Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 32 (1972)

Artikel: Uber die Starke und Steifigkeit von Kastentragern mit
Rechteckquerschnitt

Autor: Janssen, J.D. / Veldpaus, F.E.

DOl: https://doi.org/10.5169/seals-24954

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-24954
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber die Stirke und Steifigkeit von Kastentriigern mit
Rechteckquerschnitt

About Strength and Stiffness of Rectangular Box-Girders

Résistance et rigidité de poutres en caisson rectangulaire

J. D. JANSSEN F. E. VELDPAUS
Prof. Dr. Ing. - Ing.
Laboratorium fir Technischo Mechanik, Technische Hochschule Eindhoven NL

1. Einleitung

Das mechanische Verhalten (diinnwandiger) Kastentriger lasst sich in
bestimmten Féllen — wovon Fig. 1.1 einige Beispiele gibt — mit Hilfe der
elementaren Bernoullischen und Bredtschen Biegungs- und Torsionstheorie
nicht geniigend exakt beschreiben.

(Wsibbehinderung)

d

Fig. 1.1. Beispiele fiir welche die Theorien von Bredt und Bernoulli nicht geniigen.
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Nach der Bredtschen Theorie treten axiale Verschiebungen des Querschnitts
auf, wenn der Triger mit einem Torsionsmoment (Fig. 1.1b) belastet wird.
Behinderung dieser Verwolbung wird u. a. das Auftreten axialer Normalspan-
nungen und zusétzlicher Schubspannungen zur Folge haben.

In bestimmten Belastungssituationen — siehe z. B. Fig. 1.1¢ und Fig. 1.1d —
wird ausserdem eine Anderung der Form des Querschnitts stattfinden: das
Schiefziehen der Profillinie.

Es gibt eine ganze Reihe eindimensionaler Theorien fiir diinnwandige
Kastentriger, bei denen man den Einfluss der Querschnittsverwolbung beriick-
sichtigt. Oft ldsst man dabei die Wirkung des Schiefziehens ausser Betracht,
siehe z. B. D. WirLLiams [1], W. FLtcoE und K. MARGUERRE [2], R. HEIL1G [3],
C. KoLLBRUNNER und N. Haspix [4]. Experimentell kann klargestellt werden,
dass dies ofters nicht den Tatsachen entspricht [5]. Selbstverstindlich wére
es moglich, die Wirkung des Schiefziehens hinreichend zu reduzieren, wenn
man geniigend Querschotte im Trager einbaut. Diese Situation wird aber nicht
immer auftreten.

Zwar ist u.a. von JANSSEN [5], DABROWSKI [6], VLAsOV [7], LACHER [8],
REsINGER [9] und CsoNka [10] eine Theorie angegeben worden, bei der sowohl
die Wirkung der Verwolbung als des Schiefziehens des Querschnitts wohl be-
riicksichtigt wird. Ein Vergleich dieser Theorien ist jedoch nicht Zweck dieser
Arbeit.

Mit Hilfe der klassischen Theorie fiir Plattenbiegung und durch genaue
Experimente hat JANSSEN [5] bewiesen, dass die in [5] prisentierte Modifika-
tion der Vlasovschen Theorie [7] die Realitat zur Geniige darstellt. Aus dieser
modifizierten Vlasov-Theorie ergibt sich u.a., dass eine bessere Beschreibung
der Biegespannungen mdoglich ist als mit [7]. Deshalb beschrinkt sich diese
Arbeit auf die von Janssen aufgestellte Theorie. Wendet man seine auf dem
Prinzip der minimalen potentiellen Energie basierte Arbeitsweise an, so blei-
ben die Berechnungen tibersichtlich und systematisch. Wir werden danach
streben, die wichtigsten Ergebnisse in eine fiir den Praktiker nutzbare Form
darzustellen.

Hierbei werden wir uns auf zylindrische Kastentriger mit Rechteckquer-
schnitt und zwei Symmetrieachsen beschrinken. Obwohl diese Beschrankun-
gen nicht wesentlich sind, so sind sie doch mehr oder weniger notwendig, um
zu einer Theorie zu gelangen, die auch analytisch handlich ist. Bei einem
beliebigen Querschnitt ist es zweckméssiger, einem numerischen Weg zu folgen,
etwa mit Hilfe der Methode der finiten Elemente [11].

Der Belastungszustand in einem Endquerschnitt des Tréigers ist in den
Theorien nach Bernoulli-Navier und Bredt vollig charakterisiert durch die
Normalkraft, die Querkrifte, die biegenden Momente und das Torsionsmoment.
Beriicksichtigt man aber die Verwolbung und das Schiefziehen des Querschnitts,
so werden auch die in Fig. 1.2 gezeichneten Gleichgewichtssysteme von grosser
Wichtigkeit sein.
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Fig. 1.2. Gleichgewichtssysteme.

In dieser Arbeit werden fiir einige spezifische Belastungen die Differenzen
untersucht, die zwischen der Theorie fiir Trager mit starrem Querschnitt einer-
seits und mit verformbarem Querschnitt anderseits auftreten. Dabei mdchten
wir uns auf Belastungssysteme beschranken, die hinsichtlich der beiden Sym-
metrieflichen des Triagers antimetrisch sind, wie z.B. ein Torsionsmoment
oder die in Fig. 1.2 gezeichneten Kriftesysteme. Eine eventuelle Belastung
der zylindrischen Oberfliche des Trigers bleibt ausser Betracht, es sei vielmehr
auf die in [5], [7] und [8] préasentierten Arbeitsweisen hingewiesen.

