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Dynamic Analysis of Frameworks by Frequency Dependent Stiffness
Matrix Approach

Analyse dynamique de poutres a treillis a Uaide de matrices de rigidité
dépendant de la fréquence

Dynamische Analyse von Fachwerken durch Ndiherungen mit frequenz-
abhdngigen Steifigkeitsmatrizen

BULENT OVUN(
Ph. D., Professor of Civil Engineering
University of Southwestern Louisiana, U.S.A.

Introduction

The dynamic analysis of the multi-element systems has been treated by
considering the mass of the system lumped at the joints; the constituent
elements are assumed to be massless springs. Natural frequencies and normal
modes are obtained by solving characteristic values and characteristic vectors
from the determinant function of a singular dynamic matrix either by analyti-
cal methods [1], [2], [3], [4] or by numerical methods [4], [5], [6]. The dyna-
mics of frames with nonuniform elastic elements have been investigated by
dividing each nonuniform element into uniform subelements [5]. A solution
method for an element with continuously varying cross section has been given
[7], [8]. In the lumped mass idealization concentrated masses are placed at
the joints or nodal points in the directions of the assumed element degrees of
freedoms. They are calculated by assuming that the material within the mean
locations on either side of the specified displacement behaves like a rigid body
while the remainder of the element does not participate in the motion. There-
fore the dynamie couplings between the element displacements are excluded.
An equivalent mass matrix has been derived in order to include the dynamic
couplings between the element displacements [9], [10], [11]. The frequency
dependent mass and stiffness matrices for a bar element have been obtained
by assuming the displacements be given by a series in ascending powers of
the natural circular frequency [11], [12]. Hermitian polynomials are used for
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the approximation of the deformations of structural elements such as beams,
plates. In the case of plane frame systems, the establishment of the elastic
stiffness matrix and of the mass matrix is straightforward [13]. The classical
Bernoulli-Euler theory of flexural vibration has been recognized as inadequate
for higher modes [14]. The literature of vibration problems based on the
TIMOSHENKO’s beam theory [15] is voluminous [16], [17], [18], [19]. A general
formulation of dynamic matrix and computational procedures [20] have been
presented, and the dynamic stiffness coefficients are derived as nondimensional
parameters corresponding to the effects of rotatory inertia, and of shear and
bending deformation [21], but still the masses are considered as lumped at the
joints. By dropping the appropriate parameter, the stiffness coefficients can
be applied to a problem with various considerations of Timoshenko’s theory,
Rayleigh theory, bending and shear, and of Bernoulli-Euler theory. The usual
engineering practice to neglect the secondary effects, such as rotatory inertia
and transverse shear, in calculating the natural frequencies may be justified
to some extent for slender beams, at best for few first modes. In this case,
the influence of secondary effects is small. In short beams, particularly for
higher modes, the secondary effects become more important. Experimental
investigations [22], [23] have shown that the experimental frequencies are
lower than the frequencies obtained from refined beam theories, the discrepan-
cies between theory and experiment are rather small. Recent [24] work, on
the shear constant of short beams involved in the Timoshenko equation,
yielded values to the shear constant as high as 0.870 instead of the original
value of 2/3 proposed by Timoshenko in the case of rectangular cross section.
Starting from three-dimensional equations of equilibrium of the theory of
elasticity and introducing approximate simplifying assumptions, one dimen-
sional theory of wave propagation has been deduced [25]. The equations
governing the transverse vibrations of beams have been formulated starting
from representative physical assumptions such as zero transverse direct
strains and complete freedom to axial displacement [26]. Introducing a suit-
able expression for axial displacement distribution and using the Kantorovich
form of Rayleigh-Ritz procedure simpler equations to various order of approxi-
mation have been obtained. The well known elementary beam equation and
the Timoshenko theory correspond to some special cases in this formulation.

