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Finite Element Stability Analysis of Thin Shells

Analyse de stabilite de coques minces au moyen de la methode des elements finis

Stabilitätsanalyse dünner Schalen mittels der endlichen Elemente-Methode

C. I. MATHEW
B.E., D.I.C., M.Sc. (Eng.) (Lond.), M.ASCE., Principal, Government Polytechnic,

Kalamassery, Kerala, India

Introduction

Although the problem of elastic stability belongs inherently to the domain
of nonlinear theory of elasticity, important results may be obtained from a
linearized theory. The general theory assumes that the loads are conservative
and the external loads on the structure are specified as the product of a unit
load system and a single load parameter /. A potential energy then exists for
the mechanical system consisting of the elastic structure and the external
loads. The potential energy has a proper minimum in the stable part but only
a stationary value in the unstable part. The critical point may now be charac-
terised by a positive semi-definite second Variation of the energy. Two types of
singulär behaviour due to the loss of stability may now occur characterised
by the limit point or the bifurcation point.

Thus although all critical points are characterised by similar Eigenvalue
Problems, the actual behaviour of the structure at loads in the vicinity of the
critical load may vary widely. For Example, flat plates can support loads in
their plane far in excess of the critical load. On the other hand, some shell
structures fail at loads which are only fraction of the critical loads predicted
by the linear theory.

Basic Theory

In a mathematical sense, stability implies a configuration where infinitesimal
disturbances will cause only infinitesimal departures from the given equilibrium
configuration. In the system investigated here, it is assumed that the stresses
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in the model subjected to a conservative set of inplane loads do not change
during buckling deformation. This is consistent with the theory of elastic
stability.

Thus if T represents the change in potential energy during the buckling
deformation, we can write

T U+V, (1)

where U is the strain energy caused by the buckling deformation and V is the
potential energy of the external loads measured from the unbuckled position.

For structural Systems made up of linear elastic material, the change in
potential energy T is a quadratic function of the generalised displacements
that describe the buckled deformation. Since the first Variation of T must
vanish to satisfy equilibrium, a sufficient condition that T be a relative minimum

is T ^ 0 for all possible buckling deformation configurations. A criterion
for determining the critical load can then be that T 0 for some configuration.
This is the familiär Timoshenko [1] criterion for stability of elastic Systems.

Let

and

U \rTKr
V =-±rTfKsr,

(2)

(3)

where r represents collectively the generalised nodal displacements, K is the
flexural stiffness matrix of the model, and Ks is the stability matrix of the
model.

Then T \rT(K-fKs)r 0. (4)

As T 0 for r + 0, the matrix of the quadratic form (K — fKs) is positive
semidefinite; therefore the critical load is obtained as the lowest root of the
determinant equation

\K-fKs\ 0. (5)

Stiffness Matrix

The shell is considered as an assemblage of flat elements connected to each

other at the nodal points. The stiffness matrix for the element is derived by
allowing for three displacements and two rotations at each node.

For a typical rectangular element ijkl shown in Fig. 1 the generalised
displacements at the ith node are

d,=
Vi

wi,v
— w<

(6)
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Fig. 1.

Here ^, ^, ^ are the displacements along the X, Y, Z directions respectively

at the node i.
Selecting the Melosh-Zienkiewicz [2], [3] displacement functions we have,

u a1 + a2x-\-a3y + a±xy,
v a5 + a6x + a7y + a8xy,
w a9 + a10 x + an y + a12 x2 + a13 xy + a14 ?/2 -f alb x3

+ a1(.x2y + a17xy2 + alsyz + a19x*y + a20xys.

(7)

Here u, v, w describe displacements along X, Y, Z directions of a point (x, y)
in the plate in terms of the constants Eq. (7) may now be written in short
form as

u
v Pa. (8)
w

Here P is a 3 X 20 matrix in terms of the variables x, y. a is a 20 X 1 vector
of constants ax a20.

Considermg all four nodes, the nodal deformation vector of the element is
written in the matrix form as

re öa. (9)

Here, G is a 20 x 20 matrix in terms of the coordinates of the nodes, and
re is a 20 X 1 vector of generalised displacements of the nodes of the element.

