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Nonlinear Buckling of Lattice Domes
Stabilité non-linéaire de coupoles a treillis

Nichtlineare Stabilitit von Gitterkuppeln

JAYME MASON

Professor of Applied Mechanics and Civil Engineering, Consulting Engineer, Pontificia
Universidade Catélica and Universidade Federal do Rio de Janeiro, Rio de .Janeiro,
Brazil

1. Introduction

In the design of modern large span geodesic domes, the determination of
the buckling load is a problem of primary importance, normally the decisive
factor in the whole design. In a previous publication [2], the problem of edge
disturbances in lattice domes with triangular meshes has been studied. It is
the aim of the present paper, to suplement the previous stress problem by
means of a buckling theory, simple enough to be used in effective design. For
the theory to give realistic results, it must be based on a nonlinear post-
buckling approach, in the spirit of KARMAN and TSIEN’s pioneering work [1].

The structural behaviour of the shell lattice will be dealt with by means
of a continuous analogue model, which will conveniently replace the discrete
lattice members.

Both simple and double-layer lattice domes can be analysed by means of the
intended theory. It should be particularly emphasized that, as it was already
remarked for the stress problem [2], it may be dangerous to use simple ana-
logies, obtained from the theory of isotropic shells. The bending and the
membrane stiffness may differ considerably in the lattice model, whereas they
bear a definite relationship to each other in the case of uniform shells.

We shall first review briefly some basic results for the analogue model.
Next, the relevant equilibrium and kinematical equations including nonlinear
terms will be stated. Appropriate expressions for the compatibility condition
and the potential energy will also be derived.

Finally, an approximate solution for the nonlinear buckling problem of
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lattice domes will be proposed. The method of solution is similar to the one
used by WoLMIRr (6], for the non linear buckling problem in uniform shells.

The theory will be applied to a concrete example and the results will be
compared with other formulas in the literature.

2. Analogue Model

Let us imagine a sphere (Fig. 1) made of a triangular lattice of stiff mem-
bers. The lattice voids are closed by a continuous skin, so that the sphere can

support an external pressure g. It is the aim of the present analysis, to deter-
mine the value of the external pressure, for which a portion of the sphere of
radius ¢ will “snap through’ to a new buckled position, determined by the
deflection f of its mid-point. We assume that the buckled zone behaves as a
shallow shell. The lattice details are reproduced in Fig. 1b, the meshes being
equilateral triangles of height a. The properties of lattice members are defined
through the cross-sectional area ' and the moment of inertia J. Members may
be simple bars or trusses. The above lattice will be referred to a polar system
of coordinates r, ¢, which will be used in the subsequent analysis.

The continuum properties of the lattice model are obtained by subjecting
the lattice to generalized unit deformations, as unit elongations and shears
and unit changes of curvature and twist.

The contributions of different bars to the shell stress resultants and stiffness
will be refered to the unit length of the shell middle surface.

We refer to [3] and [4] for detailed demonstrations. By neglecting the
coupling between in-plane and bending contributions (see Fig. 2), the inter-
esting constitutive equations can be written as

M, =dk,+d} k,, M,=dlk.+dbk,, (1)
¢, =4diN,+4'N,, €g =4YN,+4ALN,. (2)

4



NONLINEAR BUCKLING OF LATTICE DOMES 109

In the above relationships, k, and k, are changes of curvatures and e, and
€,, membrane strains of the shell middle surface. It has been shown in [3]
and [4] that the coefficients df, d? - - - 4%, 47 in (1) and (2) are given by

3EJ 3SEJ
a (3+:U“)a dg) = Sa (1_#)1
a
EF’

dr = df =

/) ( )
3

Q J,

T (4)

in which =
and G'J; and EJ are respectively Saint-Venant’s torsional stiffness and the

bending stiffness of a lattice member.

3. Equilibrium and Kinematical Relations for Rotationally éymmetric Bending
of Shallow Spherical Shells with Large Deflections

With the notations of Fig. 2, the equilibrium equations of the symmetrically
loaded spherical shell, by accounting for the influence of deflections on the

Fig. 2.

geometry are given by

d

I (rN,)—N,=0,

d

d7(7”Qr)+7"(70+ ) (k+— I )N +qr=20, (5)

aM, ]P[ -M,

dr r
1

where k= = (6)

By eliminating ¢, from the second of (5) by means of the third,

M, 2dM, 1dM d?2w 1 dw
r - r [
it TrTar 7 ar T (k )N + (

72 lc+— I )N +q9=0. (7)
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The first equation of (5) will be satisfied identically by assuming
2
1 d® N - a:o

r dr’ ° dr?’