2. Bezeichnungen
2.1. Koordinaten (siehe Fig. 2.1)

x Langsachse.
Y,2 Querschnittshauptachsen.
8 Konturordinate.

2.2. Geometrische Daten (siehe Faig. 2.1)

by, by halbe Hohe, bzw. halbe Breite.
by bo, E(8) Wandstérke.
z
ts Profillinie
M= —|
: [ || s=Bogenlinge Profillinie
by l !
[ > 1 -
! Ux I b
I
b1 t| ! [ t1
[ |
tz
" bs | b

Fig. 2.1. Querschnitt des Tragers; Koordinatensystem.
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l Léange des Tragers.
F Querschnittsfliche; F =4 (b t, +byt,).

2.3. Werkstoffdaten

I Elastizitatsmodul.
G

Schubmodul.
Querdehnungszahl.

L~

2.4. Verschiebungsfunktionen (siehe Fig. 2.2)

u(z,s) Verschiebung in axialer Richtung.

v(x,s) Verschiebung in Richtung der Konturordinate.

B (x) Verwolbungsfunktion.

0 (x) Verdrehung des Querschnitts.

K () Verformungswinkel der Profillinie.

é(s) Verschiebung » wenn S () = 1.

h(s) Verschiebung v wenn 0 (z) = 1, « () = 0.

m (s) Verschiebung v wenn 8 (z) = 0, « () =1

2.5. Spannungen und Kraftgrossen (siehe Fig. 2.2)

o(x,s) axiale Membrannormalspannung.

7(x,s8) Membranschubspannung.

71 (%, 8), 75 (x, ) Membranschubspannungen in Platte 1, bzw. Platte 2.

o, (x,8) Biegespannung.

o;q(x,8) Vergleichsspannung.

G (s),7(s) vorgeschriebene Spannungen im Endquerschnitt.

M (x) Torsionsmoment.

B (x), @ (x) axiales, bzw. transversales Bimoment.

B, M,Q vorgeschriebene Belastung im Endquerschnitt.
"M, (x,8) Biegemoment pro Lingeneinheit im Querschnitt.

M, (x,s) Biegemoment pro Langeneinheit im Lingsschnitt.

2.2. Spannungen und Verschiebungen.
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2.6. Steifigkeitsdaten

ay,ay,04,a, Steifigkeiten nach (3.13), (3.14), (3.15), (3.21).

c Steifigkeit nach (4.4).
4 _ 1l ¢
xyg = Z a
1 aic
e = 16 a2
a
- o
as
po= oz’
o = g (1 +e€).
v = og (1 —e).
0% = 1—e€2

2.7. Indizien

S fiir Theorie mit starrer Profillinie.
f fiir Theorie mit verformbarer Profillinie.
b fiir Theorie nach Bredt.

2.8. Sonstige Symbole

V potentielle Energie.

ly charakteristische Lénge des Trigers nach (6.1) und (6.2).
¢, = cosh (xx) sin (y x).

by = cosh (xx) cos (y x)

by = sinh (ax ) cos (y x).

b, = smh (ccx) sin (y x).

() ( )-

3. Tréger mit starrer Profillinie

Analog [5] stiitzt sich die Theorie auf das Prinzip der minimalen potentiellen
Energie, mit der ein iibersichtliches, gut fundiertes und konsistentes Ndherungs-
verfahren entsteht, das mit dem u.a. in [3] présentierten Verfahren iiberein-
stimmt.

Um nicht nur kinematische, sondern auch dynamische Randbedingungen
mit einzubeziehen, betrachten wir einen Triger, der bei x =0 starr eingespannt
ist und bei x =17 durch die Normalspannungen & (s) und die Schubspannungen
7 (s), die gleichmdssig iiber die Wandstéirke verteilt sind, belastet ist. Selbst-
verstindlich sollen 6 und 7 den in der Einleitung erwdhnten Antimetrie-
bedingungen geniigen, also:
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fedF =0, foydF =[62dF =0, (3.1)
F F F
F(%%dﬁ' =ﬁjig§dﬁ’ =0. (3.2)

Die Theorie wird eindimensional, wenn das Modell der Verschiebungen im
Querschnitt als bekannt vorausgesetzt wird. Fiir die Verschiebung in Rich-
tung der Konturordinate, v (z, s), setzen wir Unverformbarkeit der Profillinie
voraus, wogegen das Modell fiir die axialen Verschiebungen sich auf die Bredt-
sche Torsionstheorie stiitzt. Dann gilt (siehe Fig. 2.2):

u(@,s) = B(x)$(s), (3.3)
v(x,s) = 0(x)h(s) (3.4)
mit (siehe Fig. 3.1):
b (s) =y(s)z(s) (3.5)
_ | by fiir y = +b,,
i (s) _{bi fiir 2 = + b, (3.6)

12

|

h=b2

h=b2

LTI

h=b,

P (s)

Fig. 3.1. Graphische Darstellung ¢ (s) und h(s).