The unknown constants a are given by

a G~1re. (10)
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The generalised strains at any point is given by

du
dx
dv
dy

du dv
dy dx

d2w
"Jx2

d2w

~W
^ d2w

e (ii)

dx dy

or e Ca CG-1re.

The stress at any point is given by

a De DCG-1re.

(12)

(13)

For an isotropic material, the 6x6 matrix of elastic constants D is given by

'Di
Di Dx
0 0 (l-^D^
0 0 0 B*
0 0 0 D2 D2
0 0 0 0 0

D

0 0 (1-[m)D2I2

Here Dx Eh/il-^); D2 Eh3/I2(l -^),
E Modulus of Elasticity,
fi Poisson's Ratio,
h Thickness of the plate element.

Now the strain energy of the element

Ue \eTDedv,
\ reT G-1TjCTDC dv G-1 re

(14)

or
where

Jje ^reTJcere)

lc? G-1T$CTDCdvG-^
(15)

(16)

represents the 20 X 20 stiffness matrix of the element.
The stiffness matrix of the element as obtained in Eq. (16) is with respect

to the element co-ordinate axes XYZ. This matrix is transformed into the
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global co-Ordinate system P Q R to form the cylindrical shell element stiffness
matrix ks so that

ks= TTksT. (17)

The 20 x 20 transformation matrix is given by

T

and the 5x5 matrix t± is given by

k

U
0

u

1 0 0 0 0"
0 CosM -Sinif 0 0

0 SinM CosM 0 0

0 0 0 1 0

0 0 0 0 CosM

(18)

(19)

The tr matrix is obtained by substituting -N for M in Eq. (19). The angles
M and N are defined in Fig. 2. The stiffness matrix of the shell element is

given in appendix 1.

Fig. 2.

Stability Matrix

The potential energy of loads of the element shown in Fig. 1, measured

from the unbuckled state is

a/2 b/2

^-^nm'^h^h^)-a/2 -&/2

2
^ dw dw\ 7 7

(20)
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Here g\ and Gy are the initial direct stresses in the x and y directions and

rx is the initial shear stress. In matrix form Eq. (20) may be written as

a/2 b/2

-W\
-a/2 -b/2

' dv ' T

dx

du
dy
dw
dx
dw

8y.

< 0 0 0

0 4 0 0

0 0 Gl Tlux ' xi

0 0 ' xy uy

' dv '

dx
du
dy
dw
dx
dw

dv.

dxdy. (21)

Now

dv '

dx
du
dy
dw
dx
dw

8y.

Ba BG-i-r*, (22)

where B is a 4 x 20 matrix in variables x and y.
Thus Eq. (21) reduces to

a/2 b/2

7 _| f (reTG~1TBTGiBG-1redxdy.

-a/2 -b/2

(23)

Here g1 is the initial stress matrix given in Eq. (21).
The stability matrix for the element is thus obtained as

a/2 b/2
ks -h$ J G-1TBTGiBG~1dxdy.

-a/2 -b/2
(24)

The reoriented shell element stability matrix is obtained by the same
transformation used in the stiffness matrix. Thus

kss= TTksT.

For buckling under axial loads

0.

The shell stability matrix under uniform axial compression for a rectangular
element is given in appendix I.
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Analysis

The general stiffness matrix K and the general stability matrix Ks are
assembled using the code number technique [4]. The critical load is
determined as the lowest Eigenvalue of the determinant Eq. (5). The Standard
Computer program is capable of handling shells having various boundary
conditions, varying thickness, openings and anisotropic material. Plate stability

[5], [7] is only a special case of shell stability [6] problem in which M and
N are zero.

