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Finite Element Analysis of Skew Vault Bridges

Analyse de ponts en are biais ä l'aide des elements finis

Berechnung schiefer Bogenbrücken mittels der finiten Elemente
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Ph. D., MEIC, Assistant Prfessor of Civil Engineering,

McGill University, Montreal, Quebec, Canada
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neering, The University of Calgary neering, The University of Calgary

Introduction

In the past vault bridges such as in Fig. 1 have been analyzed approxi-
mately by treating them as arch beams. The approximation involved may
not be acceptable when the bridge is skew or when the bridge width is of the
same order as the span. In such cases a spatial structural analysis is necessary
and the finite element method is used here for this purpose.

Sabir and Ashwell [1] analyzed the rectilinear bridge in Fig. 1 by finite
element method using rectangular plate bending element for the slab and
cylindrical shell element for the vault. Their analysis assumed that the slab
rests on the crown of the vault, and the interaction between the deck and the
vault is of only vertical forces along the crown. This assumption is valid only
for special cases.

A parallelogram shell element developed in References 2 and 3 is used in
the present analysis. The stiffness of this element is a combination of the
bending stiffness developed by Dawe [4] and in-plane stiffness derived [2], [3]
specially for bridge analysis. The latter refers to a high order in-plane element
which includes in-plane rotations as nodal parameters and is used in the
present analysis because of its superior aecuraey over the Standard bilinear
parallelogram element.

The examples analyzed in the present paper are for rectilinear and skew
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Fig. 1. Bridge No. 1 Analyzed in Example 1 (Sabir and Ashwell's Bridge).

bridges made up of a vault, a slab deck and interconnecting walls or columns
with monolithic joints (Fig. 2). The Computer program used is also capable
of analyzing bridges for which the vault or the deck are of box girder or slab-
beam construction.

Method of Analysis

The paralelogram element used has the following nodal parameters at its
corners (Fig. 3): w, 8X and 8y (for bending) and u, v, 8z (dvjdx) (for in-plane
displacements). The displacement function used to derive the in-plane stiffness

are given below for easy reference:

W-SM.;-
where

/8*=-l«ffi(l-?)/ii,
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The quantities a and by and the co-ordinates x, y, | and 77 are defined in Fig. 3.
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For beams or columns (if any) a Standard beam element [5] is used with
three translations and three rotations at each end. For beams monolithic
with the deck slab the 12 displacements are taken at "eceentric" nodes on the
centroid of the beams, and these are then transformed to nodes in the middle
surface of the slab (assuming rigid connection). In the examples discussed

below, Poisson's ratio is considered equal to 0.2.

Example 1: Rectilinear Bridge

The bridge analyzed by Sabir and Ashwell (Bridge No. 1, Fig. 1) is symmetrical

in structure and loading, and thus their assumption that only vertical
forces exist between the slab and the vault at the crown is correct, even if
the two are monolithically connected. Sabir and Ashwell carried out the
analysis for a vertical concentrated load P at points 9 and 18, Fig. lb, using
a 12x12 mesh for the deck and an 8 X 8 mesh for the vault. Their results are
used for checking the present analyses, in which both a coarse mesh and a
fine mesh idealization (Fig. lb) are used.

Since the displacement functions of the plane stress element are not
balanced in the x and y directions, a study was made to determine the effect
of this by running two identical coarse mesh Solutions with the elements' axes
interchanged. The results shown in Fig. 4 indicate that the general behaviour
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Table 1. Comparison of Results of Analysis of the Bridge No. 1 in Fig. 1
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of the bridge is unaltered. For this reason, in all the subsequent analyses the
local #-axis of the elements will always be in a vertical plane parallel to the
direction of span.

The results given in Reference [1] are in agreement with the present
analysis (Table 1). The moments and stresses in the present analysis are calculated
at the nodes and the centre of the element sides respectively, these are then
plotted in graphs from which the results in Table 1 are deduced. The values
of the moments and forces quoted from Reference [1] are the "maximum"
mid-element values; these are assumed here to represent Sabir and Ashwell's
results at points A and B.