Da nur Membranspannungen auftreten, folgt mit der angegebenen Belastung
fiir die potentielle Energie V des Trigers:

v F

V-_—%Of;f{E¢2(ﬁ')2+a(ﬁz—f+h0')2}dmx—,9(1)fa¢dﬁ*—e(zumdp. (3.7)

Hieraus ergeben sich das axiale Bimoment B und das Torsionsmoment M als
wichtige Spannungsresultanten der Belastung im Querschnitt z=1:

= [5()$(s)dF (3.8)

B
]W:j!q‘-(s)h(s) dF. (3.9)
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Analog (3.8) und (3.9) definieren wir das axiale Bimoment B (x) und das
Torsionsmoment M (x) in einem beliebigen Querschnitt:

B (x) =1«£0(x’8)¢(8) dr, (3.10)
M (x) =f7(x,s)h(s)dF. (3.11)
P

Mit der Substitution von (3.1) und (3.2) in (3.7) ergibt sich:
! _ _
V= 3fla; (B')?+a{pf>+ (0} +2a;80 Jde— BB()-MO(), (3.12)
x=0 .

wobei die Steifigkeitskonstanten a,, a, und a; definiert werden durch:

ay = Eﬁzdﬁ"=§Eb§bg(bltl+b2t2), (3.13)
dd\2 .
ay= 6 [ (55) 4F = GIIAF = 4Gbby by to+byt), (3.14)
i
dé
Gy = G{REEAF = 4Gbby(—byty+byty). (3.15)

Nach dem Prinzip der minimalen potentiellen Energie ist 6V =0 fiir alle
zuléissigen Variationen von 8 und 6, und hieraus folgen die Differentialglei-
chungen fiir 8 (x) und 6 (z):
—alﬁll+a26+a301=0, (3.16)
a3ﬁl+(l29” e O (3.17)
und zwei dynamische Randbedingungen fiir x=1:
B =a,B (x=1), (3.18)
M = ay (6 +pplyey = 3,0 (x=0) +pa, B’ (@=1), (3.19)

wobei die dimensionslose Konstante u angegeben wird durch:

_%
=g (3.20)

und a, die speziﬁsche Torsionssteifigkeit nach Bredt ist:

a2 — gl
ay == % (3.21)
2

Die Formeln (3.18) und (3.19) kann man auf jeden beliebigen Querschnitt x
erweitern; sie stellen dann den Zusammenhang dar zwischen den Schnitt-
grossen B (z) und M (x) einerseits und den Verschiebungsgréssen B (x) und
0 (x) andererseits:

B(x) =a,8 (2), (3.22)
M(x) =a,0 () +pa,B" (x) =a,b (x)+p B (x). (3.23)
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Im Zusammenhang mit den Berechnungen des vierten Kapitels fiir Tréiger
mit verformbarem Querschnitt ist es angebracht, ausser B (z) und M (), als
dritte Schnittgrosse das transversale Bimoment ) (x) zu definieren:

Q)= B'(x) =a; " = ay (B+p0'). (3.24)
Aus (8.16) und (3.17) lasst sich eine Differentialgleichung in S () ableiten:
B” —A2B" =0, (3.25)
wobei ae=% (3.26)
a,

Die allgemeinen Losungen fir 8, 8, B und M sind lineare Kombinationen der
Funktionen 1, z, cosh (Ax) und sinh (Az). Es gilt:

B(x) = —pcy+A{czcosh (Ax)+c,sinh (Ax)}, (3.27)
6 (x) =c;+cyx—p{cgsinh (Ax)+c,cosh (Ax)}, (3.28)
B(x) = ay{cysinh (Ax)+c,cosh (Ax)}, (3.29)
M (x) = a,c,. (3.30)

In dieser letzten Gleichung kommt selbstverstandlich zum Ausdruck, dass
das Torsionsmoment M konstant ist, wenn der Triager nur im Endquerschnitt
x =1 belastet ist. Die Integrationskonstanten c,, ¢,, ¢c; und ¢, ergeben sich aus
den Randbedingungen =0, =0 fiir x=0 und B=B, M =M fiir x=1.

Wenn der Trigerquerschnitt quadratisch ist (also b, =b,, t; =t, und deshalb
a3 =0), erhdlt man die Torsionstheorie nach Bredt. Diese Theorie erfolgt auch,
wenn die Verwolbung in den Endquerschnitten =0 und x =! nicht behindert
wird (also B(0)= B(l)=0).