To find the critical stress intensity on the structure, Eq. (5) is divided by /
and brought to the form

jKr^K.r, (25)

in which both rt and r represent the mode of the first buckling failure. An
arbitrary normalised vector is assumed for r and ri is determined. The coeffi-
cient 1// oiri when it is normalised represents the reciprocal of the first approxi-
mation of the lowest critical intensity. The normalised vector ri thus found is
used for r in Eq. (25) and the Operation is repeated as the successive Eigenvalues

converge. To facilitate faster convergence, and to determine the true
mode shape a modification in the procedure is introduced, when two successive

approximations of / come within about one percent.
The sought Eigenvalue / of Eq. (25) is replaced by

/ m/1 + /2) (26)

where fx is the already found approximation, and m is the coefficient some-
what smaller than unity, such as 0.9, and f2 - the required addition to be found.

Eq. (25) is then brought to the form,

UK-mfMu-K.r. (27)

The matrix (K — mf-^K^ is known and Eq. (27) is solved for f2 to the
required accuracy in the way, in which the Eq. (25) has just been used. The
mode of failure is described closely by the eigen vector ri found from Eq. (27).
The subsequent eigenvalues may be found by the same procedure after
sweeping the eigen-vectors found from the trial vector r.

The critical loads of curved panels and cylindrical shells simply supported
on all edges under uniform axial compression are determined and are compared
with the theoretical results [1], In all the examples the Young's Modulus is

unity and Poisson's ratio 1/3.
The critical loads of curved panels 12" X 12" x 1" subtending angles 0°

(plate), 10°, 20°, and 30° at centre, simply supported on all edges, for various
element sizes are tabulated in Table 1. The critical load of a cylindrical shell
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is determined by analysing a 90° sector of the shell with appropriate boundary
conditions. Table 2 gives the critical load on a shell simply supported on both
edges. The sector has a height of 12", thickness of 1", and a quadrant length
of 54". In general the values obtained by the finite element method show

good agreement with the existing theoretical results.
Cylindrical shells of medium length under axial compression have a large

number of simultaneous buckling modes. Table 3 which gives the first five
Eigenvalues of a matrix of order 383 and half band width 31, illustrates the
effectiveness of the method adopted to isolate the close Eigenvalues. Analysis
of a 90° sector of a simply supported shell with 36 x 8 elements involved a

matrix of order 1485 and half band width of 51. A similar shell with 18 X 12

elements involved a matrix of order and half band width 1111x71. The critical
load in each case was determined in about 450 seconds on IBM 360.

Table 1. Unit Stress at Critical Load

Elements 0° 10° 20° 30°

3x3 0.023065 0.023775 0.025894 0.029388
4x4 0.024120 0.024805 0.026850 0.030234
6x6 0.024947 0.025623 0.027610 0.030910
8x8 0.025267 0.025933 0.027900 0.031177

Elastic
Solution 0.025702 0.026373 0.028755 0.032646

Table 2. Unit Stress at Critical Load

Table 3. Eigenvalues
90° Shell 54" x 12" x 1"

4x18 Elements

Elements
90° Shell

54"xl2"xl"

2x9
4x18
8x36

Elastic
Solution

0.015658
0.017085
0.017503

0.017813

1 0.017085
2 0.017474
3 0.018425
4 0.022983
5 0.028683

Table 4. Unit Stress at Critical Load

Füll Circle
Solution

90° Shell
72" x 96" X 1"

90° Shell
72" X 48,/ X 1"

Fixed at both Ends
Simply supported at both ends
Elastic Solution Simply supported Shell

0.012858
0.012561
0.013359

0.013467
0.012561
0.013359
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The effect of edge conditions on the critical load was also studied by
doubling the length of the shell. Table 4 indicates that the critical load of a
shell of length equal to its diameter, is that of a simply supported shell
irrespective of the boundary conditions.

Conelusions

1. Finite element Solutions on subdivision of elements converge mono-
tonically to the theoretical values providing a lowerbound on the theoretical
Solutions.

2. The results confirm the general validity of the finite element technique
in problems of buckling of cylindrical shells.

3. The usefulness of the method lies largely in its applicability to problems
for which theoretical Solutions are not available. The finite element method
overcomes the problem of irregulär boundary conditions, nonuniform thickness,

segmentation of shells and openings in the shell.
4. To obtain meaningful results, the model should have sufficient number

of elements to describe the buckling mode. Thus any shell buckling problem
involves determination of Eigenvalues of large matrices. This is overcome by
the new method devised in the paper.

