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Der Einfluss von Querschotten auf das Verhalten von Kastenträgern
mit Rechteckquerschnitt

The Influence of Cross-Ties on the Behaviour of Box Girders of Rectangular
Section

U influence de parois transversales sur le comportement de poutres en caisson ä
section rectangulaire

J. D. JANSSEN F. E. VELDPAUS
Prof. Dr. Ir. Ir.

Laboratorium für technische Mechanik, Technische Hochschule Eindhoven NL

1. Einleitung

Für die Berechnung des in Fig. 1.1 gezeichneten Kastenträgers mit
Rechteckquerschnitt, der am Ende x 0 eingespannt, am Ende x l durch
Normalspannungen öx (s) und Schubspannungen f (s) belastet ist, ist es im allgemeinen

nicht gestattet, nur die in Fig. 1.2 gezeichneten Spannungsresultierenden
zu betrachten.

Dies bedeutet, dass an einem Spannungssystem wie in Fig. 1.1, ausser den
resultierenden Kräften und Momenten, auch bestimmte Gleichgewichtssysteme
wichtig sind. Theoretisch und experimentell ist nachweisbar [2], dass die
Berücksichtigung der sogenannten axialen und transversalen Bimomente, B
bzw. Q, eine hinreichend genaue Beschreibung der Realität ergibt. Mit diesen

Spannungsgrössen B und Q hängen die Verwölbung bzw. die Querschnitts -

Verformung als Verschiebungsgrössen zusammen [1].
Insbesondere wird manchmal der Einfluss der Querschnittsverformung

nicht berücksichtigt [3, 4]. Dieses Verfahren ist nur dann erlaubt, wenn die
Querschnittstreue unter gegebener Belastung mittels (vieler) Querschotte und
eines Querschotts an der Krafteinleitungsstelle gewährleistet ist.

Im nachfolgenden wird der Einfluss von Querschotten auf das Verhalten
der Kastenträger behandelt. Daraus resultieren Richtlinien für die Anwen-
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crx(s)

Fig. 1.1. Der Träger mit Belastung im Endquerschnitt.

/Mv

Mx

Fig. 1.2. Die in der klassischen Theorie interessanten Belastungsgrössen.

dung von Querschotten. Ausserdem wird der Zustand untersucht, der auftritt,
wenn die Belastung zwischen Querschotten eingeleitet wird.

Der Einfluss der QuerschnittsVerformung und die Wirkung von Schotten
ist schon öfters in wissenschaftlichen Abhandlungen erörtert worden, z.B. in
den Arbeiten von V. Vlasov [1], J. Janssen [2], G. Lacher [5], F. Resinger
[6], R. Dabrowski [7] und P. Csonka [8].

Analog zur Arbeitsweise in [2] stützt sich die Theorie auf das Prinzip der
minimalen potentiellen Energie. Mit der Formulierung in Matrizenschreibweise

entsteht eine übersichtliche und leicht programmierbare Darstellung
der Berechnung.

Der Spannungs- und Verformungszustand infolge N, Dy, Dz, My und Mz
(Fig. 1.2) hängt nicht zusammen mit den Spannungen und Verformungen
infolge Mx, B und Q, und kann mit der Theorie nach Bernoulli-Navier
hinreichend genau beschrieben werden. Deshalb können wir uns auf Belastungen
durch Mx, B und Q beschränken. Für einen Kastenträger mit doppelt-symmetrischem

Querschnitt bedeutet dies, dass die auftretenden Spannungen und
Verschiebungen mit Rücksicht auf beide Symmetrieachsen des Querschnitts
antimetrisch sind.
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2. Bezeichnungen

Für alle Bezeichnungen in dieser Arbeit beziehen wir uns auf [11] mit
Ausnahme der Grössen E*, v*, h, kß und kK:

E* Elastizitätsmodul
y* Querdehnungszahl
h Stärke

E* h3bxb2

der Querschotte,

ko

K

3(l+v*) a0ax
8jE7* b^hotQ
1+v* c

3. Einige Ergebnisse für Kastenträger mit verformbarem Rechteckquerschnitt

In [1] und [2] wurde eine Theorie aufgestellt, die für Kastenträger ohne
Querschotten verwendbar ist. Wir werden die Resultate kurz zusammenfassen.