A new approach is derived for the analysis of systems under dynamic
loading. This approach eliminates the concept of lumping the masses of the
members at the joints. The masses are assumed to be continuously attached
to the member as they are. If a concentrated mass exists on the system, its
point of application is considered as a joint of the system. Therefore the
inertia forces due to concentrated masses are taken into account as inertial
joint forces. The stiffness matrices of the members are obtained considering
the inertia forces of the masses of the members and are combined by means
of code numbers in order to generate the structure stiffness matrix. The



FRAMEWORKS BY FREQUENCY DEPENDENT STIFFNESS MATRIX APPROACH 139

matrix equation of motion consists of an inertia force term of the concentrated
masses, if any, plus a stiffness term being equal to the externally applied
dynamic forces plus a term due to fixed end reactions of the members. The
natural frequencies are obtained by setting the left side of the matrix equation
of motion to zero. Once the natural frequencies have been determined, one
natural frequency at a time is introduced into the equations of motion to
determine the modal shape corresponding to the natural frequency considered.
The member end forces are obtained from the product of member stiffness
matrix by the member end displacements and rotations corresponding to one
natural frequency at a time.

Procedure of Analysis

A right-handed cartezian coordinate axes system related to the members is
selected such that the element centerline is taken as the y axis, while the
major and minor principal intertia axes of the cross section constitute the x
and z axes respectively. These axes are called “member axes’’ and are referred
to a general stationary X Y Z cartesian coordinate axes system called ‘“‘common
axes system’’ Fig. 1. The joint translations and forces acting on the member are

X,Y,Z Common axes system

x,Y,z Member axes system
9y, Xo,%,%0 Special member axes
° system

Y

>

X

Fig. 1. Coordinate Axes System and Member Freedoms.

positive along the positive directions of the coordinate axes, while the positive
directions of the joint rotations and the moments are determined in accordance
with the right hand screw rule (Fig. 1). It is assumed that the material is
homogeneous and isotropic, the stresses remain within the elastic limites of
the material, the strains and the displacements are infinitesimal. The Ber-
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noulli-Euler hypothesis for the deflection of the bars such that a plane cross
section perpendicular to the centerline of the bar before the deformations
remains plane and perpendicular to the centerline after the deformations. The
damping is neglected.

The frequency dependent stiffness matrix is derived first for member with
uniform cross section subjected to uncoupled deformations such as axial dis-
placements, torsional rotations, and bending in two orthogonal planes. A
similar derivation is applied to the member with nonuniform cross section.
The effect of rotatory inertia and the transverse shear can be taken into
account without any difficulty.

Member with Uniform Cross Section

The frequency dependent member stiffness matrix is derived separately
for uncoupled displacements and rotations then they are combined.

Member Subjected to Axial Deformation

The axial displacement function of a bar member subjected to a free vibra-
tion is given by

d, =Y (y)f(t) (1)
where Y (y) =Cicosay+Cysinay (2)
and f(¢) = Acoswt+ Bsinwt. (3)

If the part Y (y) of the axial displacements related with the position y is
resolved into its components Y, and Y; due to d, and dg, respectively (Fig. 1),
the Eq. (2) can be written as

AR . Cu Oy
{Ys} = (cosay sinoy) [021 C,l (4)

The integration constants {gz} and {g::} are to be determined from the

boundary conditions imposed to the displacements ¥, and Y, at an arbitrary
time ¢ after the vibration has started. The integration constants 4 and B are
to be determined from the initial conditions of the vibration at time ¢ equal to
Zero.
Setting the boundary conditions on ¥, and Y such as:
for Y,: aty=0 Y,=d,, aty =L Y,=0,

for Yo: aty=0 Yy=0, at Y=L Y,=d,, (®)

Introducing the boundary conditions (Eq. (5)) into the Eq. (4) one has
[41[C] = [D], (6)
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where

0= [oarsnr)s =[] ma @[5 ] o

cosoo L sine L

If the Eq. (6) is premultiplied by [4]~1, one has

[C]=[4]7*[D]. (8)
Replacing [C] in Eq. (4)
VAL
(7 - Eram (9)
where {F,}T = (cosay sinay)
1 0
and [A]7'=| ecosaL 1 | (10)

sine Ll sinel

The part of the internal force P related with the position y is

P=AE-C;—§=AE(—Olsinocy+OZCOSocy), (11)

where A is the cross sectional area and £ the Young’s Modulus.
The member end reactions at y =0 and y = L due to d, and dg can be written
from Eq. (11) as follows.
[P]=[H][C], (12)

where
P. P 0 -1
Pl=|_1 12] and [H]=AE [ ] 13
[P) = [ 22| and (1) = 4B . (13)