Nach Berechnung von B(x), M (x) und ¢ () konnen die damit zusammen-
hingenden Spannungen festgestellt werden. Mit dem Hookeschen Gesetz resul-
tiert fiir die Normalspannung o (x,s) und die Schubspannung 7 (x,s) in den

Platten (siehe Fig. 2.2):
E

o(x,s) = KB (x)d(s) =a:B(x)¢>(8), (3.31)
_ M+B(x) M+Q(x)

T (@)t = Sbb, —  8bib, (3.32)
_M-—B'(x) M-Q ()

7y (), = 5.5, = 865, (3.33)

JANSSEN [5] hat durch seine Forschung bewiesen, dass man eine bessere Ver-
teilung der Schubspannungen erhilt, wenn man axiales Gleichgewicht eines
Elementes ¢ (s) dx ds aus den Tragerplatten voraussetzt. Dann ist das Resultat
eine quadratische Verteilung der Schubspannungen fiir jede Platte. Die Span-
nungen nach (3.32) und (3.33) soll man als Mittelwerte tiber die diesbeziigliche
Platte betrachten. Was den Zweck dieser Arbeit betrifft, so sind die Resultate
nach (3.32) und (3.33) hinreichend genau.
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4. Triger mit deformierbarer Profillinie

Die Theorie im dritten Kapitel beruht auf der Voraussetzung, dass die
Profillinie unverformbar ist. Wie aus (3.32) und (3.33) hervorgeht, treten

noch zusitzliche Schubspan-

ausser den Bredtschen Schubspannungen ﬁ%ﬁ

Q
Shibal auf.

In Fig. 4.1 sind diese zusétzlichen Schubspannungen angegeben in den
Querschnitten zur Stelle z; und z; +dx.

nungen

-

i

~—b—-——.-—\-b+

- ¢ ‘—‘_-l

- -— o

1 da
8b1 b2 dx

q:

(Rahmen mit Dicke dx)

a b

Fig. 4.1. Zusatzliche Schubspannungen.

Betrachtet man das Korperelement dx des Trigers als einen Rahmen, so
wird dieser Rahmen infolge der zusédtzlichen Schubspannungen belastet (siehe
Fig. 4.1b). Nur wenn sich im diesbeziiglichen Querschnitt ein Querschott
befindet, das in seiner Ebene verhéltnisméssig steif ist, wird keine Verformung
der Profillinie auftreten.

Es liegt nahe, das Deformationsmodell der Formédnderung der Profillinie
unter der skizzierten Belastung (Fig. 4.1b) zugrunde zu legen. Beriicksichtigt
man nur die Biegungsenergie, so nimmt die Profillinie die in Fig. 4.2 darge-
stellte Form an, die vom Winkel « charakterisiert werden kann.

Fir die Verschiebung in s-Richtung folgt dann:

v(x,s) =0(x)h(s)+k(x)m(s) (4.1)

. | by fir y = +b,,
mit: m(s) = b, fiir 2 = +b,. (4.2)

Uberall wo ¢ (s) differenzierbar ist, zeigt sich:

m(s) = Z—f. (4.3)



94 J. D. JANSSEN - F. E. VELDPAUS

Fig. 4.2. Forméanderung des
Rahmens (schiefziehen).

Die Profilverformung kann in mehrfacher Weise beriicksichtigt werden (siehe
z.B. [5, 6, 7, 8]). ‘

Dabrowski teilt die Berechnung auf. Mit der Hypothese, wonach « gleich
null ist, wird zunichst — in einem ganz anderen Verfahren als im dritten
Kapitel — das transversale Bimoment @ =@ (x), das die Querschnittstreue ge-
wihren soll, bestimmt. Nachher wird die Verformbarkeit des Querschnitts
wiederhergestellt und eine Differentialgleichung vierter Ordnung fiir den Ver-
formungswinkel « infolge der Belastung — @ (x) abgeleitet.

Man wendet hier dasselbe Verfahren an wie in [5] und stiitzt sich deshalb
auf das Prinzip der minimalen potentiellen Energie. Die interessanten Differen-
tialgleichungen und die dynamischen Randbedingungen konnen dann leicht
bestimmt werden.

Die axiale Verschiebung u (z, s) wird in dieser Methode, wie auch im dritten
Kapitel, durch (3.3) gegeben, wihrend fiir die Verschiebung in s-Richtung
(4.1) statt (3.4) benutzt wird. Dem Integral in (3.12), das die Formédnderungs-
energie im Triger angibt, soll jetzt ein Glied hinzugefiigt werden, das von der
mit « charakterisierten Plattenbiegung stammt. Dazu berechnet man die
Biegungsenergie in einem Rahmen, der sich in der Art und Weise deformiert,
wie in Fig. 4.2 angegeben.

Die Integration dieser Energie der Linge des Tragers entlang zeigt, dass
1

das zusitzliche Glied in (3.12) gleich % [ ¢ k2 dx ist.

=0
Unter Annahme der Behinderung der Querkontraktion im Falle einer

Plattenbiegung ergibt sich fiir c:

1E B8

= . 4.4

c

Nach [5] fiihrt diese Annahme zu hinreichend genauen Ergebnissen.

Ausser dem Torsionsmoment M (z) und dem axialen Bimoment B (x) tritt
in dieser Theorie eine dritte Schnittgrosse auf: das transversale Bimoment
@ (), das folgendermassen definiert wird: '

Q (x) =Fj'~r(x,s)m(s)dF. (4.5)
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Nachher wird es klar, dass diese Definition mit (3.24) konsistent ist. Als wich-
tige Belastungsgrosse im Endquerschnitt x =1 tritt, ausser M und B, auch das
transversale Bimoment ¢ auf:

Q= f m(s)dF. (4.6)

Die Formel fiir die potentielle Energie fiir einen bei =0 eingespannten und
bei x={ von M, B und @ belasteten Triger lautet:

l
V = 31101 (B ay (B P+ ()%} + 205 (B+K) 6 +o 2] da

—BWB—-0()M—-x()Q.