5. The presence of imperfections in the shape and properties of the shell
make the theory inapplicable.
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Appendix I

Table 5 gives the 20 x20 stiffness, or stability matrix for a general rectangular

cylindrical shell element. En^ries of the stiffness matrix are obtained by
substituting Table 6 in Table 5 and those of the stability matrix by substituting

Table 7 in Table 5.

Table 5

1 *u
2 yn Cos N F12 Cos2 N

+F13 Sin2 N

Symmetrical

3 rn Sin N (Yl2-F13)CosN
•SiniV

F12 Sin2 N
+F13 Cos2 N

4 — -mj3 Sin N mf3 Cos N ™14

5 — -roü Cos iV Sin iV wfs Cos2 JV mf4 Cos iV m\h Cos2 iV

6 -^21 X22 Cos N X22 Sin iV — —

7 Y21 Cos M F22 Cos iV Cos M
-F23 Sin JV Sin M

Y22 Cos M Sin iV
+i^23 Cos N Sin M #24 Sin M i^25 Cos N Sin M

8 -Y21 Sin M -Y22 Cos iV Sin M
-F%3 Cos M Sin N

-Y22 Sin N Sin M
+.F23 Cos N Cos M F2i Cos JV i^25 Cos N Cos M

9 — -m\3 Sin iV raf3 Cos N m?4 -mf5 Cos N

10 — -mf, Cos M Sin iV mjfa Cos iV Cos ikf m^ Cos M mf5 Cos iV Cos M

11 ^31 X32 Cos N X32 Sin iV — —

12 Y31 Cos N F32 Cos2 iV
+F33 Sin2 2V

(F32-i^3)CoSiV
•SiniV -i^34 Sin N -F35 Cos N Sin iV

13 Y31 Sin N (^32-^33) Cos N
•SiniV

F32 Sin2 N
+F33 Cos2 N FM Cos iV ^35 Cos2 N

14 — -raf3 Sin iV m33 Cos iV m£4 m3b Cos iV

15 — -myn Cos iV Sin iV m%3 Cos2 iV m^ Cos iV ffilt Cos2 N

16 X41 X42 Cos iV X42 Sin iV — —

17 Y41 Cos M F42 Cos N Cos M
-i^43 Sin N Sin M

F42 Cos ikf Sin N
+i^43 Cos JV Sin M jP44 Sin M i^45 Cos N Sin M

18 -Y41SinM -F42CosiVSinM
-JF« Cos M Sin JV

-Y42 SiniV Sin M
+i^43 Cos JV Cos ikf i^44 Cos M i^45 Cos N Cos M

19 — -m£3 Sin N m\3 Cos iV m£4 mj5 Cos N

20 — -mf3 Cos M Sin N rn?. Cos N Cos M m^ Cos Jf mlh Cos iV Cos M
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6 *ii
7 -Fn Cos M F12 Cos2 M

