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Finite Element Stability Analysis of Thin Shells
Analyse de stabilité de coques minces au moyen de la méthode des éléments finis

Stabilititsanalyse diinner Schalen mittels der endlichen Elemente-Methode

C. I. MATHEW

B.E., D.I.C., M.Sc. (Eng.) (Lond.), M.ASCE., Principal, Government Polytechnic,
Kalamassery, Kerala, India

Introduction

Although the problem of elastic stability belongs inherently to the domain
of nonlinear theory of elasticity, important results may be obtained from a
linearized theory. The general theory assumes that the loads are conservative
and the external loads on the structure are specified as the product of a unit
load system and a single load parameter f. A potential energy then exists for
the mechanical system consisting of the elastic structure and the external
loads. The potential energy has a proper minimum in the stable part but only
a stationary value in the unstable part. The critical point may now be charac-
terised by a positive semi-definite second variation of the energy. Two types of
singular behaviour due to the loss of stability may now occur characterised
by the limit point or the bifurcation point.

Thus although all critical points are characterised by similar Eigenvalue
problems, the actual behaviour of the structure at loads in the vicinity of the
critical load may vary widely. For Example, flat plates can support loads in
their plane far in excess of the critical load. On the other hand, some shell
structures fail at loads which are only fraction of the critical loads predicted
by the linear theory.

‘Basic Theory
In a mathematical sense, stability implies a configuration where infinitesimal

disturbances will cause only infinitesimal departures from the given equilibrium
configuration. In the system investigated here, it is assumed that the stresses
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in the model subjected to a conservative set of inplane loads do not change
during buckling deformation. This is consistent with the theory of elastic
stability.

Thus if 7 represents the change in potential energy during the buckling
deformation, we can write

T=U+V, (1)

where U is the strain energy caused by the buckling deformation and V is the
potential energy of the external loads measured from the unbuckled position.

For structural systems made up of linear elastic material, the change in
potential energy 7T is a quadratic function of the generalised displacements
that describe the buckled deformation. Since the first variation of 7' must
vanish to satisfy equilibrium, a sufficient condition that 7' be a relative mini-
mum is 7' =0 for all possible buckling deformation configurations. A criterion
for determining the critical load can then be that 7'=0 for some configuration.
This is the familiar TIMOSHENKO [1] criterion for stability of elastic systems.

Let U=1r"Kr (2)
and V=-3rTfK,r, (3)

where r represents collectively the generalised nodal displacements, K is the
flexural stiffness matrix of the model, and K is the stability matrix of the
model.

Then T=3rT(K-fK)r=0. (4)

As T =0 for r=+0, the matrix of the quadratic form (K —fK,) is positive
semidefinite; therefore the critical load is obtained as the lowest root of the
determinant equation

|K—f{K,| =o. (5)

Stiffness Matrix

The shell is considered as an assemblage of flat elements connected to each
other at the nodal points. The stiffness matrix for the element is derived by
allowing for three displacements and two rotations at each node.

For a typical rectangular element ¢j%l shown in Fig. 1 the generalised
displacements at the ¢th node are

&
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Fig. 1.

Here u;, v;, w; are the displacements along the X, Y, Z directions respec-
tively at the node 7.
Selecting the MELOSH-ZIENKIEWICZ [2], [3] displacement functions we have,

V =05+ agX+a,y+agxy,
W= Ag+ Q1@+ Y+ A2+ a132Y + a1, Y2 +ay52°

+ 016X Y + A YR+ AR YR+ A1 XY +ag X Y.

