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Über die Stärke und Steifigkeit von Kastenträgern mit
Rechteckquersehnitt

About Strength and Stiffness of Rectangular Box-Girders

Resistance et rigidite de poutres en caisson rectangulaire

J. D. JANSSEN F. E. VELDPAUS
Prof. Dr. Ing. Ing.

Laboratorium für Techmscho Mechanik, Technische Hochschule Eindhoven NL

1. Einleitung

Das mechanische Verhalten (dünnwandiger) Kastenträger lässt sich in
bestimmten Fällen - wovon Fig. 1.1 einige Beispiele gibt - mit Hilfe der
elementaren Bernoullischen und Bredtschen Biegungs- und Torsionstheorie
nicht genügend exakt beschreiben.

(Wolbbehinderung)

SK> >

nfa.
Querschott

d

Fig. 1.1. Beispiele für welche die Theorien von Bredt und Bernoulli nicht genügen.
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Nach der Bredtschen Theorie treten axiale Verschiebungen des Querschnitts
auf, wenn der Träger mit einem Torsionsmoment (Fig. 1.1b) belastet wird.
Behinderung dieser Verwölbung wird u. a. das Auftreten axialer Normalspannungen

und zusätzlicher Schubspannungen zur Folge haben.
In bestimmten Belastungssituationen - siehe z. B. Fig. 1.1c und Fig. 1.1 d -

wird ausserdem eine Änderung der Form des Querschnitts stattfinden: das
Schiefziehen der Profillinie.

Es gibt eine ganze Reihe eindimensionaler Theorien für dünnwandige
Kastenträger, bei denen man den Einfluss der Querschnittsverwölbung
berücksichtigt. Oft lässt man dabei die Wirkung des Schiefziehens ausser Betracht,
siehe z. B. D. Williams [1], W. Flügge und K. Marguerre [2], R. Heilig [3],
C. Kollbrunner und N. Hajdin [4]. Experimentell kann'klargestellt werden,
dass dies öfters nicht den Tatsachen entspricht [5]. Selbstverständlich wäre
es möglich, die Wirkung des Schiefziehens hinreichend zu reduzieren, wenn
man genügend Querschotte im Träger einbaut. Diese Situation wird aber nicht
immer auftreten.

Zwar ist u.a. von Janssen [5], Dabrowski [6], Vlasov [7], Lacher [8],
Resinger [9] und Csonka [10] eine Theorie angegeben worden, bei der sowohl
die Wirkung der Verwölbung als des Schiefziehens des Querschnitts wohl
berücksichtigt wird. Ein Vergleich dieser Theorien ist jedoch nicht Zweck dieser
Arbeit.

Mit Hilfe der klassischen Theorie für Plattenbiegung und durch genaue
Experimente hat Janssen [5] bewiesen, dass die in [5] präsentierte Modifikation

der Vlasovschen Theorie [7] die Realität zur Genüge darstellt. Aus dieser
modifizierten Vlasov-Theorie ergibt sich u.a., dass eine bessere Beschreibung
der Biegespannungen möglich ist als mit [7]. Deshalb beschränkt sich diese

Arbeit auf die von Janssen aufgestellte Theorie. Wendet man seine auf dem

Prinzip der minimalen potentiellen Energie basierte Arbeitsweise an, so bleiben

die Berechnungen übersichtlich und systematisch. Wir werden danach
streben, die wichtigsten Ergebnisse in eine für den Praktiker nutzbare Form
darzustellen.

Hierbei werden wir uns auf zylindrische Kastenträger mit Rechteckquerschnitt

und zwei Symmetrieachsen beschränken. Obwohl diese Beschränkungen

nicht wesentlich sind, so sind sie doch mehr oder weniger notwendig, um
zu einer Theorie zu gelangen, die auch analytisch handlich ist. Bei einem

beliebigen Querschnitt ist es zweckmässiger, einem numerischen Weg zu folgen,
etwa mit Hilfe der Methode der finiten Elemente [11].

Der Belastungszustand in einem Endquerschnitt des Trägers ist in den
Theorien nach Bernoulli-Navier und Bredt völlig charakterisiert durch die
Normalkraft, die Querkräfte, die biegenden Momente und das Torsionsmoment.
Berücksichtigt man aber die Verwölbung und das Schiefziehen des Querschnitts,
so werden auch die in Fig. 1.2 gezeichneten Gleichgewichtssysteme von grosser
Wichtigkeit sein.
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^2b

2b,

Fig. 1.2. Gleichgewichtssysteme.