Neben den schon im dritten Kapitel eingefiihrten Steifigkeitsgrossen a,, a,
und a; spielt in dieser Formel auch die Biegungssteifigkeit ¢ eine Rolle. Aus
3V =0 fir alle zuldssigen Variationen von B, § und « folgen drei Differential-
gleichungen und drei dynamische Randbedingungen fiir x =1:

(4.7)

—a, B +a,B+as0 +a,’'k =0, (4.8)
asB + a0 +azk” =0, (4.9)

ayB +a30"+ayk”" —ck =0, (4.10)
B =a,8 (x=1), (4.11)
M = (a3B+a,0 +agk’),_;, (4.12)
Q = (asB+as0 +a,x’),; (4.13)

Fiir die Schnittgrossen B (x), M (x) und @ (x) kénnen analoge Gleichungen ab-
geleitet werden, wenn man einen Triger mit Liange x betrachtet. Es gilt:

B(w) = 0,8 (@), (4.14)
M (x) = a3 () +ay 0" () +as«" (), (4.15)
Q(x) =ayB(x)+az0 (x)+a,k’ (x). (4.16)

Die Differentialgleichungen kénnen mit diesen Schnittgrossen auch folgender-
massen geschrieben werden:

B (x)—Q(x) =0, (4.17)
M (x) =0, (4.18)
Q (x)—ck=0. (4.19)

Wenn 6 (r) und « (x) aus (4.8), (4.9) und (4.10) eliminiert werden, ergibt sich
fir B eine Differentialgleichung fiinfter Ordnung.

Mit der Losung B=B(x) konnen =60 (x) und k=« (x) einfach bestimmt
werden. Fir die allgemeine Losung folgt:

B(x) =—pey—(yds—ady) cs+(ydy+ads)c,
(cpp+y by) c5+ (s —y b3) .,

0(2) =citcaw—2ep(dics+docy+dscs+,c), (4.21)

Kk () = (ehpy+0¢3) 3+ (e py—3hy) cy— (8 by —eb3) 5+ (g +ey) cg, (4.22)

(4.20)
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mit ¢, = cosh (xz)sin (yx), (4.23)
' ¢y = cosh (xx) cos (yx), (4.24)
¢3 = sinh (xx) cos (yz), (4.25)
¢, = sinh (xz) sin (yz), (4.26)
wiahrend die Konstanten «, y, € und 8 definiert sind mit:
o =af(l+e), o>0, (4.27)
yi=of(l—e), y>0, (4.28)
1 .a 1 [\
= _ 21 — _[20
€ 2%(14 2()\) , (4.29)
2=1-e, §>0 (4.30)
1ec
4 _ -2
und % =7 oy og> 0. (4.31)

Mit (4.14), (4.15), (4.16), (4.20), (4.21) und (4.22) ergibt sich fir B (x), M (x)
und @ (x):
B(x) = 20fa,(d105+dacs+bscs+dyce), (4.32)
M (x) = a,c, = konstant, (4.33)

Q(x) =2eay{(adyt+yds)cs+(ads—ybi)ey
+(y—y by) C5+ (x by +7y b3) Ce} -

Da in (4.20), (4.21) und (4.22) und in (4.32), (4.33) und (4.34) die Funktionen
sin (yz) und cos (yx) auftreten, wird die Lésung einen «schwankenden» Cha-
rakter haben. In den graphischen Darstellungen des finften Kapitels wird
dies klar zum Ausdruck kommen.

Die Spannungen o, 7; und 7, in einem Querschnitt konnen nach der in 3.
erwihnten Art und Weise bestimmt werden. Dann ergeben sichi wieder die
Beziehungen (3.31), (3.32) und (3.33). Fiir die Berechnung der Schubspannun-
gen kann natiirlich auch das schon im dritten Kapitel genannte, genauere
Verfahren nach [5] angewendet werden.

Ausser diesen Membranspannungen treten Biegespannungen auf, deren
Grosse vom Biegemoment pro Léngeneinheit im Querschnitt, M, (z,s), und
vom Biegemoment pro Léngeneinheit in Langsschnitten, M, (x,s), bestimmt
ist. Wegen der Behinderung der Querkontraktion bei Biegung gilt:

M,,=vM,,. (4.35)

Die maximale Biegespannung o, infolge M, tritt in den Eckpunkten des
Tragers auf.

(4.34)

Es gilt My gmae = M1 (y=£by,2= £b;) = §cx (4.36)
und deshalb - th{ EE (4.37)

man

wobei ¢,,, die kleinste der Wandstérke ¢, und ¢, ist.



UBER DIE STARKE UND STEIFIGKEIT VON KASTENTRAGERN 97
5. Vergleich der Theorien mittels eines konkreten Beispiels

Die ausgefiihrten Theorien werden an Hand eines konkreten Beispiels mit-
einander verglichen. Dabei ergeben sich interessante Differenzen, die sodann
fiir beliebige Kastentriager mit Rechteckquerschnitt erlautert werden. Grossen
die berechnet werden mit Hilfe der Bredtschen Theorie, der Theorie nach 3
and der Theorie nach 4, werden bezeichnet mit Oberindex %, bzw. ¢ und 7. In
Fig. 5.1 ist der Tréger gezeichnet, dem wir unsere Aufmerksamkeit widmen
wollen. Alle wichtigen Daten sind in der Abbildung angegeben worden.

z
b, = 50mm
b, = 200mm t
t =t =1t,=5mm
l :611’11 * By t t 4
E = 200 kN/mm? by
v = 0,28 it
P =5kN

bz bz Querschnitt

Fig. 5.1. Beispiel.

