be neglected. Therefrom result direc-
tions for the application of cross-ties, in particular that the tension condition
can become unfavourable if several cross-ties are employed.

Résumé

On examine l’'influence de parois transversales sur 1’état de tension et de
déformation de poutres en caisson minces a section rectangulaire. Cette analyse
est basée sur la théorie de torsion selon Vlasov. Une attention particuliére est
attribuée aux circonstances dans lesquelles la déformation de la section de la
poutre est négligeable. Il en résultent des lignes directives pour 1’emploi de
parois transversales, en particulier 1’état de tension peut s’avérer défavorable
lorsque plusieurs parois transversales sont appliquées.
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