(7)

Here u, v, w describe displacements along X, Y, Z directions of a point (z, y)
in the plate in terms of the constants Eq. (7) may now be written in short
form as

= Pa. (8)

g = =

Here P is a 3 X 20 matrix in terms of the variables z, y. a is a 20 X 1 vector

of constants a, . .. ay-
Considering all four nodes, the nodal deformation vector of the element is

written in the matrix form as
rt=_Ga. (9)

Here, G is a 20X 20 matrix in terms of the coordinates of the nodes, and
r® is a 20X 1 vector of generalised displacements of the nodes of the element.
The unknown constants a are given by

a=G1lre. (10)
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The generalised strains at any point is given by

or

[ Ou
ox
ov
oy

ouw 0w

oy Tow
2w |

r
2w
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| dz 0y |

e=Ca=0G1re,

)
Il

The stress at any point is given by

o=De=DCG1re.

(11)

(12)

(13)

For an isotropic material, the 6 X 6 matrix of elastic constants D is given by

Here

D, i

D, D,

0 0 (1—p)D,/2

0 0 0 D,

0 0 0 D, D,

0 0 0 0 0 (1—p)Dy2]
Dy, = Eh|(1 —p?); Dy = Eh3[12(1—p?),
E = Modulus of Elasticity,

r = Poisson’s Ratio,
h = Thickness of the plate element.

Now the strain energy of the element

or

where

U¢ = %}eT Dedv,
= 3T GAT[OT D Cdy G1r°
v
Ue = %TeTkere’

kt =G@1T{CTDCdvG1

represents the 20 X 20 stiffness matrix of the element.
The stiffness matrix of the element as obtained in Eq. (16) is with respect
to the element co-ordinate axes X Y Z. This matrix is transformed into the

(14)

(15)
(16)
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global co-ordinate system P @ R to form the cylindrical shell element stiffness
matrix k® so that

ks =TT ks T (17)

The 20 X 20 transformation matrix is given by

t, "
2}
T = (18)
o
- tl
and the 5x 5 matrix ¢, is given by
1 0 0 0 0 ]
0 CosM —SinM 0 O
ty=10SinM CosM O O (19)
0 0 0 1 0
0 0 0 0 CosM |

The ¢, matrix is obtained by substituting — N for M in Eq. (19). The angles
M and N are defined in Fig. 2. The stiffness matrix of the shell element is
given in appendix 1.

Z
R 4Y

Fig. 2.

Stability Matrix

The potential energy of loads of the element shown in Fig. 1, measured
from the unbuckled state is

al2  bl2

h [ ov\? [0 u\? [ ow\? [ Ow\?2 . dw ow
—_— e A S N 1 —_— 1 r
V= 2f ”"(ax) +"”(ay) +"w(ax) +°y(ay) T2 g 83/]“‘”"

—a/2 —bJ3 (20)
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Here %, and o! are the initial direct stresses in the x and y directions and
7%, is the initial shear stress. In matrix form Eq. (20) may be written as

(0v T | | 1(év)
U ) ou
ha/zb/za—y— 0 o, 0 O 5—37
V=3 ; ol 1 oy 32 0Y- (21)
—a/2 —b/2 s 0 0 o 7o Fr
w S ow
L—a—‘ _O 0 7%, U}l— w
ox
oy
Now 1 5| = Ba=BG2r, (22)
ox
ow
L 0y |
where B is a 4 X 20 matrix in variables x and y.
Thus Eq. (21) reduces to
. a/2 b2
V= ——?—,f freT G1T BT o' BG1redxdy. (23)
—al? —b/2

Here o® is the initial stress matrix given in KEq. (21).
The stability matrix for the element is thus obtained as
al2 b2 ‘
k,=—h| [GTBTc"BGldxdy. (24)

—a/2 —b/2

The reoriented shell element stability matrix is obtained by the same
transformation used in the stiffness matrix. Thus

k=T7TkT.
For buckling under axial loads
0;'; = Tiy = 0.