In dieser Arbeit werden für einige spezifische Belastungen die Differenzen
untersucht, die zwischen der Theorie für Träger mit starrem Querschnitt einerseits

und mit verformbarem Querschnitt anderseits auftreten. Dabei möchten
wir uns auf Belastungssysteme beschränken, die hinsichtlich der beiden
Symmetrieflächen des Trägers antimetrisch sind, wie z.B. ein Torsionsmoment
oder die in Fig. 1.2 gezeichneten Kräftesysteme. Eine eventuelle Belastung
der zylindrischen Oberfläche des Trägers bleibt ausser Betracht, es sei vielmehr
auf die in [5], [7] und [8] präsentierten Arbeitsweisen hingewiesen.

2. Bezeichnungen

2.1. Koordinaten (siehe Fig. 2.1)

x Längsachse.

y, z QuerSchnittshauptachsen.
s Konturordinate.

b±ib2
11 *2 >

* W

2.2. Geometrische Daten (siehe Fig. 2.1)

halbe Höhe, bzw. halbe Breite.
Wandstärke.

AZ

t-*-

Profillinie

s=Bogenlänge Profillinie

"&-

U

Fig. 2.1. Querschnitt des Trägers; Koordinatensystem.
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F
Länge des Trägers.
Querschnittsfläche; F 4=(b1t1 + b212).

E
G

u (x, s)

v(x,s)
ß(x)
6{x)
K(X)

h(a)
m(s)

2.3. Werkstoffdaten

Elastizitätsmodul.
Schubmodul.
Querdehnungszahl.

2.4. Verschiebungsfunktionen (siehe Fig. 2.2)

Verschiebung in axialer Richtung.
Verschiebung in Richtung der Konturordinate.
VerWölbungsfunktion.
Verdrehung des Querschnitts.
Verformungswinkel der Profillinie.
Verschiebung u wenn ß (x) 1.

Verschiebung v wenn 9 (x) 1, k(x) — 0.

Verschiebung v wenn 6(x) 0, k(x) 1.

2.5. Spannungen und Kraftgrössen (siehe Fig. 2.2)

g(x,s) axiale Membrannormalspannung.
r (x, s) Membranschubspannung.
r1(x,s),r2(x,s) Membranschubspannungen in Platte 1, bzw. Platte 2.

gs (x, s) Biegespannung.
aid (x>s) Vergleichsspannung.
ö(s),f(s) vorgeschriebene Spannungen im Endquerschnitt.
M (x) Torsionsmoment.
B(x),Q (x) axiales, bzw. transversales Bimoment.
B, M, Q vorgeschriebene Belastung im Endquerschnitt.
Mlx(x,s) Biegemoment pro Längeneinheit im Querschnitt.
Mls(x,s) Biegemoment pro Längeneinheit im Längsschnitt.

r(x,s)

^ucru.s

!c

2.2. Spannungen und Verschiebungen.
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2.6. Steifigkeitsdaten

a~i, Cvo j wo, a \ Steifigkeiten nach (3.13), (3.14), (3.15), (3.21
c Steifigkeit nach (4.4).

A
1 c

4 a\'
€2

1 a±c
l6"öl""

A2 «4

«1 '

M
a3

a2
"

a2 og(l+€).
y2 og(l-€).
S2 l-€2.

2.7. Indizien

s für Theorie mit starrer Profillinie.
/ für Theorie mit verformbarer Profillinie.
6 für Theorie nach Bredt.

2.8. Sonstige Symbole

V potentielle Energie.
l0 charakteristische Länge des Trägers nach (6.1) und (6.2).
</>! cosh (a x) sin (y x).
<^2 cosh (a x) cos (y x).
</>3 sinh(a^) cos(yx).
</>4 sinh (olx) sin (yx).

<>' !<>¦

3. Träger mit starrer Profillinie

Analog [5] stützt sich die Theorie auf das Prinzip der minimalen potentiellen
Energie, mit der ein übersichtliches, gut fundiertes und konsistentes Näherungsverfahren

entsteht, das mit dem u.a. in [3] präsentierten Verfahren übereinstimmt.