In Fig. 5.2 bis Fig. 5.5 wurden die interessantesten Spannungs- und Ver-
formungsdaten angegeben. Es zeigt sich sofort, dass die beiden Theorien
hinsichtlich der Spannungen und des Verformungswinkels « quantitativ und
qualitativ ganz verschieden sind. Nur die Verdrehung ¢ des Querschnitts
stimmt in den beiden Theorien gut iiberein. Experimente zeigen, dass die
Theorie, gestiitzt auf die Hypothese der verformbaren Profillinie, der Wirklich-
keit sehr nahe kommt. In einer néchsten Veroffentlichung wird noch der Fall
erortert, in dem eine bestimmte Zahl gut aufgestellter Querschotten im Triger
eine Situation hervorrufen, wobei der Theorie der starren Profillinie gefolgt
werden kann.

Infolge der Wolbbehinderung im Querschnitt =0 entstehen in beiden
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\ Fig. 5.2. B und o, Funktionen von .

Fig. 5.3. Q und 7, Funktionen von x.

Theorien Stérspannungen, die man hinsichtlich der Bredtschen Schubspan-
nung (7 =5N/mm?) als gross bezeichnen kann.

Fiir die maximale Vergleichspannung nach Mohr-Guest (0,4,,,,) in der Ein-
spannstelle gilt:

f
Oidmazx
T = 1,07,
idmax
8
Gidmazx = 1.80
= 5 o

b
Oidmaz

(5.1)

(5.2)
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Ausserdem ist auf die Biegespannungen Riicksicht zu nehmen, die, nach der
Theorie der flexiblen Profillinie, bei einem Abstand von ungefahr 500 mm der
Einspannstelle maximal sind. Diese Spannungen kann man aber bestimmt
nicht vernachléissigen.

Die Storung hinsichtlich der Bredtschen Theorie ist in einer bestimmten
Distanz der Einspannstelle verschwunden. In der Theorie mit verformbarer
Profillinie ist diese Entfernung viel grosser als in der Theorie mit starrem
Querschnitt (2300 mm bzw. 360 mm).

Im Gegensatz zur Theorie fir starre Querschnitte gibt die Verformbarkeit
der Profillinie auch in der Gegend der Einleitungsstelle des Torsionsmomentes
Abweichungen der Bredtschen Theorie. Diese Abweichungen treten auf, weil
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die Belastung mit zwei Kraften P nach Abb. 5.1 nicht nur ein Torsionsmoment
M, sondern auch ein transversales Bimoment Q verursacht, das in seinem
Absolutwert ebenso gross ist wie M. Die dadurch hervorgerufenen Biege-
spannungen in den Platten sind, zusammen mit den Schubspannungen, ver-
antwortlich fiir eine grosse Zunahme der maximalen Vergleichsspannung im
Querschnitt « =/ hinsichtlich ¢%,,,,.:

O'fd /
—Amaz — 2.00. (5.3)

Tid max

In einer Entfernung von etwa 500 mm des belasteten Querschnitts x =1 treten
sehr grosse axiale Membranspannungen auf (siehe Fig. 5.2). In bezug auf die
Storung beim Rande x =1 kann man schliessen, dass diese auf 2300 mm des
Randes keinen merkbaren Einfluss mehr ausiibt.

Im nichsten Kapitel wird nidher auf die anhand des gegebenen Beispiels
festgestellten Erscheinungen eingegangen. Ausserdem wird eine in der Praxis
brauchbare Form der wichtigsten Ergebnisse angestrebt.

6. Allgemeiner Vergleich der Theorien

6.1. Dve Storungslinge

Wie aus den im vorigen Kapitel aufgefiihrten Abbildungen hervorgeht,
haben die Storungen hinsichtlich der Bredtschen Theorie einen «dampfenden»
Charakter. In einer Entfernung « von der Einleitungsstelle der Stérung wird
die Grosse der Storung in der Theorie mit starrer Profillinie bestimmt vom
Wert ¢=A* und in der Theorie mit verformbarer Profillinie vom Wert ¢-*2. Da
e~™=0,04, wird die Storungslinge [, — ziemlich arbitrir — definiert durch:

= T y2e, (6.1)

(6.2)

Man beachte, dass in (6.2) «, statt « benutzt wurde; weil e < 1 (siehe Fig. 6.3)
sind « und «; nahezu gleich.
Wenn v=0,28, so ergibt sich mit den Formeln fiir «, und A:

.
= 145 ) 0yt +b,t) B, 64,10, (6.
172
AR s
U = 3,311/ 550303 (byty +byty) (by 13 +b,83) = 2= (6.4)
B V2e

und fir den Spezialfall ¢, =¢,=¢ erhélt man:
15 = 1,45 (b, +b,), (6.5)

1
I = 3,31]/261192 (by+by). (6.6)
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Fiir das Beispiel im fiinften Kapitel gilt somit: [§ =362 mm und } =2310 mm.
Das Gebiet, in dem die Effekte der Randstérung merkbar sind, ist fiir Triger

mit starrem Querschnitt erheblich kleiner als fiir Trager mit verformbarem
Querschnitt.