The shell stability matrix under uniform axial compression for a rectangular
element is given in appendix I.
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Analysis

The general stiffness matrix K and the general stability matrix K, are
assembled using the code number technique [4]. The critical load is deter-
mined as the lowest Eigenvalue of the determinant Eq. (5). The standard
computer program is capable of handling shells having various boundary
conditions, varying thickness, openings and anisotropic material. Plate stabi-
lity [5], [7] is only a special case of shell stability [6] problem in which M and
N are zero. \

To find the critical stress intensity on the structure, Eq. (5) is divided by f
and brought to the form

1
f

in which both r, and r represent the mode of the first buckling failure. An
arbitrary normalised vector is assumed for » and r; is determined. The coeffi-
cient 1/f of r; when it is normalised represents the reciprocal of the first approxi-
mation of the lowest critical intensity. The normalised vector »; thus found is
used for r in Eq. (25) and the operation is repeated as the successive Eigen-
values converge. To facilitate faster convergence, and to determine the true
mode shape a modification in the procedure is introduced, when two successive
approximations of f come within about one percent.
The sought Eigenvalue f of Eq. (25) is replaced by

Kr,=K,r, (25)

f=m,f1+.f2’ (26)

where f, is the already found approximation, and m is the coefficient some-
what smaller than unity, such as 0.9, and f, — the required addition to be found.
Eq. (25) is then brought to the form,

~(K—mf K)r; = K,r. (27)

The matrix (K—mf, K,) is known and Eq. (27) is solved for f, to the
required accuracy in the way, in which the Eq. (25) has just been used. The
mode of failure is described closely by the eigen vector r, found from Eq. (27).
The subsequent eigenvalues may be found by the same procedure after
sweeping the eigen-vectors found from the trial vector r.

The critical loads of curved panels and cylindrical shells simply supported
on all edges under uniform axial compression are determined and are compared
with the theoretical results [1]. In all the examples the Young’s Modulus is
unity and Poisson’s ratio 1/3.

The critical loads of curved panels 12" x 12" x 1" subtending angles 0°
(plate), 10°, 20°, and 30° at centre, simply supported on all edges, for various
element sizes are tabulated in Table 1. The critical load of a cylindrical shell
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is determined by analysing a 90° sector of the shell with appropriate boundary
conditions. Table 2 gives the critical load on a shell simply supported on both
edges. The sector has a height of 12", thickness of 1", and a quadrant length
of 54", In general the values obtained by the finite element method show
good agreement with the existing theoretical results.

Cylindrical shells of medium length under axial compression have a large
number of simultaneous buckling modes. Table 3 which gives the first five
Eigenvalues of a matrix of order 383 and half band width 31, illustrates the
effectiveness of the method adopted to isolate the close Eigenvalues. Analysis
of a 90° sector of a simply supported shell with 36 x 8 elements involved a
matrix of order 1485 and half band width of 51. A similar shell with 18 x12
elements involved a matrix of order and half band width 1111 x 71. The critical
load in each case was determined in about 450 seconds on IBM 360.

Table 1. Unit Stress at Critical Load

Elements 0° 10° 20° 30°
3x3 0.023065 0.023775 0.025894 0.029388
4x4 0.024120 0.024805 0.026850 0.030234
6x6 0.024947 0.025623 0.027610 0.030910
8x8 0.025267 0.025933 0.027900 0.031177

Elastic
Solution 0.025702 0.026373 0.028755 0.032646

Table 3. Eigenvalues
90° Shell 54" x 12" x 17

Table 2. Unit Stress at Critical Load 4% 18 Elements

Solution

727 x 96”7 x 1”7

El . 90° Shell 1 0.017085
ements 54" x 12" x 1” 2 0.017474
3 0.018425
2% 9 0.015658 4 g'gggggg
4x18 0.017085 5 :
8x 36 0.017503
Elastic
Solution 0.017813
Table 4. Unit Stress at Critical Load
Full Circle 90° Shell 90° Shell

72// >< 48” X 1//

Fixed at both Ends 0.012858 0.013467
Simply supported at both ends 0.012561 0.012561
Elastic Solution Simply supported Shell 0.013359 0.013359
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The effect of edge conditions on the critical load was also studied by
doubling the length of the shell. Table 4 indicates that the critical load of a
shell of length equal to its diameter, is that of a simply supported shell
irrespective of the boundary conditions.