N, = (8)

in which @ is a stress function. On the other hand, the well known formulas
for rotationally symmetric in-plane strains are

du 1 (dw\?
o =g kura(a)
(9)
€p = —qi—lcw,
r

from which we can eliminate the tangential displacement » to obtain

d(re,) dw 1 (dw\®
o) e 1)

dr 2 {104

By accounting for (3) and (8), the constitutive Eqs. (2) for the extensional
strains are rewritten as

€

a (I dad 1 d2¢))

TEF\r dr 3 dr?
_a (0 14D (1)
eq’—EF(dﬂ T3dr)

If we substitute (11) in (10), the new form of the compatibility relation will be

drd2q§ 1 do Edew ldwz_o

ar\"a) rar T o P e W) .

which can be rewritten as
d EF[1 ([dw\? dw
Y 2 _ il Bated ke .
dr(V ?) a [Qr(dr) L dr] (12)

by introducing the Laplacian operator

172(---)=d2("')+1d('”).

dr? r dr

(13)

By means of (1) and the well known formulas for the changes of curvature

d?w 1 dw
be=—Gm k=G (14)

the equation of equilibrium (7) can be also rewritten as

2w\ d*P 1 dw\1 d®
rI72[72, — — ot i | e e
GVEViw (k+ drz) dr? (k r d?)r ar ~ 4 (15)
Eqgs. (12) and (15) are no-linear and direct methods of solution have slim

chances of success. We supplement the above derivations by including an
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expression for the total potential energy of the buckled area in the shell,
which will be helpful in obtaining approximate solutions.

4. Potential Energy

If the shell is deformed, it will store potential energy, which can be recovered
upon unloading. The potential energy is made up partly of the strain energy
and partly of the potential energy of the external loading.

The strain energy arises from two components, membrane effect and
bending, which are given respectively by

Up =3[ (N, e,+N,e,)dS = L[[ (A N2 +24¢ N, N,+ 45 N2)dS  (16)
and U, = }[[(M,k,+M,k,)dS. (17)

By substituting above (3), (8), (1) and (14) these formulas change into

81 dd d*d
2 —_—
Un 2EFJ][V¢ 3r dr drz]ds

_3EJ L4 1 dw dw
Uy = 16a (3+ P’ffli 3+u);~%— drz]ds'

(18)

We next evaluate the potential energy of the external loading. The displace-
ment pattern of the shell is sketched in Fig. 3.

Fig. 3.

In the pre-buckling stage, the lattice sphere will be compressed by an
amount w, and, in the buckling stage, an area of radius ¢ will experience an
additional deﬂection Since, before buckling we have a uniform compression

N,=N,=-— the pre-buckling deflection is easily seen to be w, = ¢, R =

2 2
%%, by using (2). We include the effect of this deflection in the potential

energy W of the external loading. The strain energy in the pre-buckling stage
will be accounted for later.
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Then W=—[[qgw+wy)dS (19)

and the total potential energy of the buckled shallow shell will be

- 5. Boundary Conditions

We state the boundary conditions which are usually assumed for the
buckled shallow shell (Fig. 4):
dw

In r =¢, w=20,

which is a perfect restraint. Two other boundary conditions must be added
for @. By assuming that the tangential displacement u vanishes in r=c, we

c

ﬁ‘r

\

Fig. 4.

conclude from the second of (9) that re,+krw=0, for r=c. On account of

(21), this is the same as ¢,= 0 for r=c, so that
2o 1 dd
FEN A (22)

by considering (11). The other condition on @ is obtained by demanding that

N, be finite for r=0, i.e.,
do
=~ =0 2
‘ o (23)
[see (8)].
In reality, we have an elastic restraint in r =¢, which tends to decrease the

buckling load based on the assumed conditions.

6. An Approximate Solution of the Buckling Problem

As the integration of the non-linear differential Eqs. (12) and (15) is diffi-
cult, we shall develop an approximate energy solution.
We assume for the normal deflection the expression

w = (1—7—2)2, | (24)
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in which f is the deflection at the mid-point and ¢ the radius. The parameters
f and ¢ will be determined later, in such a way that the potential energy be a
minimum.

We can make sure that (24) satisfies the boundary conditions (21) Next we
insert (24) in the compatibility Eq. (12) and integrate for @ and then substitute
both w and @ in the expression (20) for the potential energy. The constants ¢
and f which define the shape and the size of the buckled region will be deter-
mined from the condition that the potential energy be a minimum.