+F13 Sin2 M
Symmetrical

8 Fn Sin M (F13-Y12) Cos M
•SinM

F12 Sin2 M
+F13 Cos2 iVf

9 — -mf3 Sin M -mi3 Cos M mf4

10 — my3 Cos ikf Sin M my3 Cos2 M -mf4 Cos M m^5 Cos2 M

11 x41 -X42 Cos M X42 Sin M — —

12 -F41 Cos N F42 Cos N Cos M
-i^43 Sin N Sin M

-F42 Cos iV Sin M
-F43 Cos M Sin N FM Sin N -Fi5 Cos M Sin iV

13 -F41 Sin N F42 Cos M Sin iV
+i^43 Cos N Sin ikf

-F42 SiniV Sin M
+Fi3 Cos iV Cos M -F^ Cos iV i^45 Cos N Cos M

14 — -mf3 Sin M -m43 Cos M m^ -m^ Cos M

15 — my3 Cos JV Sin M •rofa Cos N Cos M -mjf4 Cos IV my5 Cos jV Cos M

16 -^31 -X32 Cos M X32 Sin M — —

17 -F3i Cos M F32 Cos2 M
+i^33 Sin2 M

(F33-Y32) Cos M
•SinM -i^34 Sin M F35 Cos M Sin M

18 Y31 Sin M (F33-Y32) Cos M
•SinM

F32 Sin2 M
+i^33 Cos2 M -i^34 Cos M F35 Cos2 M

19 — -m33 Sin M -mf3 Cos M ^34 -m%h Cos ikf

20 — m\3 Cos M Sin M my33 Cos2 M -m^ Cos ikf •mfc Cos2 M

10
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11 *u
12 -7U Cos N F12 Cos2 N

+Fl3 Sin2 N
Symmetrical

13 -Fn SiniV (Y12~F13) Cos N
•SiniV

F12 Sin2 iV
+i^13 Cos2 N

14 — -mf3 Sin N mf3 Cos iV mf4

15 — m\3 Cos N Sin N -mft Cos2 N -mf4 Cos iV m& Cos2 iV

16 x21 -X22 Cos N -X22 Sin iV — —

17 -F21Cosikf F22 Cos iV Cos ikf
-F23 Sin JV Sin M

F22 Cos Ikf Sin iV
+F23 Cos iV Sin Ikf i^24 Sin M -i^25 Cos N Sin Ikf

18 F21 Sin ikf -F22 Cos iV Sin M
-F23 Cos ikf Sin N

-F22 Sin IV Sin Ikf
+F23 Cos IV Cos M i^24 Cos Ikf -i^25 Cos N Cos Ikf

19 — -m\3 Sin iV m23 Cos iV W»24 -mf5 Cos N

20 — •m& Cos Ikf Sin iV -ra^ Cos N Cos M -m^ Cos M mf5 Cos iV Cos M

11 12 13 14 15

16 *ii
17 Xn Cos M F12 Cos2 Ikf

+F13 Sin2 Ikf

Symmetrical

18 -FnSinM (#13-F12) Cos Ikf
•Sin ikf

F12 Sin2 ikf
+2^13 Cos2 Ikf

19 — -m?3 Sin ikf -mf3 Cos ikf mf4

20 — -mf3 Cos ikf Sin ikf -my3 Cos2 ikf m^4 Cos ikf ra?5 Cos2 ikf

16 17 19 20
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Table 6

The Substitution of the following values in Table 5 will yield cylindrical shell element stiffness
matrix.

Here,

^13

^23

-^33

^43

-^24

^34

^44

^25

^35

^45

mfa

mx23

m33

"43

m'14

m3l

ml

mi
m%

4 &4 + 4 + 2.8 Ä;2_0.8 /x k2) Lja äj8

-4 &* + 2 —2.8 fc2 + 0.8 /x k2) Lja P
2 fc4-4-2.8 fc2 + 0.8 /x Ä;2) Lja äj8

-2 fc* —2 + 2.8 fc2-0.8 /x fc2) 1,/a fc8

2 fc2 + 0.2--0.2/*)£/&
-k2 + 0.2 + 0.8fx)Llk
fc2-0.2 + 0.2xx)£/fc

1-0.2 fc2- 0.8/xfc^i/fc2
-2-0.2 fc2 + 0.2/xfc2)L/fc2

- 1 + 0.2 k2 — 0.2 /x fc2) .L/fc2

-2fc2-0.2-0.8,x)£/fc
-2fc2-0.2 + 0.2tx).L/fc

-fca + 0.2 + 0.8/*)£/*
-k2 +0.2-0.2fji)Llk
4-4fjL+ 20k2)aL/15k
-l+/x+10fc2)a£/15fc
-4+ 4fj<.-\-10k2)aL/15k

l-,x+ 5fc2)a£/15fc

0

0

0

-[-
[

¦+ (1^0»] Bi

6

(1- /x)fcl

xdl -
xr

3fc
1

6X

&1 ^

(W)*jA:
12

^42 — 1^21

Dx EhKl-fi2)
D2 JE A8/12(l-/*•*)
\jl Poisson's ratio
E — Young's modulus
h Thickness of the shell