Conclusions

1. Finite element solutions on subdivision of elements converge mono-
tonically to the theoretical values providing a lowerbound on the theoretical
solutions.

2. The results confirm the general validity of the finite element technique
in problems of buckling of cylindrical shells.

3. The usefulness of the method lies largely in its applicability to problems
for which theoretical solutions are not available. The finite element method
overcomes the problem of irregular boundary conditions, nonuniform thick-
ness, segmentation of shells and openings in the shell.

4. To obtain meaningful results, the model should have sufficient number
of elements to describe the buckling mode. Thus any shell buckling problem
involves determination of Eigenvalues of large matrices. This is overcome by
the new method devised in the paper.

5. The presence of imperfections in the shape and properties of the shell
make the theory inapplicable.
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Appendix I
Table 5 gives the 20 x 20 stiffness, or stability matrix for a general rectan-

gular cylindrical shell element. Engries of the stiffness matrix are obtained by
substituting Table 6 in Table 5 and those of the stability matrix by substi-

tuting Table 7 in Table 5.

Table 5
1] Xy
Y. Cost N Symmetrical
12 Cos
2| Yy Cos N +F, Sin? N
. (Y o—Fy3) Cos N Y,, Sin? N
3| YuSnN | g N +F,, Cost N
4 — ~mi; Sin N m¥; Cos N m3,
5 — ~mY; Cos N Sin N | m¥, Cos? N m¥, Cos N | m¥; Cos? N
6| X,, X,, Cos N X,, Sin N — —
Y,, Cos N Cos M Y,, Cos M Sin N . .
T| YuCosM | "2 G NSinM | +FoyCos NSin M | T Sn M | Fy Cos N Sin M
3 ~Y,3, Cos NSin M | -Y,, Sin N Sin M
81 YuSinM | _pBe  MSin N | +F. Cos N Cos M | F2aCosN | Foy Cos N Cos M
9 — —mj, Sin N m3, Cos N mZ, m, Cos N
10 — —mY; Cos M Sin N | mf, Cos N Cos M mY, Cos M | m¥ Cos N Cos M
11 | Xq X4, Cos N X4 Sin N — —
Y,, Cos? N (Y 35—Fyy) Cos N _ . .
12 ] Y4 Cos N +F,, Sin? N -Sia N Fg Sin N | —F,, Cos N Sin N
. (Yg—F43) Cos N Y,, Sin? N 2
13| Y;, Sin N .Sin N 11y Cost N F33Cos N | Fg5Cos®? N
14 — ~mi, Sin N m%, Cos N m3y mZ; Cos N
15 —_ -mf, Cos N Sin N | m{, Cos? N mY, Cos N mf, Cos? N
16 | X, X, Cos N X4, Sin N — —
Y,; Cos N Cos M Y, Cos M Sin N . .
171 Y, Cos M _F,Sin NSinM | +F,, Cos N Sin M Fy Sin M F, Cos N Sin M
. -Y,;, Cos NSin M | -Y,, Sin N Sin M
18| -Y,, Sin M _F, Cos M Sin N | +F,, Cos N Cos M Fyy Cos M Fy; Cos N Cos M
19 — —mis Sin N ! mi, Cos N mi, mi; Cos N
20 — —mj, Cos M Sin N ' mY; Cos N Cos M m, Cos M | m¥; Cos N Cos M

