Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 33 (1973)

Artikel: Strength of cylindrical shells with imperfections
Autor: Hrennikoff, A. / Mathew, A. / Sen, Rajan
DOI: https://doi.org/10.5169/seals-25619

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-25619
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Strength of Cylindrical Shells with Imperfections
Résistance de coques cylindriques avec tmperfections
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England
Abstract

Shells in the shape of circular cylinders, acted upon by uniform axial forces
or uniform lateral pressure fail by instability, when the loads reach critical
intensity. For shells with some simple edge conditions and stresses within the
elastic range exact solutions of the instability problems of this kind are
available [1]; at the same time close approximate solutions of the same prob-
lems may be obtained by the finite element method irrespective of the boundary
conditions [2]. Attempts to verify theoretical solutions by experiments have
however been unsuccessful, and the main cause for this disagreement seems
to be the existance in the shell of some imperfections of shape [3]. In the
present study based on finite element procedure a method is proposed for
determination of strength of imperfectly shaped shells, fabricated of stiff
elasto-plastic material, like structural steel or duralumin. The application of
the method is illustrated on examples. '

Nature of Shell Failure

The behavior of an imperfectly shaped cylindrical shell under load is quite
different from that of a perfect one. A perfect structure resists uniform axial
or lateral loading exclusively by membrane stresses, and fails suddenly by
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snap buckling, involving flexural action, when the load intensity reaches the
critical value. On the other hand, imperfect shell develops flexural stresses
from the very beginning, and thus presents a typical case of non-linear defor-
mation. For such shell it is reasonable to assume the failure load as the one
whose compression stress at the most highly stressed location, produced by
both compression and flexure, equals the yield stress o, of the material. In
most cases deformation of the shell beyond the failure point so defined is
likely to proceed under a reduced load, except when the imperfection is very
minute.

The allowable load for an imperfect shell, as for a perfect one, should be
found by dividing the failure load by the factor of safety.

Shell Instability by the Finite Element Method

The finite element procedure used for analysis of instability of an elastic
circular cylinder shell is described in Ref. [2]. It makes use of the model of
the cylinder composed of rectangular bar elements or cells. The theory is based
on the Rayleigh-Ritz energy principle, by means of which the problem is
reduced to an eigenvalue equation, solved by computer. The structure has
many critical buckling loads, the lowest of which has usually the greatest
practical importance. The results are given in the form of the critical load
intensity (the eigenvalue) and the mode of buckling (the eigenvector), i.e. the
buckling displacements of all nodes of the model, five for each node: three
displacements along the coordinate axes and two angles of rotation about the
axes lying in the plane of the shell. The computer also prints out the nodal
forces and moments acting on all cells. These data form the basis for com-
putation of strength of an imperfect shell. Computer can also obtain if necessary
several other critical loads, above the first one, together with their eigen-
vectors.

It may be pointed out that, since the buckling mode of a complete shell
consists of several waves along the circumference and one or more half-waves
along the length, the shell model may be formed of only a segment of the full
shell, but this part must be of a proper angle and length.

Imperfect Shell

It is obvious that the strength of an imperfect shell, as defined above,
would depend both on the mode of deviation from the theoretical form and
on the extent of this deviation. Imperfection of an actual structure is likely
to be unintentional and its shape accidental. Designer, committed to safety,
should, naturally, be interested in the most unfavorable form of imperfection,
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and intuition suggests, that this form is one of the buckling modes of a perfect
shell, most likely, the first one. The degree of imperfection is just as important
as its mode, but is more definite of the two, and may be established, with some
exercise of judgment, from the knowledge of equipment and the methods used
in fabrication of the shell. Known imperfection in the shape of the first buckling
mode of the perfect shell is the basis for determination of the reduced strength
of the imperfect shell.

Shell Behavior Under Load

Comprehension of reasoning leading to derivation of strength relations in
an imperfect shell may be assisted by reference to a familiar structure, the
pin-ended axially loaded column of a constant cross-section, symmetrical
about the axis of buckling. The similarity of behavior under load of the shell
and the column is very close in spite of physical difference of these structures.

Several cases of loading of the column (or the shell) are illustrated in Figs. 1
to 9, and they are described here one by one. In all cases the state of the
structure is fully elastic.

Fig. 1 represents a perfect straight column under a unit load. Its stress,
caused by axial compression alone, is ¢;.

In Fig. 2 the load in the same column is brought up to the critical inten-
sity f. The column still remains straight, although it is ready to buckle, if
moved sideways. The stress in it, described as the critical stress, is fo;.