—sina L cosa

If the matrix [C] from Eq. (8) is replaced into the Eq. (12) one has,
[P] = [H][A]7'[D]. (14)

The member end reactions matrix [P] is the frequency dependent member
stiffness matrix [k] when the diagonal displacements matrix [D] is set to be
a unit matrix [U]; therefore from Eq. (14) one has

[k] = [H][A]. (15)

The expanded form of the frequency dependent member stiffness matrix is:

1 1
tan o L sin o L

1 1
 sinaelL tana L

[k] = AE«
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Member Subjected to Torsional Rotation

The twist angle function of a member subjected to a free vibration is given by

0=0i@), (16)
where é(y) = Cicosay+Cysinay, (17)
f(t) = Acoswt+ Bsinwt. (18)

If it is noticed that the similarity of twist angle function 8 (Eq. (16)) with the
axial displacement function d, (Eq. (1)) and the stress strain relations in both
cases, the frequency dependent member stiffness matrix of a member sub-
jected to a torsional rotation can be written easily from the frequency dependent
member stiffness matrix of a member subjected to an axial displacement by
simply replacing A E axial force rigidity term by G'J torsional rigidity term.
Thus the frequency dependent member stiffness matrix under a torsional
rotation can be written from Eq. (15) as

1 1
tanae L  sina L
1 1
" sinal tanalL

[k] = GJ o (19)

Member Subjected to Bending in Y Z Plane

The deflection function of a member subjected to a free vibration is given by

d, = Z(y)f@), (20)
where Z(y) =C;sinay+Cycosay+Cysinhay+C,coshay (21)
and f(t) = Acoswt+ Bsinwt. (22)

If the part Z (y) of the deflection related with the position ¥ is resolved
into its components Z;, Z,, Z, and Z,, due to d,, d,, dy and d,,, respectively,
the Eq. (21) can be written as

j Zy, 1T [Cy Crp Ci3 Oy
Z4 021 022 023 024
= (sinoy cosay sinhay cosha . 23
Zy ( 4 4 + y) U3 C39 Uy Cyy (23)
[ ZlO _041 042 043 044
The integration constants
Cn [ Oz Cis [ Cua
Cy Cas Cas Coy
’ s a.nd s
Co|” | Caa| | Cus Oy
C C C C
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are to be determined from the boundary conditions imposed to the displace-
ments and rotations dj, d,, dg and d,, at an arbitrary time ¢ after the vibration
has started. The integration constants 4 and B are to be determined from
the initial conditions of the vibration at time ¢ equals zero.

Setting the boundary conditions on Z,, Z,, Z, and Z,, such as

iz, iz,

for Z, aty=0 Z; =d,, ay =0, aty=L Z; =0, dy =0,
for Z, aty=0 Z, =0, iZ—4=d4, aty=L Z, =0, dZ4=0,
dy dy
dz dZ, (24)
for Z, aty=0 Z, =0, dy9=0, aty=L Z, =d9,—@:0,
dzZ dZ
for Z,, aty=0 Z,,=0, dymzo’ aty=L Z;,=0, ‘@L():dlo
Introducing the boundary conditions (Eq. (24)) into the Eq. (23), one has
[4][C] = [D], (25)
i 0 1 0 1
b 4 o 0 o 0
where  MA1=1 GneL  cosal sinhaL coshal
| acosa L —oasinal acosho Ll asinho L 26
[ Cpn C1p O3 Cuy (d; 0 0 0 (26)
Cyy Cy Cyh C 0 d,0 0
[0] _ 21 22 23 24 a,nd [D:] — 4
031 032 C’33 034 0 0 d9 0
| Oy Cp Oy Oy 0 0 0 dy
If the Eq. (25) is premultiplied by [A]~!, one has
[C]=[4]7(D]. (27)
Replacing [C] into Eq. (23)
[%s )"
| Z,
1, [ ={F)T AT (D], (28)
9
|z,
where {F,}¥ = (sinay cosay sinhay coshay). (29)

The part of the internal shear force V and bending moment M related with
the position y are:
a7

V = ——E'Iac»dy—3 =—FEI, o3[ —-Cicosay+C,ysinay+Cycoshay+C,sinhay],

and (30)
d*Z

M = _Elxjj?’/‘z‘ =—FKI, o[-Csinay—Cycosay—+Cysinhay+C,coshay].