Fir ¢, =t, =t gilt:

é—g =)2e = 0,439]/?)1%2- (by+by)t. (6.7)
In Fig. 6.1, 6.2 und 6.3 sind § /b, I{ /b, und € dargestellt in Abhéngigkeit von
by/b; und ¢/by, unter der Bedingung t, =¢,=t. Aus Fig. 6.3 geht hervor, dass
e < 1 fiir reelle Massen des Trigers.

Wenn die Lange ! des Tragers grosser ist als /,, werden der Spannungs- und
Deformationszustand an einem Rand des Trégers nicht oder nur sehr wenig

Fig. 6.1. I5/b, Funktion von b,/b, . 0.2 04 086 ™10

(Lb_{f\ 1000 S S -

800

600

400

200

0.2 04 0.6 0.8 1.0
Fig. 6.2. (if/b,)? Funktion von b,/b, . y
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von den Bedingungen am anderen Rand beeinflusst. Ein Trager mit I>1;
wird als «unendlich lang» bezeichnet.

6.2. Das axiale Bimoment B bei Wilbbehinderung

Wird ein Tréager, der sich als unendlich lang betrachten lidsst, im Quer-
schnitt =1 mit einem. Torsionsmoment M belastet, so wird im allgemeinen
eine Verwolbung der Querschnitte auftreten. Wird die Verwolbung im Quer-
schnitt =0 vollig behindert (siehe Fig. 5.1), so wird bei x=0 ein axiales
Bimoment B (0) auftreten. Annaherungsweise gilt:

B(0) = -5 M = -2, (6.8)
%o
B0)=—-4"cM (6.9)
%o
B _
und deshalb: B Eg; = 272e. (6.10)

Aus Fig. 6.3 und Gleichung (6.10) geht klar hervor, dass bei Behinderung der
Verwolbung zwischen den axialen Bimomenten B¢ (0) und B (0) grosse Unter-
schiede auftreten konnen. Diese Behauptung ist augenfillig, wenn man (6.8),
(6.9) und (6.10) spezifiziert fir ¢; =i, =1:

B3 (0) = 0,462 (b, —b,) M , (6.11)

B/ (0) = 0,405 (bl—bz)]/-b_lT (b +b,)t M, (6.12)
1Y2 )

B/ (0) 1

B0) 0,877 1/51772 (by +b,)t. (6.13)

Man kann darlegen, dass |B(0)| im vorliegenden Fall den Maximalwert von
| B (x)| darstellt. '
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Die infolge B (0) auftretende maximale axiale Normalspannung in den Eck-
punkten des Tréagers, o,,(0), kann mit der Schubspannung 7* nach Bredt
verglichen werden.

3 B(0)
Da 0)= —— 6.14
Zee ) = L bbbyt + baty) (614
wird fir einen Trager mit konstanter Wandstiarke gelten:
g g
0. (0
:b( ) - ~2,77pu, (6.15)
/i (0 -
ij—lfJ = —784puve (6.16)
und deshalb:
O{m: (O) . —
o 0) " 2.83Ve. (6.17)

6.3. Das transversale Bimoment @ ber Wélbbehinderung

Wenn im Querschnitt =0 die Verwoélbung behindert ist, so treten hin-
sichtlich der Theorie nach Bredt zusitzliche Schubspannungen 7, auf, deren
Grosse durch das transversale Bimoment ¢ (0) bestimmt ist. Die né#here
Untersuchung ergibt:

QS(O)= M, (6.18)
Q(0)=4epM (6.19)
Q7 (0)

) = 4de. (6.20)

Die Schubspannungsverteilung im Querschnitt lasst sich mit (3.32) und (3.33)
einfach bestimmen.

6.4. Die Vergleichsspannung o;; ber Wilbbehinderung

Wir erwahnen die Ergebnisse fiir die Vergleichsspannung o,; nach Mohr-
Guest im Querschnitt in dem die Verwdlbung behindert ist und beschranken
uns dabei auf Trager mit konstanter Wandstéarke ¢, =¢,=¢. Wenn b, =2 b, (und
deshalb p = 0) und »=0,28, dann ergibt sich:

S

(0 /

',:Td=2y1+2f’“+2’92”2’ (6.21)
of

fb@:2V1+(8+15,36M)Me+16p2e2. (6.22)

6.5. Die Plattenbiegung ber Wolbbehinderung

Aus den graphischen Darstellungen in Kapitel 5 geht hervor, dass bei
Wolbbehinderung fiir Trager mit verformbarer Profillinie in einer Entfernung
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von etwa x, = 1/, von der Einspannstelle maximale Biegespannungen o, in
den Platten auftreten. Wenn ¢, =¢,=¢ und b, > b, gilt:

by by
Ll

b
————Gé (o) =—155pea, ltb2 =—48,Tpe (6.23)

b
Wie aus (6.23) ersichtlich sein wird, sind diese Biegespannungen sicherlich
nicht immer vernachlissigbar.