Wenn u(x,s) und v(x,s) die Verschiebung in axialer Richtung bzw.
Umlaufsrichtung bedeuten (Fig. 3.1), so darf man nach der Grundhypothese dieser
Theorie schreiben:

u (x, s) ß (x) cp (s), (3.1)

v (x, s) # (x) h(s) + K (x) m (s). (3.2)

Für die Funktionen 99, h und m der Umlaufskoordinate s (Fig. 3.1) gilt:
<p(s) =y(s)z(s)

für
für
für
für

V ±b2,
z ±bl9

y ±b2\ _
dcp

z
±ba\

(3.3)

(3.4)

(3.5)

AZ

bi

m

Fig. 3.1. Der Trägerquerschnitt. b2 I 02+

F0

-Profillinie

-?y
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Als Schnittgrössen treten nur das axiale Bimoment B(x), das Torsionsmoment
M (x) und das transversale Bimoment Q (x) auf. Wenn in einem Querschnitt
axiale Normalspannungen a(x,s) und Schubspannungen t(x,s) bestehen (z.B.
Fig. 1.1), so lässt sich für B, M und Q schreiben:

B(x) =jj(j(x,s)cp(s)dF, (3.6)

M(x) =jr(x,s)h(s)dF,
F

Q(x) $r(x,s)m(s)dF.

(3.7)

(3.8)

Mittels des Prinzips der minimalen potentiellen Energie ist das Resultat
der Ansätze für die Verschiebungen (3.1) und (3.2) ein System dreier linearer
Differentialgleichungen in ß, # und k [2]. Die allgemeine Lösung dieser
Gleichungen enthält sechs Integrationskonstanten, die als Komponenten eines

Spaltenvektors C aufgefasst werden können. Mit den Matrizen W (x) und F (x)
von der Ordnung (3x6) kann die allgemeine Lösung folgenderweise geschrieben

werden:
-ß(x)'

w(x)= &(x) W(x)C, (3.9)

_ k (x)
_

~B(x)~
f(x) M(x) F(x)C. (3.10)

_Q(x) _

Die Koeffizienten von W (x) und F (x) sind von Vlasov in [1] (S. 240 und
241) gegeben worden. Es sind lineare Kombinationen der folgenden
Funktionen der axialen Koordinate:

1, x, cosh(aa;)sin(ya;), cosh(oix)cos(yx), sinh (ocx) cos {yx), sinh(<xx)sin(ya;).

Die Konstanten a und y sind völlig bedingt durch die Abmessungen des

Querschnittes und die Querdehnungszahl v. Es gilt [2, 9]:

a2 ag(l + e),

y2 a2(l_e)
(3.11)

(3.12)

mit M2
2 b\b\{bxt1+b2t2)(b1ti+b2qy

_lJ l+v t^jb^ + b^jb^ + b^J2
sr3(i-v) bibi^ti+b^i)

(3.13)

(3.14)

Weil B und Q Gleichgewichtssysteme sind, wird in «einiger Entfernung»
von der Stelle wo B und Q eingeleitet werden, der Einfluss dieser Belastung
vernachlässigbar sein. Wir können eine Länge l0 mit der Eigenschaft definieren,

dass in einer Entfernung l0 vom belasteten Querschnitt keine merkliche
Wirkung von B und Q resultiert. Dies bedeutet, dass für einen Kastenträger
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mit Länge l grösser als l0 die Spannungen und Verformungen am Ende x 0

von den mit Verwölbung (B, ß) und Querschnittsverformung (Q, k) zusammenhängenden

Randbedingungen am Ende x l nicht merklich beeinflusst werden.

Derartige Kastenträger werden wir «unendlich lang» nennen. Nach [11]
können wir ansetzen:

l0 (3.15)

Die axialen Membranspannungen sind dem axialen Bimoment B(x) und
der Funktion cp(s) proportional. Die Extremwerte treten mithin in den
Eckpunkten des Trägerquerschnittes auf. Die Schubspannungen können als die
Summe der mit M (x) und h (s) und mit Q (x) und m (s) proportionalen Beiträge
betrachtet werden. Die Querschnittsverformung verursacht in Längsschnitten
ausserdem biegende Momente, deren Grösse mit k(x) proportional ist. Die
Extremwerte dieser Momente treten in den Eckpunkten auf.

4. Der Einfluss mehrerer, in gleichem Abstand gestellter Querschotte

4.1. Einleitung

Zur Bestimmung des Einflusses von Querschotten betrachten wir einen
Kastenträger mit in gleichem Abstand gestellten Querschotten (Fig. 4.1). Der
Träger ist am Ende x 0 eingespannt und am Ende x l belastet durch ein
Torsionsmoment Mx, das durch ein Endschott eingeleitet wird. Jedes
Querschott ist starr in der Ebene der Schotte und völlig flexibel senkrecht zur Ebene.

Wir werden für zwei Träger, deren Querschnitt in Fig. 4.5 gezeichnet ist
und deren Länge gleich l0 bzw. 0,410 ist, die axiale Membranspannung aa
infolge des axialen Bimomentes B, die Schubspannung re infolge des
transversalen Bimomentes Q und die Biegespannung ab infolge der Querschnitts-

z-

Fig. 4.1. Kastenträger mit 5 Querschotten (einschliesslich Endschotte).