(31)
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The member end reactions V and M at y=0 and y= L due to ds, d,, dg and
d, can be written from Eqgs. (30) and (31) as follows

P, P, B3 P, - 0 e 0 )
Py By By Py C Bl o2 0 1 0 —1

B, P, B By| ¢* | yeosaL —asinal —ocoshal —asinha L
P, B, Fy B,  —sina Ll —cosaL  sinhalL cosh o L

_011 012 C113 014
021 022 023 024
031 C’32 CY33 C'34
l_041 042 043 044_

or putting in matric equation form,

[P]=[H][C], (32)
: '[)11 })12 P13 P14
P21 P22 P23 P24
Where 1= p, B, B, B
_‘Z)All P42 P43 ‘P44_
—o 0 o 0
0 | 0 ~1

— 2
and [(H] = E 1, acosall —asina, —acoshal, —asinhal |

—sina L, cosa L sinh o« L cosha L
If the matrix [C] from Eq. (27) is replaced into Eq. (32) one has
[P] = [H][A]'[D]. (33)

The member end reactions matrix [P] is the frequency dependent member
stiffness matrix [£] when the diagonal displacements and rotations matrix [D]
is set to be a unit matrix [U]. Therefore from Eq. (33) one has,

[k] = [H][A]. (34)

The expanded form of the frequency dependent member stiffness matrix is,

o?(cosa LsinhaL +sinaL cosha L) asin e Lsinh o L
aE1 sina Lcosha I —cosa Lsinha L
B = 2=
symmetric
— o2 (sin a L+sinh o L) —a(cosa L —cosha L)
o (cos o L —cosh o L) — (sin « L —sinh « L)
o2 (cos o Lsinh o« L+ sin o L cosh o L) —asina Lsinh o L » (39)

sina Lcosha L —cosa Lsinha L

where Ad=1—cosa LcoshoalL.
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Member Subjected to Bending in X Z Plane

The derivation of the frequency dependent member stiffness matrix under
bending in the X Z plane is the same as bending in the Y Z plane except that
the moment of inertia, I,, with respect to the x axis has to be replaced by
the moment of inertia I, with respect to the z axis. Therefore the bending
stiffness matrix for bending in the X Z plane can be written as

o?(cosa Lsinh« L +sina Lcosh o L) asin o Lsinh o L

o BT sino L cosha L — cosa Lisinh a L
[] =27
symmetric
—o?(sino L + sinh o« L) —a(cosa L —cosh « L)
o (cos o L —cosh o L) —(sin o L —sinh o L)

o?(cosa Lisinh o L +sin o L cosh o L) —asina Lsinh o L » (36)

sin « L cosh « L —cos « Lisinh o« L

- where A4 =1—cosaLcosha L.

The frequency dependent member stiffness matrix [k] for all the member end
freedoms is obtained by combining the [k] matrices for the axial displacement
(Eq. (15)), the torsional rotation (Eq. (19)) and the bending in two planes
(Egs. (35), (36)).

Member with Nonuniform Cross Section

The variation of the area 4, the moment of inertia I of a member with
nonuniform cross section is assumed as

A =(ny+m), Ix=Iz:(ny+m)3> Jx=1x/2 (37)

The coefficients n and m are determined from the section properties at both
ends of the member.

Member Subjected to Axial Deformation

It can be noticed that the equation of motion of an element subjected to
axial deformation,
3dy p 3 dy
S22 g se 0 (38)

is independent of the cross section area 4. Therefore the equations from
Eq. (1) to Eq. (10) of uniform cross section case remain valid also for this case.
The part of the internal force P related with the position y is

P=EA%§=Ea(ny—i—m)(—Olsinocy+02003ay). (39)
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The member end reactions at y=0 and y= L due to d, and dg can be written
from Eq. (39)
[P] =[H][C], (40)
where
_ [P B _ 0 —m
[P] = [P21 P,, and [H] = B« —(nL+m)sina L (nL+m)cosalL]| (41)

If the matrix [C] from Eq. (8) is replaced into the Eq. (40), one has,
[P] = [H][A]7*[D]. (42)

The member end reactions matrix [P] is the frequency dependent member
stiffness matrix when the diagonal displacements matrix [D] is set to be a
unit matrix [U]. Therefore from Eq. (42) one has