In a second stage, we could improve the expression for w, by putting @ in
(15), and integrating for w, but the present approximation is considered

satisfactory.
By putting now (24) in (12),
d _8EF § r3 ¢ EF 4fk(r 3
2 (2 ha LA
dr (Vie) = a c? (62 264 + 66) T e (c 63)’

from which, after two integrations and by accounting for the identify

1d{ do
2 i o e R
i Cordr (r dr)
we find _
dd SEF f2 rd r? 4EF fk(r3 rd C,
T T a (802 1264 +4806) a _(80 24 3)+0 o (25)

The constants of integration C; and C, are determined from the boundary
conditions (22) and (23):

f( o 3 ) C,=0. (26)

The expression (25) must be completed, by adding the influence of the mem-

brane stresses N, =N, = in the pre-buckling stage. This will automatically

2k
account for the strain energy in the pre-buckling stage.
From the first of (8), we see that the above effect on %% is given by ——z—k—r

Thus, the complete expression of (25) with (26) will be

ad EF 2 r 13 15 7 EF 5\ qr
o = 6a 0(65“6 +4‘7) Ba !¢ ’“(5“3 65) 5 7

We also record the expressions for the membrane stresses:

2 2 6 4
1 do N_EFf(6 r r) EF (5 N +7’)_q

s =V = (6O )~ g

06
d?d Ff2 r2 ¢ _ P EF
e _N¢_6—7( 180—2”051‘756)* 6a
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We see that '2d0=N,4+ N, and now we are in a position to evaluate the
potential energy.

We first introduce (27) and (28) in the first of (18) and, after some tedious
but simple algebraic manipulations, we find

e Y N 3_ T b
U, kP -Tq

21 a c2 9 a k (29)
Q97 BF ,...., 7 ,, 7 & ¢,
t 60 o CEPrgt ity gr e

The strain energy of bending is found by inserting (24) in the second of (18):

EJ 2
v, =22 3w (30)

The potential energy W of the external pressure is, with (19), (24) and w, =
1 gqga
SEEF-

T Q?ac?

= Mg T 42
W=—34%3mms (31)

If, for greater facility in manipulations we introduce the dimensionless quanti-
ties

kcta qa? af J a?
X="F > Tsppr T F T 152
The expression (20) for the total potential energy II can be written as
mkEF*(5 1 4 19 A2
- 7" - 3 _ 2 _ 2 __ 2 -
3 4 (7 " 37 27 0'+3OX’T 202x+12(3+p) X ) (33)
The conditions for a minimum of II are obviously
ol _ el _
or ox
with a result that
5 72 19 A
L[5 gy AT (34)
Al R Vv R G| I

The above conditions must be satisfied simultaneously. The parameters =, y
and A depend on the geometry of the buckled region of the lattice. The para-
meter o defines the buckling pressure through (32).

Eqs. (34) must be solved by trial and error. The parameter A depends
entirely on the mesh size a of the lattice and the cross sectional properties F
and J of the lattice members. Hence it is given for a shell under consideration.
We next choose values for  and x and obtain ¢ from both formulas (34). If ¢
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happens to have the same value from both formulas, + and y determine a
possible buckled shape of the shell. The parameter o will define the corre-
sponding buckling pressure.

In reality, there are many pairs of values for = and x which will give the
same values for o, i.e., there are many possible buckling shapes corresponding
to different buckling pressures.

The interesting solution will be the one which yields the smallest value
for the buckling pressure.

Once the minimum value for ¢ is known, the buckling pressure ¢, and the
associated shape of the buckled region are found from (32):

2 k2 B F? _.xF T F

T (35)

= g ————— C = —
a2’ ka’ / a

Qer min
The process of determining o,,,, is well fitted for a computer program, involving
the simultaneous Eqs. (34).

Graphs of solution of (34), from which we may obtain immediately the
relavant buckling parameters are not feasible, since the solution depends
heavily on the lattice properties, through A and u. These constants change in
wide ranges for different lattices and a higher degree of precision is required
in the calculations.

On these grounds, an elementary FORTRAN IV program was written for
(34), in which associated values of o were printed in table form. An inspection
of the table would supply the wanted solution.

7. Stress Resultants in the P:)st-Buckling Stage

In order to assess the value of forces in the lattice members in the post-
buckling stage, we shall derive formulas for the stress resultants for the buckled
shallow shell of radius c.

Formulas for the shearing forces ), are particularly important for double-
layer lattice domes, because they are determinant for estimating the cross-
sections of the diagonal bars in the truss lattice members.

A formula for @, is found from the third equation of equilibrium (5) along
with (1), (3) and (14). The result is

SEJ(3+pu) d

=% @™

and, by substituting (24),

y EJ
@ =-2EtW BTy (36)

the maximum of which (r=c)
EJf

cd

Q= —12(3+) (37)
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A similar calculation would give for the bending moments,

BJ |

M, =M,=6==, (r =0),
EJ | EJ f .
Mo==9"r@ HMo=3753a (=9

8. A Numerical Application

We shall now apply the preceding theory to the double-layer lattice dome
of Fig. 5.

It is a dome of 300 m in diameter, whose members are steel trusses with
1 m depth.
The properties of the lattice in the upper region of the dome are found to be

F = 40 cm?, = 81,000 cm?, a = 260 cm,
J a?
X = " = 85000.