70 J. D. JANSSEN - F. E. VELDPAUS

Verformung in Abhängigkeit von x berechnen. Interessant ist auch der Abstand,
über den die Wirkung der Wölbbehinderung bei x 0 wahrnehmbar ist.

Wird das Torsionsmoment Mx mittels eines Endschotts eingeleitet und
bestehen keine anderen Querschotten, so ist die Vergleichspannung in der

Einspannung maximal.
Ebenso ist der Spannungszustand in der Einspannung am gefährlichsten,

wenn die Querschnittstreue mittels genügend vieler Querschotte garantiert ist.
Es ist zu erwarten, dass auch für das in Fig. 4.1 gegebene Problem der
Querschnitt x 0 für die Stärke des Trägers massgebend sein wird. Die Spannungen
in diesem Querschnitt sind durch das axiale Bimoment B0 B(x 0), das
transversale Bimoment Q0 Q (x 0) und das Torsionsmoment M0 Mx völlig
bestimmt. Wir werden den Einfluss der Anzahl der Querschotte auf B0 und
Q0 untersuchen.

Selbstverständlich werden zur Lösung des Problems wie in Fig. 4.1
elektronische Rechenmaschinen eingeschaltet. Es liegt nahe, Übertragungsmatrizen
zu gebrauchen, mit denen die interessanten Verschiebungs- und Schnittgrössen
in einem bestimmten Querschnitt in den nämlichen Grössen in einem anderen
Querschnitt ausgedrückt werden. Auf diese Weise wäre es möglich /?, #, B, M
und Q für x 0 auszudrücken in ß, #, B, M und Q für x l. Indessen veranlasst
diese Methodik eine Reihe numerischer und andersartiger Komplikationen,
die nicht einfach zu lösen sind.

Ein besseres Verfahren erhält man, wenn man von der Methode der finiten
Elemente ausgeht. Dabei werden die «Verschiebungen» ß, & und k in den

Knotenpunkten des Trägers als die Unbekannten des Problems betrachtet. In
Fig. 4.2 ist ein Kastenträgerelement mit Knotenpunkten Querschnitten)
1 und 2 gezeichnet.

Knotenpunkt

©

»z

K

Knotenpunkt

®
x

Fig. 4.2. Trägerelement.

Knotenpunkte werden immer lokalisiert in Querschnitten, in denen «Kräfte»
B, M, Q oder «Verschiebungen» ß, &, k einen vorgeschriebenen Wert haben.
Infolgedessen werden wir bei jedem Querschott einen Knotenpunkt festlegen.

Mittels (3.9) und (3.10) kann die Steifigkeitsmatrix Qe dieses Elementes
berechnet werden, denn diese Matrix gibt den Zusammenhang zwischen den
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Verschiebungen ß, # und k und den Schnittgrössen B, M und Q in den
Knotenpunkten des Elementes. Es gilt:

Mit der Lösung von C aus (4.1):

r^(o)]-irw(o) (4.3)

(4.4)

\w(l)

kann für (4.2) geschrieben werden:

[-/(o)l r-J(o)]rir(o)i-irW(o)i

Folglich gilt für die Steifigkeitsmatrix Qe:

Mit der in der Methode der finiten Elemente üblichen Arbeitsweise lässt
sich die totale Steifigkeitsmatrix für die gesamte Konstruktion zusammensetzen,

wobei alle geometrischen Bedingungen erfüllt werden. Im vorliegenden
Problem bedeutet dies beispielsweise, dass in jedem Querschnitt mit
Querschott k den Wert null haben soll.

Auch diese Arbeitsweise bringt numerische Komplikationen mit sich, da in
der totalen Steifigkeitsmatrix Koeffizienten enthalten sind, die in ihrer Grösse

ganz verschieden sind. Die Ursache ist in der Differenz zwischen der Torsions-
steifigkeit und den interessanten Steifigkeiten bei Verwölbung und
Querschnittsverformung zu suchen. Diese Schwierigkeiten können jedoch einfach
und zweckmässig gelöst werden.

Das dargestellte Verfahren wurde für den elektronischen Rechenautomaten
EL-X8 der Technischen Hochschule Eindhoven programmiert [9,10].

4.2. Kastenträger mit Länge l grösser l0

Ist die Länge des Trägers in Fig. 4.1 grösser als l0 (siehe Gleichung (2.15)),
so ist der Einfluss der Wölbbehinderung am Rande x 0 vernachlässigbar für
die Verschiebungen und Spannungen am Rand x l. Das axiale und
transversale Bimoment in der Einspannung (B0, bzw. Q0) ist dann unabhängig von
der Länge des Trägers. Sind in einem Träger mit l^l0 in gleicher Distanz ls

Querschotte befestigt, so kann die Wirkung der Schottendistanz leicht berechnet

werden.
Für Träger ohne Querschott - und daher auch dann wenn der Schottabstand

7s;>Z0 ist - gilt für das Problem von Fig. 4.1 [11]:
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mit:

B0{\) -±fi — M für

Q0(X) 4LieM für A>1

p
-b1t2 + b2 tx

bxt2-\-b2tx

(4.6)

(4.7)

(4.8)

(4.9)

Ist die Querschnittstreue durch genügend viele Querschotte gewährleistet
(A->0), so gilt [11]:

2e
B0(\) -p- M für A-

A-

¦0,

0.