[k] = [H][A]". (43)

The expanded form of the frequency dependent member stiffness matrix is
m_ W
tan o L sin « L

(k] = B nL+m nlL+m

sina L tano L |

Member Subjected to Torsional Rotation

In this case the frequency dependent member stiffness matrix, [k], can be
written easily if the analogy with the member subjected to axial deformation
is considered. Therefore the expanded form of the frequency dependent member
stiffness matrix is,

m3 m3
QG tan o L Csina L
2 | (mL+m)® (nL+m)

sin oe L tan o L

Member Subjected to Bending in Y Z Plane

The differential equation of the motion of a member subjected to bending
in the Y Z plane is given by,

5 [, 8d,] _ _Ap 8,
Syl w8yt g 88

(45)

The deflection d, is a function of the position y and the time ¢ but can be
expressed in separable variables form such as

d,=Zy) ). (46)
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Therefore the differential equation of motion (Eq. (45)) can be written as

follows.
AL T
Edy2 [Ix i ] =3 wrZ (y). (47)
Introducing the corresponding functions of the area A, the moment of inertia
I, in Eq. (47) and simplifying one obtains
d*Z d® 7 d*Z  2pw?
2“5 2 —
(ny+m) dy +6n(ny+m) P +6n i .
The above fourth order linear differential equation with variable coefficients
is equivalent to a pair of second order linear differential equations such as:

Z=0. (48)

a2 Z az  ,,
(ny+m)7y7+2nd—?/~+koz— 0 (49)
a2 Z az .,
and (ny+m) v +2n@—k02—0, (50)
. 2 p w?
4 __
where kg = By

The general solution of Eq. (48) is a linear combination of the general
solutions of Eq. (49) and (50). To solve the last two equations the variables
are changed as follows

S=mny+m)27Z,
s = (ny+m)?

and the Egs. (49) and (50) become

28 1ds [, . 1

F+§%+(4k -—8—2)8——0, (51)

28 1dS (,,, 1

T Sl e L) (52)
where k= kyn.

Egs. (51) and (52) are, respectively, a Bessel’s equation, and a modified Bessel’s
equation of order one. Their general solutions are, respectively.

S=0C,J,2ks)+C, Y, (2ks), (53)

S=0C,1,2ks)+C, K, (2ks), (54)
where J; and Y; are the Bessel function of the first and second kind, respec-
tively, of order one, and I, and K, are the modified Bessel functions of the
first and second kind, respectively, of order one.

Adding the solutions (Eqgs. (53) and (54)) and returning to the variables y
and Z (y), the general solution of the Kq. (48) is obtained in the form

Z(y) = (ny+m)~2{C, 1 [2k (ny +m) 2]+ O ¥, [2k (ny +m)"?]

+C3 [ [2k (ny+m)21+ C, K [2k (ny +m)V2]}. (55)
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If the part Z (y) of the deflection related with the position ¥ is resolved into
its components Zg, Z,, Z,, and Z,, due to dy, d,, dy and d,,, respectively, the
Eq. (55) can be written as

/A
Z,
7 = (ny+m) 2L 2k (ny+m) 2] Y [2k (ny +m)YV2] I [2k (ny +m)V2]
9
Zig Cun O C13 Oy (56)
Oy Cap Cp3 Uy
K. [2k(ny+m)2 .
12ROy 0 O Cop Cu
Oy Cpp Cyy Oy
The integration constants,
Ci Ca Cis Cra
Cy Cyp Cos Coy
, , and
031J 032 033 034
Cu Co) (O Cuy

are to be determined from the boundary conditions imposed to the displace-
ments and rotations ds, d,, dy and d,, at an arbitrary time ¢ after the vibration

has started.
Setting the boundary conditions on Z,, Z,, Z, and Z,, such as:

dZ,

for Z; aty=0 Z, =d3’_?l_g7—0’ aty=L Z3 =0, dy =0,
for Z, aty=0 Z, =0, %:dép aty=L Z, =0, ZZ‘*:O,

dg d?Z/ (57)
for Zg aty=0 Z, =0, dy9=0, aty =L Z, =d9,d—y9~=0,

dZ dZ
for Z,, aty=0 Z,,=0, dym:O’ aty=L Z;,=0, Tyl.‘_’=al10.