6.6 Effekte infolge eines transversalen Bimomentes (2

Aus dem Beispiel im fiinften Kapitel folgt, dass die Beanspruchung durch
ein transversales Bimoment @ fiir Triger mit verformbarer Profillinie zu einer
ganz anderen Spannungsverteilung Anlass gibt als von der Bredtschen Theorie
vorausgesagt wird. Wenn der Querschnitt starr ist, gibt eine Belastung Q keine
zusétzlichen Spannungen.

Fiir die Belastungslage in Fig. 5.1 ist § dem Torsionsmoment M gleich.
Fiir Trager mit ¢, =¢,=t gilt fir die maximale Biegespannung o, in Lings-
flachen bei z =1:

o (1)

-0

bl b2 blb2
= 12 OCO t — 37,7t—l{). (6.24)

Die im Querschnitt x =1 auftretenden maximalen Schubspannungen sind ihrem
Absolutwert nach zweimal so gross wie 7°.

Die axialen Membranspannungen, die fiir x =/ gleich null sind, erreichen
ihren Maximalwert in einer Entfernung von etwa x,=1[, vom belasteten
Rand her. Fiir diese Spannungen gilt:

U{w (x :l_xo)

+b

biby

= — 1,080y ==—3,3gblb2

el

(6.25)

6.7. Die Torsvonssteifigkeit

Auch die Torsionssteifigkeit ist von den Randbedingungen und der ange-
wandten Theorie abhingig. Zur Berechnung der Steifigkeit betrachten wir
einen Triger mit Lidnge ! grosser als [, der belastet ist wie in Fig. 6.4 ange-
geben ist.

" " "
oo =

o m=
"
O o=

LW =2

—== 8(0) —— 6(1)

Fig. 6.4. Triager mit Lénge I>1,.

Fir Trager mit starrer Profillinie ergibt sich:

“D—Bm)=££del~€%”B, (6.26)

4
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wahrend fiir Triager mit verformbarer Profillinie gilt:

M _ _
6D =0(0) = - In(l—da—yp) B— 1 Q. (6.27)
mit P = e*olgin (ayl), (6.28)
Py = el cos (o). (6.29)

7. Schlussbemerkungen

Der Vergleich von Ergebnissen, unter Zuhilfenahme zwei verschiedener
Theorien fiir dilnnwandige Tréger, zeigt klar, dass das Deformieren oder nicht
Deformieren der Profillinie grundsétzliche Unterschiede mit sich bringt.
Manchmal wird falschlich die Theorie fiir Trager mit unverformbarem Quer-
schnitt angewandt.

In der Praxis ist Unverformbarkeit der Profillinie nur anndhernd herstell-
bar, wenn geniigend viele Querschotte angebracht worden sind. Die obige
Darstellung zeigt, dass derartige Querschotte nicht immer unbedingt eine
Besserung des Spannungszustandes mit sich bringen. Die in 5. studierte Kon-
struktion zeigt zum Beispiel, dass die Spannungen in der Niéhe der Wolb-
behinderungsstelle bei einem Trager mit unverformbarem Querschnitt (also
mit vielen Querschotten) um etwa 709, hoher sind als bei einem Triger mit
verformbarer Profillinie (also ohne Querschotte). Das Beispiel zeigt auch,
dass ein Querschott beim Kinfiihren einer Torsionsbelastung einen positiven
Effekt hat.

Mit der Theorie fiir Trager mit verformbarer Profillinie kann die Wirkung
von Querschotten auf die Spannungen und Verformungen analysiert werden.
In einer folgenden Versffentlichung soll darauf niher eingegangen werden.
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Zusammenfassung

Mit zwei verschiedenen Gruppen von Voraussetzungen iiber die Verschie-
bungen ergeben sich zwei Torsionstheorien fiir dilmnwandige Kastentriager mit
Rechteckquerschnitt, ndmlich eine Theorie, bei der die Profillinie als starr
angenommen wird, und eine Theorie, wobei eine gewisse Verformung der
Profillinie moglich ist. Die Analysen beruhen auf dem Prinzip der minimalen
potentiellen Energie. Anhand eines konkreten Beispiels werden die charak-
teristischen Unterschiede zwischen diesen Theorien untersucht. Die Ergebnisse
werden auf Trager mit willkiirlichem Rechteckquerschnitt verallgemeinert.

Summary

From two different groups of conditions about displacements, two torsion
theories of thin-walled box-girders of rectangular section are resulting. In one
theory the profile-curve is assumed to be fixed, in the other a certain deforma-
tion is possible. The analyses are based on the principal of minimum potential
energy. The characteristic differences between both theories are demonstrated
by an example. The results are generalized for girders with arbitrary rectangular
sections.

Résumé

Avec deux groupes différents de conditions de déplacement on obtient deux
théories de torsion pour les poutres en caisson & sections rectangulaires: une
premiére dans laquelle la ligne du profil est considérée comme fixe, et une
seconde ou une certaine déformation est possible. Les analyses se basent sur
le principe de I’énergie potentielle minimale. Un exemple concret illustre les
différences caractéristiques entre les deux théories. Les résultats sont géné-
ralisés pour des poutres & sections rectangulaires arbitraires.
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