(4.10)

(4.11)<90(A) ix M für

Für Werte von A zwischen 0 und 1 kann für B0 (A) und Q0 (A) berechnet werden:

B0(Ä) Bo(l) + [B0(0)-Bo(l)]f,(\,€), (4.12)

<2o(A) eo(l) + [Öo(0)-öo(l)]/s(A,€). (4.13)

In Fig. 4.3 und 4.4 sind /x und /2 gegeben als Funktionen von A mit € als
Parameter. Wir bemerken, dass fx und f2 nur von A und e abhängig sind.

Man erkennt, dass die Einspanngrössen durch den Einbau von Querschotten,

verglichen mit der Situation ohne Schotten, beträchtlich zunehmen können.

Dies bedeutet folglich auch, dass die Spannungssituation im Träger durch
Querschotte gefährlicher werden kann.

Die Torsionssteifigkeit des Trägers nimmt beim Aufstellen von Querschotten
nur sehr wenig zu.

6 0,0011,0

6=0,0025

£=0,005
6 0,0075

6=0,01

6 =0,02

£ o»Q3

/ 6=0,04

VT 6=0,05

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Fig. 4.3. Sx =/i (A, e).
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1\
1.0-

0,9-

0,8-

0,7-

0,6-
1\1% & =0,001

111/ 6 °'0025
0,5- UMVvX £ 0,005

0,4- tt\\V^\/ £ 0,0075

0,3
\\W(\v!\ e o,oi
UWv^C € =0,02

0,2 \\W A1^ e 0,04

0,1
\V\Vv \^^ / 6 0,05
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0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Fig.4.4. /2=/2(A,e).

In Fig. 4.6, 4.7 und 4.8 sind für einen Träger mit einem Querschnitt nach

Fig. 4.5 die interessantesten Spannungen gegeben als Funktion der axialen
Koordinate bei einer Belastung von einem Torsionsmoment Mx 2000 Nm.
In diesen graphischen Darstellungen tritt der Schottabstand als Parameter

Fig. 4.5. Querschnitt des Trägers.

200 200

so: •5-
50 '

5

Länge 2300 mm
Abmessungen

x[mm]

4 1,0

[N/mm2] 000 1250 1500 1750 2000250

-1,0
X=l lFXiS

-2,0 X 0,25
L L0= 2300mmX =0.125

3,0 X—0
4,0 ^ax

-5.0

6,0

7,0

-8,0

Fig. 4.6. oax 0ax (#, A).
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[N/mm2]

re Tjs; tjb 5 N/mm2

1 '

Ls= X L0

L L0= 2300 mm

X 0

X 0,125

X 0,25

X=|
' 1

2000500 1000 1500

Fig. 4.7. Te re (x,\).
x [mm]

r b
1

1500 2000 x [mmj

-0,25

0,25

000500

250125

0,50

L™
0,75 L= Lo=2300mm

1,00 ^1.25

1,50

Fig. 4.8. ob ob (sc, A).

auf. Die Bredtsche Schubspannung beträgt 5 N/mm2. Für diesen Träger gilt
Z0 2300mm und e 0,012. Zu bemerken ist, dass A 0 unendlich vielen
Schotten entspricht. Für A 0,125 ist der Schottabstand Zs 287 mm.

Aus diesen Darstellungen geht hervor, dass sich mit zunehmender Schottanzahl

der Abstand, worüber die Abweichung von der Bredtschen Theorie

infolge Wölbbehinderung für x 0 wahrnehmbar ist, deutlich vermindert. Dies
bedeutet, dass die in Fig. 4.6, 4.7 und 4.8 für Zs 575mm (A 0,25) gezeichneten

Kurven auch für Träger mit grösserer Länge, z.B. 1000 mm verwendbar

sind.

4.3. Kastenträger mit Länge l kleiner l0

Auch für kurze Träger (l<l0) lässt sich die Wirkung von Querschotten
analysieren. Obwohl es keineswegs notwendig ist, werden wir uns auch jetzt
auf die Situation mit in gleichem Abstand gestellten Schotten beschränken.
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Die Parameter, die das Verhalten des Trägers bestimmen, sind lß0, lsß
und e. Mit Rücksicht auf die Übersichtlichkeit der Resultate werden wir uns
auf einen Wert von e, nämlich e 0,012 beschränken. Dieser Wert stimmt z.B.
mit dem Querschnitt in Fig. 4.5 überein.