In Fig. 3 the axial load is removed, and the column is bent by externally
applied moments to the shape of the buckling mode (the sine curve in case
of the column) with a small central deflection §,, described as being of unit
normality. The stress condition in the column is flexure, and the maximum
flexural compression, occurring at mid-span, is o,. It must be pointed out, that
the corresponding stress in the shell, although mostly flexural, contains also
minor membrane components.

In Fig. 4 the column is bent in the same buckling mode to normality =,
with the mid-span deflection n 3, and the maximum flexural stress ng,. The
value of the latter is assumed here to remain always in the elastic range, with
the normality =, if necessary, being less than one, even though the stress o,
may actually be beyond the elastic limit.

In Fig. 5 the critical load f is placed on the column, bent as in Fig. 3: The
eccentricity of the load f creates at all sections the moments needed to keep
the column in its deformed shape without the assistance of any external
agency. The combined maximum compression stress is (f oy + 05).

Fig. 6 illustrates combination of the conditions of Figs. 2 and 4 with the
resultant lateral deflection n 8, and the maximum compression stress (f o, + 7 0,).

Should the mid-span deflection be increased to (n+mn,)38,, as in Fig. 7, the
maximum compression would be raised to [fo; + (n +n,) o,].
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Fig. 8 represents an imperfectly fabricated unstressed column with normal-
ity of imperfection =, i. e. with the mid-span deviation from straightness n;§,.
If an axial load, gradually increasing from zero, is applied to this column
(Fig. 9), the deviation of the latter from straightness will grow, and its deflected
shape will always conform to the same buckling mode. When the mid-span
offset becomes (n+mn;)3d,, only a part of it, n§,, is caused by flexure. At this
stage the lever arm of the axial load is (n+mn;)8,, and so the magnitude of
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This equation relates the axial load f,, causing the deflection of normality »
in a column with imperfection »n;, to the buckling load f of a perfect column.

The plot of Eq. (1) is given in Fig. 10.

The maximum compression stress produced in the imperfect structure by

the load f; is

o= foy +non, (2)

The maximum stress o becomes the yield stress o,, when the structure
reaches the point of failure; the normality n of its deformation at this point
is given by the quadratic (2) and is expressed as follows:

ﬁz%ﬂ_ﬁLq+V%ﬁ_&_¢+ﬁ. (3)
g

The significance of stresses in this expression with reference to the cylin-
drical shell is:

” the compression yield stress of the material,
o, = [ o; the critical compression stress in a perfect shell,
oy a fictitious stress defined by the relation

g

gy = M; 0y, (4)

in which o, is the highest compression stress, membrane plus flexural, any-
where in the shell, caused by the buckling deformation of unit normality.
Knowing n/n; and f, the failure load f; of the imperfect shell is found by

Eq. (1).

Example 1. Circular cylinder shell, hinged at the ends, under uniform lateral
pressure.

Length L =96", Radius »=30.56", Thickness t=0.4734". Material: dur-
alumin, £ =10,000,0004 /in?, o,=30,000 # /in%. From the finite element
solution of 8 x 16 model with 3” X 3" bar cells, representing a perfect shell.

Critical lateral pressure f=p;=0.10196(10)"* £ =101.96 # /in2. Critical
compression stress o, = Q;I = 6,590 3 /in2.

The maximum compression stress caused by buckling to normality one
(maximum transverse deflection 1”) occurs on the radial plane 7' (Fig. 11) at
the node with the greatest lateral deflection. At the node in question the stress
condition is symmetrical about both the horizontal and transverse planes. The
normal force here is tension.

The maximum compression stress is

__869.88 2426.32(6)
(1.5)(0.4734) * 1.5 (0.4734)?

= 42,080 4 /in2.

O'2=
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Assume imperfect shell with normality of imperfection n; =1.

0} = n; 0y = 42,080 4 [in2; Ty~ 0.7125; Ter — 0.1565;
g Og
n
by Equ. (3), n— - 0.651.

Lateral pressure producing failure, Eq. (1)

0.651 0.651
= —— = e N2
ho= 11 gsy = 1019670 = 40.22 4 fin®.

Example 2. Circular cylinder shell, hinged at the ends, under uniform axial
load.

Length L=96", Radius r=30.56", Thickness ¢=0.1059". Material: dur-
alumin, £ =10,000,000 # [in? ¢,=30,000 4 /in?. From the finite element
solution of 8 X 16 model with 1” X " bar cells, representing a perfect shell:

Critical axial load f=p,=0.2207 (10)=3 £ =2,207 # /in. Critical compression

stress o, = % = 20,840 # /in2.