Um nicht nur kinematische, sondern auch dynamische Randbedingungen
mit einzubeziehen, betrachten wir einen Träger, der bei x 0 starr eingespannt
ist und bei x l durch die Normalspannungen ö (s) und die Schubspannungen
f(s), die gleichmässig über die Wandstärke verteilt sind, belastet ist.
Selbstverständlich sollen d und f den in der Einleitung erwähnten Antimetrie-
bedingungen genügen, also:
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JädF 0, \5ydF =jözdF 0,
F FF(f^-dF (f^dF 0.

F as p as

(3.1)

(3.2)

Die Theorie wird eindimensional, wenn das Modell der Verschiebungen im
Querschnitt als bekannt vorausgesetzt wird. Für die Verschiebung in Richtung

der Konturordinate, v (x, s), setzen wir UnVerformbarkeit der Profillinie
voraus, wogegen das Modell für die axialen Verschiebungen sich auf die Bredt-
sche Torsionstheorie stützt. Dann gilt (siehe Fig. 2.2):

u(x,s)=ß(x)</>(s), (3.3)

v(x,s) 0(x)h(s) (3.4)

mit (siehe Fig. 3.1):
cf>(s) =y(s)z(s)

b2 für y ±b2y
h(s)

bx für z ±bx.

(3.5)

(3.6)

b, b
I "Z

*(s)

Az

h b2

h b.

L-tl
h=b2

^y

h bi

Fig. 3.1. Graphische Darstellung <-/>(«$) und h(s).

Da nur Membranspannungen auftreten, folgt mit der angegebenen Belastung
für die potentielle Energie V des Trägers:

i

0 F

Hieraus ergeben sich das axiale Bimoment B und das Torsionsmoment M als

wichtige Spannungsresultanten der Belastung im Querschnitt x l:

B =$ö{s)<l>(s)dF, (3.8)

M $?(s)h(s)dF.
F

(3.9)
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Analog (3.8) und (3.9) definieren wir das axiale Bimoment B(x) und das
Torsionsmoment M (x) in einem beliebigen Querschnitt:

B(x) =SG(x,s)<f>(s)dF, (3.10)
F

M(x) =$r(x,s)h(s)dF. (3.11)
F

Mit der Substitution von (3.1) und (3.2) in (3.7) ergibt sich:

V ^[^i(ßf)2 + a2{ß2 + (S,)2} + ^a3ß9,]dx-Bß(l)-M9(l), (3.12)

wobei die Steifigkeitskonstanten ax, a2 und a3 definiert werden durch:

ax E$4>*dF =\Eb\b\(bxtx + bM, (3.13)

a2= GÜ^YdF G\h2dF 4Ö6162(61*2 + &2*1), (3.14)
F

a3 G$h^-dF 4G6162(-&1£2 + &2*1). (3.15)
jr as

Nach dem Prinzip der minimalen potentiellen Energie ist 8V 0 für alle
zulässigen Variationen von ß und 9, und hieraus folgen die Differentialgleichungen

für ß (x) und 9(x):

-a1ß" + a2ß + a39' 0, (3.16)

azß' +a29" 0 (3.17)

und zwei dynamische Randbedingungen für x l:

B =a1ß,{x l), (3.18)

M a2(9'+fjiß)x=l a^9,(x l)+fMa1ß,f(x l), (3.19)

wobei die dimensionslose Konstante /x angegeben wird durch:

/* (3-20)
w2

und a4 die spezifische Torsionssteifigkeit nach Bredt ist:

a4 -^ 3.21)

Die Formeln (3.18) und (3.19) kann man auf jeden beliebigen Querschnitt x
erweitern; sie stellen dann den Zusammenhang dar zwischen den Schnitt-
grössen B(x) und M (x) einerseits und den Verschiebungsgrössen ß(x) und
9(x) andererseits:

B(x) =a1ß,(x), (3.22)

M(x) aJ,{x)+fjLa1ß,f(x) a±9'» + /x£' (x). (3.23)
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Im Zusammenhang mit den Berechnungen des vierten Kapitels für Träger
mit verformbarem Querschnitt ist es angebracht, ausser B(x) und M (x), als

dritte Schnittgrösse das transversale Bimoment Q (x) zu definieren:

Q(x) B'(x) a1ß" a2(ß + pO'). (3.24)

Aus (3.16) und (3.17) lässt sich eine Differentialgleichung in ß(x) ableiten:

ß'"-X2ß' 0, (3.25)

wobei A2 ^. (3.26)
ai

Die allgemeinen Lösungen für ß, 9, B und M sind lineare Kombinationen der
Funktionen 1, x, cosh (Xx) und sinh (Xx). Es gilt:

ß(x) — fjLC2 + X{c3cosh (Ax) + c4sinh (Xx)}, (3.27)

9(x) c1 + c2x — /jl{c3sinh (Ax) + c4cosh (Xx)}, (3.28)

B(x) a4{c3 sinh (Xx) + c4: cosh (Xx)}, (3.29)

M(x) a±c2. (3.30)

In dieser letzten Gleichung kommt selbstverständlich zum Ausdruck, dass

das Torsionsmoment M konstant ist, wenn der Träger nur im Endquerschnitt
x l belastet ist. Die Integrationskonstanten cx, c2, c3 und c4 ergeben sich aus
den Randbedingungen 9 0, ß 0 für x 0 und B B, M M für x l.

Wenn der Trägerquerschnitt quadratisch ist (also b1 b2, tt t2 und deshalb

a3 0), erhält man die Torsionstheorie nach Bredt. Diese Theorie erfolgt auch,
wenn die Verwölbung in den Endquerschnitten x 0 und x l nicht behindert
wird (also B(0) B(l) 0).

Nach Berechnung von B(x), M (x) und Q(x) können die damit zusammenhängenden

Spannungen festgestellt werden. Mit dem Hookeschen Gesetz resultiert

für die Normalspannung g(x,s) und die Schubspannung r(x, s) in den
Platten (siehe Fig. 2.2):

g (x, s) Eß' (x) <j>(s) =—B (x) c/> (s), (3.31)
a~t

T(x)t _M + B'(x) _M + Q(x)

r(x)t ..M-B'W J-QW (3 33)

Janssen [5] hat durch seine Forschung bewiesen, dass man eine bessere

Verteilung der Schubspannungen erhält, wenn man axiales Gleichgewicht eines
Elementes t(s)dxds aus den Trägerplatten voraussetzt. Dann ist das Resultat
eine quadratische Verteilung der Schubspannungen für jede Platte. Die
Spannungen nach (3.32) und (3.33) soll man als Mittelwerte über die diesbezügliche
Platte betrachten. Was den Zweck dieser Arbeit betrifft, so sind die Resultate
nach (3.32) und (3.33) hinreichend genau.
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4. Träger mit deformierbarer Profillinie

Die Theorie im dritten Kapitel beruht auf der Voraussetzung, dass die
Profillinie unverformbar ist. Wie aus (3.32) und (3.33) hervorgeht, treten

ausser den Bredtschen Schubspannungen noch zusätzliche Schubspannungen

0, auf.

In Fig. 4.1 sind diese zusätzlichen Schubspannungen angegeben in den
Querschnitten zur Stelle xx und xx + dx.

b2t,

8b, b2t,

/\
>n

US?

8b, b2t2^
e+

Q(x,) + (-)Vdx / :

Q(x,) +(£):

i^-q

1 dQ

8bf b2t2 Q(x,)
dx

8bt b2 dx

(Rahmen mit Dicke dx)

Fig. 4.1. Zusätzliche Schubspannungen.

Betrachtet man das Körperelement dx des Trägers als einen Rahmen, so

wird dieser Rahmen infolge der zusätzlichen Schubspannungen belastet (siehe
Fig. 4.1b). Nur wenn sich im diesbezüglichen Querschnitt ein Querschott
befindet, das in seiner Ebene verhältnismässig steif ist, wird keine Verformung
der Profillinie auftreten.

Es liegt nahe, das Deformationsmodell der Formänderung der Profillinie
unter der skizzierten Belastung (Fig. 4.1b) zugrunde zu legen. Berücksichtigt
man nur die Biegungsenergie, so nimmt die Profillinie die in Fig. 4.2 dargestellte

Form an, die vom Winkel k charakterisiert werden kann.
Für die Verschiebung in ^-Richtung folgt dann:

mit:

v (x, s) 9 (x) h(s) + K (x) m (s)

ml8)-l hfw y ±b29
m(5)~j-61 für z ±b1.