In Fig. 4.9, 4.13 sind einige interessante Resultate für den Träger in
Fig. 4.5 dargestellt, belastet mit einem Torsionsmoment ilfa. 2000Nm. Die
in diesen graphischen Darstellungen gegebenen Daten können auf Träger mit
anderen Abmessungen einfach transformiert werden, da nur die genannten
Parameter massgebend sind. Die Fig. 4.9 und 4.10 zeigen den Einfluss von
Schottabstand ls und Trägerlänge l (bezogen auf l0) auf die Extremwerte der
axialen Normalspannung und der zusätzlichen Schubspannung im Querschnitt
# 0, wo die Verwölbung behindert ist. Sowohl die Anwesenheit von Quer-

-obx(oM l0r

[N/W]
°bx CO)

Ei0,4

0,6

0,8

1,0

0,25 0,50 0,75 1,0 L

Mw=2000Nm

Fig. 4.9. oax -*M(f'W"

Te (0)

[N/mm*] rB + re (0) /^ ^'\ ^') „,-
7

tb=5 N/mm2T =0,4

0,6

0,8

T-=I.O

0,2 0,4 0,6 0,8 1.0

Fig. 4.10. Te=re
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schotten wie auch die Kürzung des Trägers ergeben eine Steigerung der
untersuchten Spannungen. In Fig. 4.11,... 4.13 ist für einen Träger mit Z/Z0 0,4
der Verlauf der interessanten Spannungen in axialer Richtung gegeben mit
dem Schottabstand als Parameter.

Hierdurch lässt sich feststellen, dass die Membranspannungen infolge einer

t o

[N/mm2]

250 500 750 920

x [mm]

L« XL-2
L 0,4 L0= 920mm

Ls °bx0,25

0,125

Ls_iä= o

/ h\ l
Flg. 4.11. (Jax <Jax\x,-r\ mit— 0,4.

[N/m
1 1 I =C
L_Ls=Xl0

_l 0,4 Lp= 920mm|

— 0.125

-r o,25

^ -T l,0£">
3s:

200 400 600 800 920

x[mm]

Fig. 4.12. rg =t°(x>t)

re+ Ta •,tb 5 N/mm2

mit — 0,4.
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1 ' '

LJ^=XLo
L=0,4 L0 920mm

o~b
x[mm]

[N/mm«] 200 400 600 800 920

25

2500,2

0,4

0,6

^0,8

1,0

Fig. 4.13. ctö ab Ix, yl mit — 0,4.

wachsenden Anzahl von Schotten in der Einspannung erheblich zunehmen
können, während die maximale Biegespannungen nachlassen.

Zusammenfassend kann man schliessen, dass nicht nur für Träger mit
l > l0, sondern auch für kurze Träger (l < l0) der Spannungszustand durch
Querschotte ungünstig beeinflusst wird.

5. Wirkung einer nicht mittels Querschott eingeleiteten Belastung

5.1. Einleitung

In den vorigen Kapiteln wurde angenommen, dass die Belastung,
insbesondere das Torsionsmoment, mittels eines Querschotts eingeleitet wird. In
der Praxis wird diese Situation nicht immer auftreten, da z. B. die Einleitungsstelle

der Belastung variabel ist. Deshalb werden wir den Spannungszustand
analysieren, der in einem Träger mit Querschotten auftritt, wenn dieser
zwischen den Schotten belastet wird. Dabei ist eine Belastung mit einem
transversalen Bimoment insbesondere für die Praxis von Bedeutung.

Wenn der Abstand zwischen der Einleitungsstelle der Belastung und dem
nächsten Querschott grösser ist als l0, kann die Wirkung der Schotte auf den
Spannungsverlauf in der Umgebung der Einleitungsstelle vernachlässigt werden.

In Fig. 5.1 und 5.2 sind einige Belastungssituationen weiter ausgearbeitet.
Massgebend für die Membranspannungen sind die Schnittgrössen B und Q,
weil die Biegespannungen vom Produkt ck eindeutig bestimmt werden. Die
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3 \c k\
maximale Biegespannung ist z.B. gleich t1^-1- Für die Bedeutung von c, k

und t siehe [2] und [11].
Die Resultate in Fig. 5.1 und 5.2 gelten für alle Träger mit e < 1 (siehe [11]).
Anhand von Fig. 5.1 und 5.2 kann man feststellen, dass das Behindern

oder Nichtbehindern der Verwölbung bei einer Belastung mit einem
transversalen Bimoment von grösster Bedeutung ist. Behindert man die Verwölbung,

so nimmt die maximale axiale Membranspannung mit einem Faktor
1,56 zu, während die maximale Biegespannung mit einem Faktor 2 abnimmt.