Yn

m\3 (2/fc2 + 0.2 + 0.8 fi) L
m|3 (1/^2-0.2-0.8 fi) L
™yz (2/k2 + 0.2-0.2fi,)L
mvz (l/k2-0.2+ 0.2 fi) L
myt —fx a L
mf4 0

mjf4 0

mit 0

Ks (20 + 4 k2-4 fi k2) a L/15 k

mjf5 (10-4 fc2 + 4 ^ k2) a Z/15 k

my5 (10-fc2+/x k2) a L/15 k

my5 (5 +k2-n k2) a L/15 k

8

(1-

ß+-"-

Kr
F Ol I o

F41

(l-/x)K6fc
fc (1-/^
3 12 k h

-ß (1-/*)h6fc

u- 12 k

k ö/a, ratio of the sides
.L D2\a
a Length of Element along the "F" axis
b Length of Element along the "X" axis
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Table 7

*u 0

Yn 0

x21 0

Y* 0

-^31 0

7n -^21
x41 0

7«. -Tu
Y12

a h
crt

6 6 *

^22 -^21

F22
a h
12b x

¦^32 ?tx

¦*32
a h

-66 °4

Xi2 -Yu
Y42

a h

"126 ffi

Fi* 276^4

mf8 — 33aA

mf3 216 A

^23 102.4

mf3 19.5 a .4

Ms 10.5 6.4

^33 -276 A

™33 33 a ,4

"* — 216 4

^43 -102,4

mf3 -19.5 a .4

mjf, 10.5 6 4
mf4 6 a2 A

w»y4 0

^24 -19.5 a .4

m£4 -4.5 a2 A

wiff4 0

^34 33 a A

™34 -6 a2 A

1W& 0

^44 19.5 a4

mf4 4.5 a2 4

™?4 0

mf5 28 62 4

^25 10.5 6.4

™f5 0

"¦*& 14 62 4
^35 -216 A

™& 0

"»fc -7 b2 A

Fi5 -10.5 6 A

m$5 0

m* -3.5 b2 A

hacri
Here A -630 6
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Summary

This paper presents the finite element matrix displacement approach to
the stability analysis of shells in general, and to the cylindrical shells in parti-
cular. The buckling of deep cylindrical shells is herein investigated considering
the membrane and flexural stiffnesses. The stiffness and stability matrices
for a rectangular shell element are presented in an explicit form. The critical
loads of cylindrical shells have herein been determined using sophisticated
Eigenvalue programs. The results obtained are compared with the theoretical
Solutions to demonstrate the convergence characteristics.

Resume

Ce travail presente la methode de la matrice de deplacements basee sur les
elements finis pour l'analyse de stabihte de coques en general et de coques
cylindriques minces en particulier. Le voilement de coques cylindriques minces
est examine en tenant compte des rigidites de la membrane et ä la flexion.
Les matrices de rigidite et de stabihte pour un element de coque reetangulaire
sont presentees en forme explicite. Les charges critiques de coques cylindriques
ont ete determinees en utilisant des programmes compliques de valeurs propres.
Les resultats obtenus sont compares aux Solutions theoriques pour en demon-
trer les caracteristiques concordantes.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der endlichen Elemente-Matrix-
Versehiebungsnäherung zur Stabilitätsanalyse von Schalen im allgemeinen
und von zylindrischen Schalen im besonderen. Die Beulung tiefer zylindrischer
Schalen ist hierbei inbegriffen, unter Berücksichtigung der Membran- und
Biegesteifigkeiten. Die Steifigkeits- und Stabilitätsmatrizen für ein
rechteckiges Schalenelement werden in expliziter Form dargelegt. Die kritischen
Belastungen zylindrischer Schalen wurden unter Benutzung komplexer
Eigenwertprogramme bestimmt. Die erhaltenen Resultate werden mit den theoretischen

Lösungen zum Zwecke der Übereinstimmung verglichen.
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