Introducing the boundary conditions (Eq. (57)) into the Eq. (566) the matrix
[C] is solved as
[C] = [A]71[D], (58)

where [A]! is obtained from Eq. (57) and [D] is the diagonal matrix of the
member ends displacements and rotations.
Replacing [C] into Eq. (56) one has:

Z

7 [ = ()" (41 [D], (59)
9

Z10
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where  {F}T = (ny+m) 2 (L [2k (ny +m)"2] ¥, [2k (ny +m)"]
1,12k (ny +m)¥2] K, [2k (ny +m)!2]}.

The part of the internal shear force V and bending moment M related with

th iti :
e position y are B 7

2
and M = Elw(cllg (61)

The member end reactions V and M at y=0 and y=L due to d, d,, dy and
d,o can be written from KEqgs. (60) and (61), in matrix form as

[P] =[H][C], (62)

where the matrix [H] is obtained from Eqs. (60) and (61) for y=0 and y=L
and the matrix [P] is formed by the end reactions for the corresponding
boundary conditions.

If the matrix [C] from Eq. (58) is replaced into Eq. (62) one has

[P] =[H][A]7'[D]. (63)

The member end reactions matrix [ P] is the frequency dependent member
stiffness matrix [k] when the diagonal displacements and rotations matrix
[D] is set to be a unit matrix [U]. Therefore from Eq. (63) one has

[k] = [H][A]*. (64)

Member Subjected to Bending in X Z Plane

The derivation of the frequency dependent member stiffness matrix under
the bending in the X Z plane is the same as the bending in the Y Z plane
except that the moment of inertia [, with respect to the x axis has to be
replaced by the moment of inertia I, with respect to the z axis.

The frequency dependent member stiffness matrix [k] for all the member
end freedoms is obtained by combining the [k] matrices for axial displacement,
torsional rotation and bending in two orthogonal planes.

Secondary Effects

All the effects which are negligible in the usual engineering practices are
considered as secondary effects. The secondary effects may become important
in some certain cases. For beams with small slenderness ratio, short beams,
the effects of transverse shear and the rotatory inertia moments become
important. For the systems with large deformations, the influence of axial
force on the frequencies of the transverse vibrations of the elements are in
noticeable order.
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The Effect of Transverse Shear and Rotatory Inertia

In the cases of lumped mass matrix and the equivalent mass matrix ana-
lyses, the effect of transverse shear and rotatory inertia can be easily taken
into account by adding a factor to the member stiffness matrix and to the
mass matrix.

In the case of the frequency dependent stiffness matrix analysis, if the
Timoshenko’s theory is considered for a beam with uniform cross section, the
differential equations of the motion can be expressed as:

37 pA 84 Ip(,  E\ 8Z _ Ip* 57
Bl i+ 55 _?(”k'a)syzstﬁgzk'a s =0 (69)
MY pARY Ip B\ 8 I 8W
and - Eleg+= " %5 "7(1 k’G)8y28t2+g2k’G sa =0 (66)

where ¥ is the slope of the deflected configuration under the bending without
the effect of transverse shear, k£’ is the ratio of the average shear stress on a
section to the product of the shear modulus and shear strain at the neutral
axis of the member.

The integrations of the Eqs. (65) and (66) yield

Z =Cicosay+Cysinay+CycoshBy+C,sinhBy, (67)

Y =(C{cosay+Cssinay+CicoshBy+ Cisinh By, (68)

where C,, C,, U5 and C, are the independent integration constants. The inte-

gration constants (], C,, C3 and C, are not independent and can be expressed
in terms of €, C,, C; and C,.

A derivation similar to the case without the effect of transverse shear and

rotatory inertia can be performed. If Z and ¥ are resolved to their compo-

nents Z, Z,, Zy, Zy, and ¥;, ¥,, ¥y, W19, respectively, and if the boundary
conditions and the relationship between C; and C,

[C"] = [QI[C] (69)
are taken into account, the components of Z and ¥ can be written as

T

N N
W

‘ (= {F A [D] (70)

1T

RERE

=~
.

and ]

= {FRIAI D], ' (71)
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where {F}T = (cosay sinay coshBy sinhBy).
[A] = the matrix obtained by introducing the boundary conditions in Eq. (67).