Wenn die Belastung in einer Entfernung weniger als l0 vom nächsten
Querschott angreift, so wird das Verhalten des Trägers in der Gegend der
Einleitungsstelle durch die Stelle und die Anzahl der übrigen Querschotte und
deshalb durch den ganzen Träger mitbestimmt.

Den wirklichen Verlauf der Spannungen zwischen zwei aufeinanderfolgenden
Querschotten eines Trägers (z.B. der Teil zwischen A und B in Fig. 5.3a)

lässt sich dadurch begrenzen, indem man jenen Teil (einschliesslich der zwei

1,0

0,8

0,6
B 0
M 0

0,4 ö0B

0,2
CK
ofoQ

tx«x^o

0,2

0,4

Fig. 5.1. Dimensionslose Schnittgrössen in Abhängigkeit von a0x.

1,0 5 f
0,8 CK

<x0Q M 0

0,6

0,4 \ Q \0,2-

o ^
1 X. 2\. 3

~2c<0b\x^^^^,
Q

0,2-

0,4

L >L0

Fig. 5.2. Dimensionslose Schnittgrössen in Abhängigkeit von a0x.
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Querschotte) isoliert und zwei Probleme löst, nämlich die Probleme mit und
ohne Wölbbehinderung an der Stelle der Querschotte (Fig. 5.3b bzw. 5.3c)
und mit der gegebenen Belastung Q. Wir werden uns im folgenden auf diese

Probleme beschränken. Dabei wird in 5.2 der Einfluss der Angriffsstelle x — q

von Q analysiert, falls die Länge des Teils (Querschottenabstand) 2Z0 ist (siehe

Fig. 5.4), und nachher in 5.3 den Einfluss der Länge 21 des Trägerteils
betrachten, falls die Belastung Q in der Mitte angreift (siehe Fig. 5.7).

N.

Freie Verwölbung (# 0) Wölbbehinderung (ß=0)

Fig. 5.3. Charakteristische Probleme, falls der Querschottenabstand kleiner als l0 ist.

B 0
oder
8 0

21

Sehe**

Schott
B 0
oder
ß 0

Fig. 5.4. Belastung mit einem Bimoment Q mit beliebiger Angriffsstelle x q, falls der Quer¬
schottenabstand grösser ist als 2 l0.
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5,2. Querschottenabstand 2 l0 und veränderlicher Angriffspunkt der Belastung Q

Wir werden nun die Wirkung von q/l0 auf den Spannungszustand mit
verschiedenen Randbedingungen genauer betrachten.

Da der Schottabstand 2l0 ist, werden die Bedingungen am Rand x 2l0
(bzw. x 0) keine Rolle spielen, wenn q^l0 (bzw. q^l0) ist.

In Fig. 5.5 und 5.6 sind die Grössen -^— und —^ gegeben für qß0 — 0,25,
Q ocoQ

0,50 und 1,00.
Aus diesen Figuren folgt, dass der Spannungszustand am gefährlichsten

ist für qß0=l.

<*o B

Schott
B 0

Schott
B 0

0.3

0,2

0,1

-lo

0,1

Fig. 5.5 a.
ccqB ccqB Ix q

Q " Q

ccqB Ix q\
Q Vo'lol'

2,0

falls B (x 0) B {x 2 l0) 0.

Schott
ß--0

Schott
£=o<cy0B^0,3

— =0,25
Lo * /0,2

2Lo
1,0

0,1

\>

0,1 ¦

0,2

0,3

Fig. 5.5b a0B _ a0 B Ix q

Q
~

Q V<'o hl falls ß(x 0)=ß(x 2l0) 0.
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Schott
B=0

Schott
CK i B=0

*0,6

2U
0,4

T-=l,0
0,2

1.00,5

Fig. 5.6a. ^L -^!Ll*9l\9 falls B
oc0Q oc0QVo hl

(x 0) B{x 2l0) 0.

Schott
r>cj3=oCK 0.6 Schott

ß=0OCoQ

0,4
—=- 1,0

^- 0,5
0,2

TT0'25

2,01,5

1,00,5

Fig. 5.6b. -^ -^4 (^ ,f) falls ß (x 0) ß (x 2 Z0) 0.

5.3. Querschottabstand kleiner als 2l0 und Belastung in der Mitte

Der Einfluss des Abstandes zwischen den Schotten, 21, bei einem in der
Mitte mit einem transversalen Bimoment Q belasteten Trägerteil, wie in
Fig. 5.7, kommt in den Fig. 5.8a, 5.8b, 5.9a und 5.9b zum Ausdruck. Die
auftretenden Biege- und Membranspannungen sind maximal im Querschnitt,
wo Q eingeleitet wird (xß=l,0). Werden die Querschotte näher zueinander
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Schott
/3=o
oder
B=0

Schott
/8=o
oder

Schott
ß--o
oder
B =0

ß--0

1/2 Q

Fig. 5.7. Belastung mit einem, in der Mitte angreifenden, Bimoment Q, falls der Querschott¬
abstand kleiner ist als 2 l0.

gestellt, so nehmen die Biegespannungen ab, weil sich der Querschnitt weniger
verformt. Die axialen Normalspannungen für xß l,0 erreichen einen Extremwert

für einen bestimmten Wert von lß0, wie aus Fig. 5.8 a und 5.9a hervorgeht.