2

3

5
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11

12

13

14
15

16

17

18

19

20
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Xll
.. Cost M Symmetrical
_ 12 LOS
YuCos M | |5 "Sin® M
. (Fi=Y,,) Cos M | Y, Sin2 M
YiuSin M| Toip y +F,, Cos® M
— —-m¥, Sin M —mi; Cos M m¥,
— m{; Cos M Sin M | m{; Cos? M -mY, Cos M | m¥; Cos* M
X -X,s Cos M X4 Sin M — —
Y, Cos N Cos M -Y 4, Cos N Sin M 2 _ .
Y CosN | T2 Sin NSin M | —F., Cos MSin N | TaSInN | —Fy5 Cos M Sin N
. Y,, Cos M Sin N Y, 8Sin NSin M | _
“YuSinN | 8 s NSin M | +F. Cos N Cos M | “F14Cos N | Fus Cos N Cos M
— —m3, Sin M —-mjy Cos M mg, ~mg; Cos M
— mY, Cos N Sin M m¥; Cos NCos M | —-m¥, Cos N | m%, Cos N Cos M
Xq X4, Cos M X4 Sin M —_ —
Y3, Cos? M (F35~Y5,) Cos M ' . .
~Y5 Cos M +F,, Sin? M -Sin M -F,,8in M | Fy5Cos M Sin M
. (Fy5~Yg,) Cos M Y, Sin? M _ o
Y, Sin M -Sin M +Fay Cos? M F,, Cos M | Fg5 Cos2 M
— —mis Sin M -mi; Cos M m%, -m, Cos M

m¥, Cos M Sin M

m; Cos® M

-m¥, Cos M

m¥; Cos? M

7

8

10
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11

12

13

14
15

16

17

18

19

20

16

17

18

19

20
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X
Y. Cog? IV Symmetrical
3 12 Cos
Y Cos N | L5 “Sint N
_ . (Y,~F,;) Cos N Y,, Sinz N
YuSinN | Cgn N +F,, Cos? N
— —m7, Sin N mf; Cos N mi,
—_ m¥, Cos N Sin IV —mY; Cos? N —-m¥,; Cos N | m{, Cos? N
X, -X,, Cos N ~X,,Sin N — —
Y,, Cos N Cos M Y,, Cos M Sin N . .
“YnCosM | T Sin NSin M | +Fy Cos N Sin M | T2 SinM | —Fy; Cos N Sin M
; —-Y, Cos NSin M | -Y,, Sin N Sin M
YuSinM | plCos MSin N | +Fy Cos N Cos M | F2aCos M| —Fy; Cos N Cos M
— —-m3; Sin N mi, Cos N m3, -mg; Cos N
— m%; Cos M Sin N —-mf; Cos N Cos M | —m, Cos M | m¥, Cos N Cos M
11 12 13 14 15
X
Vo Con® M Symmetrical
12 Cos
X1, Cos M +F,, Sin? M
. (Fi-Y,5) Cos M | Yy, Sin® M
~¥uBinM | o W +F,, Cos? M
- —mi; Sin M -m3; Cos M mi,
— —mY; Cos M Sin M | —m¥, Cos®* M m¥, Cos M m; Cos? M
16 17 18 19 20
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Table 6

133

The substitution of the following values in Table 5 will yield cylindrical shell element stiffness

Here,

matrix.

Fiy = (4 %4+ 4+2.8 k2—0.8 u k?) Lja k®
= (—4k*4+2—2.8%2+0.8 u k?) Lja k®
= (2k*—4-2.8k2+0.8 u k?) Lja k3
= (—2Kk*—2+42.8k2—0.8 u k?) Lja k®

D

S

Sy F

1

2

= (2k240.2—0.2 ) L[k
— (—k2+0.2+0.8 u) L/k

= (k2—0.2+0.2 u) Ljk

T — (—k240.2—0.2 p) Ljk

T = (4—4p+20%2) a L/15 k
= (—1+put+10k2)a L/15k
T — (—4+4p+10k2) a L/15k
Z — (1—p+5k)alll5k

= K h3/12 (1—u?)

= Poisson’s ratio

= Young’s modulus

= Thickness of the shell

= (1—0.2 k2—0.8 p k?) L[k?
= (—2—0.2 k2+0.2 p k?) L[k?
= (—1+40.2 k2—0.2 pu k) L/k?