Example 2: Skew Bridge

Three skew bridges are analyzed; they have the same plan and elevation
shown in Fig. 2. The Bridge No. 2 has no connection between the deck slab
and vault along lines GG and HH; in Bridge No. 3 vertical walls are provided
along these lines and in Bridge No. 4 each wall is replaced by 5 vertical Square
columns (361x361). The conditions of support at the ends of the deck slab
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Fig. 5. Variation of Vertical Displacement, Strain and Moment Along the Centre Line of Bridge
in Fig. 2.

and the vault are the same as in Example 1. The three skew bridges are
analyzed for a concentrated load P at node 18. The finite element idealization of
the deck slab is indicated in Fig. 2b; this figure also represents the projection
of the mesh division in the vault which divides the vaults into equal elements.
Each of the two walls in Bridge No. 3 is divided into 4 elements by vertical
lines joiiiing the nodes in the deck slab and the vault.

Fig. 5 shows the Variation of vertical displacements, moments and strains
along the centre line of the deck slab and vaults of the three bridges.
Comparison of the results of Bridges No. 1 and No. 2, which are identical except
for the skew angle, for the same case of loading shows totally different values.
Thus an analysis in which the skew effect is properly accounted for is essential
for this type of bridges.

The effect of shew is further studied for the dead loading. Bridge No. 3
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and an identical bridge but with the skew angle y 0 (Bridge No. 5) are
analyzed for the dead loading, which is represented for each element by 4 equal
vertical forces at its corners. The results are shown in Fig. 6, which includes
the reactions at the supports in addition to the vertical displacements, strains
and moments considered in Fig. 5.

Compilation and execution time for complete analyses for one loading case

CDC/6400 Computer using KRONOS operating system Compiler FTN with
optimization level 1 is 90 and 110 seconds, respectively. Execution time is
increased by about 5 seconds for each additional load case.

Conelusions

The finite element analysis described can be used economically for skew
vault bridges. The accuracy of the method is verified for a rectilinear bridge
by comparison with published results. The results of examples analyzed show
the drastic effect of the angle of skew, thus demonstrating the necessity of an
appropriate spatial structural analysis.

Notations

a,b.by dimensions of a parallelogram element (see Fig. 3).
E Young's modulus.
i integer.
I length parameter.
P concentrated vertical point load.

u, v, w translations in x, y and z directions respectively.
x, y, z axes.

y skew angle defined in Fig. 5 b.
8 rotation which can be represented by a vector

along any of the axes x, y, and z.

%, 7] dimensionless co-ordinates in a parallelogram
element (see Fig. 3).

co specific weight.
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Summary

The finite element method is used to analyse skew bridges composed of a
vault and a horizontal deck connected by walls or columns. A parallelogram
element combining in-plane and plate bending stiffnesses is used. The in-plane
element stiffness is derived (in a earlier publication) particularly for use in
bridge design and is proved to lead to accurate results with small number of
elements. The analysis is applied to rectilinear and skew bridges and the effect
of the skew angle is discussed.

Resume

La methode des elements finis est utilisee pour analyser des ponts biais
composes d'un are et d'une dalle de chaussee horizontale, lies entre eux par
des parois ou des piles. On travaille avec un element ayant la forme d'un
Parallelogramme qui combine la rigidite dans le plan et la rigidite de flexion.
La rigidite dans le plan des elements a ete traitee specialement (voir la
publication anterieure) pour l'application dans la construction de ponts. On a
demontre qu'elle mene, meme avec un petit nombre d'elements, a de tres bons
resultats. L'analyse est appliquee ä des ponts droits et biais et l'effet de l'incli-
naison est discutee.

Zusammenfassung

Die Methode der endlichen Elemente wird verwendet, um schiefe Brücken,
deren Bögen durch Wände oder Stützen mit der Fahrbahn verbunden sind,
zu berechnen. Es wird ein parallelogrammförmiges Element, das Scheiben -

und Plattensteifigkeit kombiniert, verwendet. Die Scheibenelementsteifigkeit
wurde speziell für die Anwendung im Brückenbau (in einer früheren
Publikation) entwickelt; es wurde bewiesen, dass sie bereits bei einer kleinen Anzahl
von Elementen zu genauen Resultaten führt. Die Berechnung wurde an geraden

und schiefen Brücken durchgeführt, und der Einfluss der Schiefe wird
diskutiert.
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