Ist die Verwolbung in den Endquerschnitten behindert, so sind die
auftretenden Biegespannungen im allgemeinen kleiner als mit freier Verwolbung.

«oB
l

Q

0,3-

0,2-

0,1 -

-0,11

Schott f-=0,3
B=0

Schott
B 0 v!

7^=1,0

¦f-=ofi

25 ,75 1,0

0,2

Fig. 5.8a. *y? ^(* A\ falls B(x 0) B(x=2l0) 0.
Q Q \l hl
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0,3 r

83

<XoB!

Schott
ß--0

Schott
ß 0 7^ 0,5

0.2 r=- l,0

L _¦^=0,2
0,1

1,00,25 0,5

0,1

0,2

Fig. 5.8b. C^~ °^S l^,~), falls ß(x 0) ß(x 210) 0.
Q Q V hl

Aus Fig. 5.8b und 5.9b ergibt sich der Einfluss des Behinderns oder Nicht-
behinderns der Verwolbung auf die axialen Normalspannungen.

Die Deutung der graphischen Darstellungen kann - für Träger mit
konstanter Wandstärke - vereinfacht werden mittels der in [2] und [11] gegebenen
Gleichungen für die Extremwerte der axialen Normalspannung (aax) und der
Biegespannung (asb) in einem Querschnitt.

Q

Geh T
3 CK OCqQ

(5.1)

(5.2)

Schott
0,75 B 0

CK Schott
B=0oc0Q

0,5

0,5

0,25

0,25 0,5 0,75 1,0

1,0

0,3

0,2

Fig. 5.9a. -^4 -^L (y, r), falls B (x 0) B (x 210) 0.
<x0Q ccQQ \l hl
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0,75
SchottCK
ß 0

ocoQ
Schott
ß=0

0,5 -

0,5

0,4
0,25-

0,3

7- =0,2

0,25 0,50 0,75

Fig. 5.9b. -^ ^:(y,^ falls ß (x 0) ß (x 210) 0.
«nÖ OnCM* hl

6. Die nicht-idealen Querschotte

Im vorhergehenden wurde stets vorausgesetzt, dass jedes Querschott in
der Ebene starr und senkrecht zur Ebene völlig flexibel sei. Wir werden
untersuchen unter welchen Umständen diese Voraussetzung anwendbar ist.

Schott, Dicke h

Fig. 6.1. Kastenträger mit nicht-idealem Querschott.

In der Theorie für Kastenträger ohne Querschotte oder mit idealen
Querschotten (siehe z.B. [1, 2, 7]) gilt für die axialen Verschiebungen u:

u ß(x)yz, (6.1)

wobei ß (x) den axialen Verlauf der Verwolbung charakterisiert. Auch wenn es

im Träger nicht-ideale Querschotte gibt, kann man voraussetzen, dass

Verschiebungen an den Rändern der Schotte ebenfalls durch diese Formel gegeben
werden.

Nach der Theorie der Plattenbiegung können derartige Verschiebungen an
den Rändern auftreten, wenn die Platte auf die in Fig. 6.2 gezeichnete Weise
belastet wird.
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Uli
4 Z -.3

TTTT m ,X
Schott

0®

2b

®
2b2

*-©

Fig. 6.2. Belastung der Querschotte.

6 l+i/ p w

Dicke h

Am Träger wird ein Gleichgewichtssystem angreifen, das wir als axiales
Bimoment Bs mit der Grösse (siehe Fig. 6.3)

2 E*hs
(6.2)

betrachten können, wobei h, b± und 62 in Fig. 6.2 gegeben und 25* und v* die
Materialeigenschaften der Schotte sind.

/3(x) B Schott

Fig. 6.3. Durch die nicht-ideale Querschotte verursachte zusätzliche Belastung des Trägers.

Von der Bedeutung dieser Belastung lässt sich ein Eindruck gewinnen,
wenn man einen Träger mit der Länge grösser als l0 mit einem axialen Bimoment

B belastet und die Verwolbung in den beiden Lagen in Fig. 6.4a und
6.4b vergleichen.

Ideales Schott

B\ (K=0) Schott mit
Dicke h

A,b\
Fig. 6.4. Träger mit einer idealen und nicht-idealen Querschotte (Fig. a, bzw. Fig. b), belastet

mit einem Bimoment B.
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Falls ßx und ß2 die Verwolbung charakterisieren und das Querschott ideal
ist (Fig. 6.4a) bzw. eine bestimmte Steifigkeit senkrecht zur Ebene hat (Fig.
6.4b), so gilt für den Zusammenhang zwischen ßl3 ß2 und B:

B 2a1*0ß1,

B 2alQc0ß2(l+kß)
4

mit: a1 - E b\ 6| (6X tx + b21,
ö

E*h3b1b2
ko —

"2/?