T — (—2k2—0.2—0.8 pu) L[k

T = (—2k2—0.240.2 u) Lk

T — (—k2+0.24+0.8 p) Lk

0

_ 0
X — [S%Jr(l—ﬁmk] D, : Y.
X, — [6_110_<1~6m k] D, : T
Xy = [—3—1k+(1_") k] Dy: Yy,
Xy = _6%_(1—#) 70] D Y
X =Y, Y,
X22 = _'YZI Yoo
Xpp=Yy Yo
Xyy= —Yy Y,

= Ehj(1—p?)

D,la

o~ 8N
Il

I

ml, = (2/k2+0.2+0.8 u) L
mlYy = (1/k2—0.2—0.8 u) L
mYy = (2/k*+0.2—0.2 p) L
mYy = (1/k2—0.24+0.2 p) L

miy = —palL
m¥, = 0
m¥, = 0
my, = 0

mlY, = (20+4Kk2—4p k) a L/15 &
mYy, = (10—4 k2 +4pk?)a L/15 k
mY, = (10—k*+puk?) a Lj15 k

ml, = (5+k*—p k?) a L/15 k

_ [;_4+(1—u)] D,

4 8

— [_6‘_+(1_—i)] D,

4 8
—Yo

= —Yn

Tk (L—p)]

= —I—- Dl

137 "6k
[ & (1—p)]
Y
ke (1—p)]

| 6 6k
k(1)

= | ——— Dl

6 12k |

= b/a, ratio of the sides

= Length of Element along the “Y”’ axis
Length of Element along the “X’’ axis
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X, =0

Y, ;=0

Xo =0

Y,; =0

X5 =0

Yy =Y,
Xy=0
Yo=-Y4,
Yy = ot
Xy = —Y,,
Voo g,
Xgp = Yy

Y;, = —g—g o
Xy = —Yq
Y, = —112% ok
F,, =2764
mi = —33a A
mf; =21b4
Fyy =102 4
miy = 19.5a A
m¥s = 10.5b 4
Fgg = —276 4
mf = 33a A
mfy = 21b A

C. I. MATHEW

Table 7

ms
y
mys

mi,

f

—102 4
—19.5a 4
1056 A4
6a?A

—19.5a A
—4.5a% 4

33a 4

—6a%4

19.5a 4

4.5a%2 4
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Summary

This paper presents the finite element matrix displacement approach to
the stability analysis of shells in general, and to the cylindrical shells in parti-
cular. The buckling of deep cylindrical shells is herein investigated considering
the membrane and flexural stiffnesses. The stiffness and stability matrices
for a rectangular shell element are presented in an explicit form. The critical
loads of cylindrical shells have herein been determined using sophisticated
Eigenvalue programs. The results obtained are compared with the theoretical
solutions to demonstrate the convergence characteristics.

Résumé

Ce travail présente la méthode de la matrice de déplacements basée sur les
éléments finis pour l'analyse de stabilité de coques en général et de coques
cylindriques minces en particulier. Le voilement de coques cylindriques minces
est examiné en tenant compte des rigidités de la membrane et a la flexion.
Les matrices de rigidité et de stabilité pour un élément de coque rectangulaire
sont présentées en forme explicite. Les charges critiques de coques cylindriques
ont été déterminées en utilisant des programmes compliqués de valeurs propres.
Les résultats obtenus sont comparés aux solutions théoriques pour en démon-
trer les caractéristiques concordantes.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der endlichen Elemente-Matrix-
Verschiebungsnéherung zur Stabilitdtsanalyse von Schalen im allgemeinen
und von zylindrischen Schalen im besonderen. Die Beulung tiefer zylindrischer
Schalen ist hierbei inbegriffen, unter Beriicksichtigung der Membran- und
Biegesteifigkeiten. Die Steifigkeits- und Stabilitatsmatrizen fiir ein recht-
eckiges Schalenelement werden in expliziter Form dargelegt. Die kritischen
Belastungen zylindrischer Schalen wurden unter Benutzung komplexer Eigen-
wertprogramme bestimmt. Die erhaltenen Resultate werden mit den theoreti-
schen Losungen zum Zwecke der Ubereinstimmung verglichen.
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