[D] = the diagonal matrix of the member ends displacements and rotations.

The part of the internal shear force ¥V and the bending moment M with
the position y are

5w
TS
v o—k GA(—S—g—'P). (73)

The member end reactions V and M at y=0 and y= L due to d,, d,, dy and
d,o can be written from Kqgs. (72) and (73) as follows

[P] = [H][A][D], (74)

where [H] is the matrix obtained from the boundary values of Eqs. (72), (73)
and for y=0 and y= L.

The member end reactions matrix [P] is the frequency dependent member
stiffness matrix [k] when the diagonal displacements and rotations matrix [D]
is set to be a unit matrix [U]. Therefore from Eq. (74), one has

[k] = [H][A]. (75)

Conclusion

The frequency dependent stiffness matrix is derived for members in space
with uniform and with nonuniform cross section. The error involved by con-
sidering the lumping of the masses of the members at the joints of the system
are eliminated. The concentrated masses existing on the system, if any, are
duly taken into account. The effect of the rotatory inertia and the transverse
shear are also considered. The lumped mass or the equivalent mass matrix
solution require the division of the elements into sub-elements in order to
obtain a close approximation in the natural frequencies especially for higher
modes. It is not necessary to divide the elements into sub-elements to refine
the approximation in the natural frequencies of any mode, either for uniform
nor for nonuniform cross section elements, since the natural frequencies
obtained by frequency dependent stiffness matrix approach are independent
of the division of the elements into sub-elements. The lumped mass or the
equivalent mass matrix solutions for continuous system furnish as many
natural frequencies as the number of unknowns. The frequency dependent
stiffness matrix furnishes an infinity number of natural frequencies.
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Summary

A new approach has been derived for the analysis of the systems under
dynamic loading. This approach eliminates the concept of lumping the masses
of the elements at the joints. The masses are assumed to be continuously
attached to the elements as they are. If a concentrated mass exists on the
system, its point of application is considered as a joint of the system. There-
fore the inertia forces due to the concentrated masses are taken into account
as inertial joint forces. It is assumed that the material is homogeneous and
isotropic, also the Hooke’s law and Bernoulli-Euler hypothesis are valid. The
damping is neglected. The frequency dependent mass matrix approach does
not require the division of the elements into sub-elements in order to refine
the approximation in natural frequencies, especially for higher modes, and
furnishes an infinity number of natural frequencies.

Résumé

Une nouvelle méthode de solution pour le calcul de systémes sous charges
dynamiques a été élaborée. Les charges y sont reparties selon leur distribution
véritable sur 1’élément. Le point d’application d’une charge concentrée est
considéré comme nceeud du systeéme. Par 13, les forces d’inertie provenant des
charges concentrées sont introduites dans le calcul comme forces d’inertie de
nceeud. On suppose un matériau homogeéne et isotrope, de méme sont valables
la loi de Hooke et I'hypothése Bernoulli-Euler. L’amortissement est négligé.
La méthode de la matrice de masse dépendant de la fréquence ne demande
pas la subdivision des éléments pour améliorer ’approximation des oscillations
propres, surtout pour des types plus compliqués. Elle fournit, d’autre part,
un nombre infini d’oscillations propres.
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Zusammenfassung

Eine neue Losungsmethode wurde zur Berechnung von Systemen unter
dynamischen Lasten entwickelt. Die Lasten werden in ihrer wirklichen Ver-
teilung iiber das Element angenommen. Der Angriffspunkt einer konzentrier-
ten Last wird als Knoten des Systems betrachtet. Dadurch kann man die von
konzentrierten Lasten herrithrenden Tragheitskrifte als Knotentriagheits-
krifte in die Berechnung einfiithren. Es wird ein homogen-isotropes Material
angenommen; ebenso soll das Hookesche Gesetz und die Kuler-Bernoulli-
Hypothese giiltig sein. Die Dampfung wird vernachlissigt. Die Methode der
frequenzabhangigen Massmatrizen erfordert keine Unterteilung der Elemente
in Subelemente, um die Approximation der Eigenschwingungen zu verbessern
(besonders fiir komplizierte Schwingungstypen) und liefert eine unbegrenzte
Zah] von Eigenschwingungen.
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