If £ =2.1x10%kg/cm?, the solution of (34), by means a FORTRAN IV program
gives, for the minimum of o,

x = 14400, T = 13400, Opin = 170,

min



NONLINEAR BUCKLING OF LATTICE DOMES 117

With the above numerical values in (35), we obtain

2K F? 2 2.1 X 10%x 402
= , —— == — —2 3 2: 2
Qor = Omin oz 43 170 150007 % 2602 7.6 X 1072 kg/em? = 760 kg/m?,
T F _ 13400X40

f = = 2050 cm = 20.5 m,

a 260

= 5800 cm = 58 m.

]/ 14400 % 40 X 15000
260

We next use these results in order to evaluate the stress resultants in the
post-buckling stage, by means of (37) and (38) (u== 0)

2.1 % 108 8.1 X 104X 2.05 X 103
@ro—o 40 5.83% 109 X 2.6 % 102 6 kgjem 6 t/m,

— 9 2.1x105%x8.1x10%4x2.05x103 _
rir=c) — 2.6 X 102 5.82 % 108 -

—1.74 X 105 kgem/ecm = — 174 tm/m.

M

The above value of @, would make an estimate of the diagonal bars in the
trusses possible. We can see that the radial bending moment M, would bring
about plastic deformations.

9. Comparison with Other Theories

In order to check the results of the proceding theory, we compare it with
approximate formulas proposed by other authors.
ScuonBacH [11] and WRIGHT [8] recommended the formula

_kEFJ,

QCT - l?"z ’ (39)

in which k = 1,25 (SCHONBACH) or k=1,6 (WRIGHT)
F' cross-section of lattice members (40 cm?)
J, = moment of inertia of lattice members
{ = length of lattice members = 300 cm

r = radius of the dome = 15000 cm

By inserting the appropriate numerical values in (39) we would obtain
¢, = 700 kg/m2 for k£ =1.25 and ¢, = 890kg/m? for k = 1.6.

BuckerT [9], [10] in his buckling analysis of orthotropic shells proposed
the formula
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3/2
Iy (40)

4

m

0.366 & b |*
Qer = -3 [‘E]

in which t, = membrane thickness

tp = bending thickness
R = radius of dome = 15000 em

The membrane and the bending thickness will be obtained presently from the
analogue model of the lattice shell, i.e., we assume

_F Ety 3B+wEJ
=g and 57 =g

5 —
Then, ¢, = 2.38 ]/—a{ and, by inserting the numerical values,

40 3 /81,000
= —— = . = . ’ = 2 . 41
tn = 560 0.153 cm, ty 238]/ 560 16.2 cm (41)

By substituting all numerical values in (40), we would find
9., = 940 kg/m?2.

We thus made sure that the present theory is in reasonable agreement with
other theories and gives also the shape of the buckled zone.

10. Concluding Remarks

An important conclusion of the present study is that we should avoid
applying buckling formulas derived from the theory of uniform shells to
lattice domes.

For isotropic shells, membrane and bending thickness are identical. From
(41), we can see that, for double-layer lattice domes, the difference between
membrane and bending thickness may be considerable. The bending thickness
for the above numerical example is larger than the membrane thickness by a
factor of a hundred.

We should be also cautious in the choice of the safety factor for the deter-
mination of the permissible pressure.

The imperfections in geometry and boundary conditions, as well as the
post-buckling deviations in the directions of the external pressure, tend to
decrease the theoretical buckling load.
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Summary

The nonlinear buckling problem of lattice domes with triangular meshes is
investigated. The buckled zone is treated as a shallow shell, by accounting for
nonlinear terms in the kinematic relations.

The lattice properties are simulated by means of a continuous analogue
model.

Results of the theory are compared with approximate formulas in the
literature.

Résumé

Le probléme du flambage non-linéaire des coupoles a treillis & subdivision
triangulaire est étudié. La zone d’instabilité est traitée comme coque sur-
baissée, en considérant des termes non-linéaires dans les rélations cinématiques.

Les propriétés du treillis sont simulées par un modéle continu. Les résul-
tats de la théorie sont comparés a d’autres formules existant dans la littéra-
ture.

Zusammenfassung

Das nichtlineare Stabilitdatsproblem der Gitterkuppeln mit dreieckiger Aus-
fachung wird untersucht. Die Beulfliche wird als flache Schale behandelt, in
dem nichtlineare Glieder in den kinematischen Beziehungen beriicksichtigt
werden.

Das Verhalten des Gitters wird mit einem kontinuierlichen Modell nach-
gebildet.

Die Ergebnisse der Theorie werden mit anderen Ndherungsformeln in der
Literatur verglichen.
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