3(l+v*)o0a1'

(Fig. 6.4 a) (6.3)

(Fig. 6.4b) (6.4)

(6.5)

(6.6)

Wenn tx und t2 gleich t sind und sowohl Träger wie Schotte dieselben

Materialeigenschaften haben, gilt:

Wsr (6.7,
b2(b1 + b2)t*'

Aus (6.7) geht hervor, dass kß viel kleiner ist als 1, wenn das Querschott
als Platte betrachtet werden kann, also h ^b1 und h<^b2 und wenn h und t
Grössen gleicher Ordnung sind.

In ähnlicher Weise kann man analysieren, unter welchen Umständen das

Querschott in der Ebene als starr betrachtet werden kann.
Wenn der Querschnitt deformiert, wird die Schotte an den Rändern mit

SchubSpannungen belastet, die ein Gleichgewichtssystem Q bilden. Wir
berechnen die QuerschnittsVerformung k für die beiden in Fig. 6.5 gezeichneten
Situationen. Es gilt:

mit:

2a0
(Fig. 6.5a) (6.8)

(Fig. 6.5b) (6.9)

±Et\t%
(6.10)(i-v*) M+baqy

SE*b1b2h<x0
(6.11)

kein Schott [\. \. Schott

« 9£2

a b

Fig. 6.5. Träger ohne und mit Endschott [(Fig. a, bzw. Fig. b), belastet mit einem Bimoment Q.
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Für einen Kastenträger mit t1 t2 t, mit E* E und v* =v kann man
statt (6.11) schreiben:

>-A62(6i + &2)
lcK 5,47^]/ liV^ a/. (6.12)

Aus (6.12) und (6.9) kann man schliessen, dass k2 hinsichtlich k1 vernachlässigt

werden kann.
Weil für übliche Abmessungen der Schotte kß<^l und kK ;> 1 ist, wird mit

einem idealen Querschott die Realität hinreichend gut beschrieben. Übrigens
ist es sehr wohl möglich, das wirkliche Verhalten der Schotte in den
Rechenprogrammen [9] und [10] zu berücksichtigen.

7. Schlussbemerkungen

Unter der Annahme, dass sich der Trägerquerschnitt in einer bestimmten
Weise deformieren kann, ist es möglich, den Einfluss von Querschotten auf
den Spannungsverlauf zu analysieren.

Wenn die Belastung mittels eines Querschotts eingeleitet wird, so wird die
Stärke des Trägers durch zusätzliche Querschotte ungünstig beeinflusst (siehe 4.).

Wird die Belastung, und insbesondere ein transversales Bimoment,
zwischen zwei Querschotten eingeleitet, so können die in 5. dargestellten Figuren
bei der Berechnung des optimalen Abstandes zwischen den Querschotten zu
Hilfe gezogen werden.

Im allgemeinen kann man den Schluss ziehen, dass es wenig zweckvoll ist,
den Abstand zwischen den Schotten kleiner als 0,510 zu wählen.
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Zusammenfassung

Der Einfluss von Querschotten auf den Spannungs- und Verformungszustand

dünnwandiger Kastenträger mit Rechteckquerschnitt wird untersucht.
Diese Analyse stützt sich auf die Torsionstheorie nach Vlasov. Dabei wird
der Frage, unter welchen Umständen die Verformung des Trägerquerschnitts
vernachlässigbar klein ist, besondere Aufmerksamkeit geschenkt. Hieraus
ergeben sich Richtlinien für die Anwendung von Querschotten. Namentlich
zeigt sich, dass der Spannungszustand ungünstiger werden kann, wenn mehrere
Querschotten angebracht werden.

Summary

The influence of cross-ties on the behaviour of thin walled box girders of
rectangular section is examined. This analysis is founded on the torsion theory
of Vlasov. Special attention is paid to the circumstances under which the
deformation of the girder section can be neglected. Therefrom result direc-
tions for the application of cross-ties, in particular that the tension condition
can become unfavourable if several cross-ties are employed.

Resume

On examine l'influence de parois transversales sur l'etat de tension et de
deformation de poutres en caisson minces ä section rectangulaire. Cette analyse
est basee sur la theorie de torsion selon Vlasov. Une attention particuliere est
attribuee aux circonstances dans lesquelles la deformation de la section de la
poutre est negligeable. II en resultent des lignes directives pour l'emploi de

parois transversales, en particulier l'etat de tension peut s'averer defavorable
lorsque plusieurs parois transversales sont appliquees.
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