The maximum compression stress caused by buckling to normality one
(maximum transverse deflection 1”) occurs on the transverse plane L (Fig. 12)
at the node with the greatest lateral deflection. With the stress condition at
the node in question being symmetrical about both the transverse and the
radial planes, only the nodal force —10,748 # and the moment —667.43 #-in
need be considered. The compression stress produced by them is

10,748 667.43 (6)
©0.5(0.1059) " 0.5(0.1059)2

Oy

= 917,142 4% [in2.

Assume imperfect shell with normality of imperfection n;=1.

g O,

ol = 917,142 # /in2; Ty _ 0.03272; e — (.02272.
O3 a3
By Eqn. (3): ~ nﬁ = 0.0315.
i
Axial load producing failure, Eq. (1),
0.0315 0.0315
= e = S 2 —_—_— == ‘2 i .
h=110s15 = 22" 10315 ~ 872 #/in

The results related to these and other shells with different imperfections
are assembled in Table 1.

Comments and Conclusions

1. The procedure described here is equally applicable when the stresses caused
by the critical load remain within the elastic range and when they extend
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beyond it. Naturally, in the latter case the true failure load in a perfect
shell is not f, but a lower load corresponding to the first appearance of yield
stress.

2. Under lateral load, failure of shells with high ratio of 7/t is affected by small
imperfections only slightly. As the imperfections grow bigger this effect
increases, particularly in steel, a material with a higher ratio of E/o, than
duralumin.

3. The effect of imperfections on failure is more pronounced under axial
loading. Here the strength of an imperfect shell becomes reduced to a small
fraction of that of a perfect shell, especially in case of steel.

4. The proposed theory may be easily extended to cases in which the imper-
fectly shaped structures contain some residual stresses.

5. Some modes of failure of perfect shells, such as the ones involving several
half-waves lengthwise, may appear improbable as modes of imperfections
covering the full length of shell. However, it is felt, that even if the imper-
fections of this kind distort only a part of the shell, the reduction of strength
is not likely to be much different.

Notation

modulus of elasticity

length of shell

critical load of a perfect shell or column

f,  critical load of an imperfect shell or column

n,n, normalities of deformation of structures

n, normality of imperfection

p, axial uniform pressure at failure

p;  lateral uniform pressure at failure

r radius of shell

t thickness of shell

d, deformation of unit normality

o compression stress

o; compression stress due to unit load, prior to buckling
o, compression stress caused by flexure of unit normality
o,  fictitious stress

critical stress

compression yield stress

p Poisson’s ratio
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Summary

Shells in the shape of circular cylinders, acted upon by uniform axial forces
or uniform lateral pressure fail by instability when the loads reach critical
intensity. For shells with some simple edge conditions and stresses within the
elastic range exact solutions of the instability problems of this kind are avail-
able. In the present study based on finite element procedure a method is pro-
posed for determination of strength of imperfectly shaped shells, fabricated
of stiff elasto-plastic material, like structural steel or duralumin.

Résumé

Des coques en formes de cylindres circulaires se trouvant sous 1’influence
de forces axiales uniformes ou de pressions latérales uniformes présentent
des points faibles dus & l’instabilité lorsque la charge atteint des valeurs criti-
ques. Pour des coques a conditions de bords simples et pour des sollicitations
dans des régimes élastiques on dispose de solutions exactes des problémes
d’instabilité. Dans la présente étude basée sur le procédé des éléments finis
on propose une méthode pour la détermination de la résistance de coques im-
parfaites en matériel raide et élasto-flexible, comme l’acier de construction
ou le duraluminium.

Zusammenfassung

Schalen in Form kreisformiger Zylinder, die unter Einwirkung gleich-
formiger axialer Krifte oder gleichférmiger seitlicher Drucke stehen, versagen
infolge Instabilitdt, wenn die Belastung kritische Werte erreicht. Fiir Schalen
mit einfachen Randbedingungen und Beanspruchung innerhalb elastischer
Bereiche sind genaue Losungen der Unstabilitdtsprobleme verfiigbar. In der
vorliegenden auf dem Verfahren der endlichen Elemente beruhenden Studie
wird eine Methode zur Bestimmung der Festigkeit unvollkommen gestalteter
Schalen aus steifem, elastisch nachgiebigem Material, wie Baustahl oder Dur-
aluminium, vorgeschlagen.
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