Überall wo <f>(s) differenzierbar ist, zeigt sich:

d<j>
m(s) ds

(4.1)

(4.2)

(4.3)
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iZ

Zk
%

Fig. 4.2. Formänderung des
Rahmens (schiefziehen).

Die Profilverformung kann in mehrfacher Weise berücksichtigt werden (siehe
z.B. [5, 6, 7, 8]).

Dabrowski teilt die Berechnung auf. Mit der Hypothese, wonach k gleich
null ist, wird zunächst - in einem ganz anderen Verfahren als im dritten
Kapitel - das transversale Bimoment Q Q(x), das die Querschnittstreue
gewähren soll, bestimmt. Nachher wird die Verformbarkeit des Querschnitts
wiederhergestellt und eine Differentialgleichung vierter Ordnung für den

Verformungswinkel k infolge der Belastung — Q (x) abgeleitet.
Man wendet hier dasselbe Verfahren an wie in [5] und stützt sich deshalb

auf das Prinzip der minimalen potentiellen Energie. Die interessanten
Differentialgleichungen und die dynamischen Randbedingungen können dann leicht
bestimmt werden.

Die axiale Verschiebung u (x, s) wird in dieser Methode, wie auch im dritten
Kapitel, durch (3.3) gegeben, während für die Verschiebung in «s-Richtung
(4.1) statt (3.4) benutzt wird. Dem Integral in (3.12), das die Formänderungs-
energie im Träger angibt, soll jetzt ein Glied hinzugefügt werden, das von der
mit k charakterisierten Plattenbiegung stammt. Dazu berechnet man die

Biegungsenergie in einem Rahmen, der sich in der Art und Weise deformiert,
wie in Fig. 4.2 angegeben.

Die Integration dieser Energie der Länge des Trägers entlang zeigt, dass
i

das zusätzliche Glied in (3.12) gleich \\cK2dx ist.

Unter Annahme der Behinderung der Querkontraktion im Falle einer

Plattenbiegung ergibt sich für c:

4E t\t\
c

l-v2b1tl + b2q'
(4.4)

Nach [5] führt diese Annahme zu hinreichend genauen Ergebnissen.
Ausser dem Torsionsmoment M (x) und dem axialen Bimoment B (x) tritt

in dieser Theorie eine dritte Schnittgrösse auf: das transversale Bimoment
Q(x), das folgendermassen definiert wird:

Q(x) $t (x, s) m (s) dF.
F

(4.5)
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Nachher wird es klar, dass diese Definition mit (3.24) konsistent ist. Als wichtige

Belastungsgrösse im Endquerschnitt x l tritt, ausser M und B, auch das
transversale Bimoment Q auf:

Q =jf(s)m(s)dF. (4.6)
F

Die Formel für die potentielle Energie für einen bei x 0 eingespannten und
bei x l von M, B und Q belasteten Träger lautet:

y \\[a1(ßy + a2{(ß + K,)2 + (9,)2}^2a3(ß + K,)9'^CK2-\dx
X=° - (4.7)
-ß(l)B-9(l)M-K(l)Q. v '

Neben den schon im dritten Kapitel eingeführten Steifigkeitsgrössen al9 a2
und a3 spielt in dieser Formel auch die Biegungssteifigkeit c eine Rolle. Aus
SV 0 für alle zulässigen Variationen von ß, 9 und k folgen drei Differentialgleichungen

und drei dynamische Randbedingungen für x l:

-a^"+a2ß + a39'+ a2K= 0, (4.8)

a3 ß' + a2 9" + a3K" 0, (4.9)

a2ß' + a39" + a2K"-CK 0, (4.10)

B =aiß'(x l), (4.11)

M (a3ß + a29'+a3Kf)x=l, (4.12)

Q =(a2ß + a39'+a2Kr)x=l. (4.13)

Für die Schnittgrössen B(x), M (x) und Q(x) können analoge Gleichungen
abgeleitet werden, wenn man einen Träger mit Länge x betrachtet. Es gilt:

B(x) =axß'(x), (4.14)

M (x) a3ß (x) + a29' (x)+a3k (x) (4.15)

Q(x) =a2ß(x)+a39'(x)+a2K'(x). (4.16)

Die Differentialgleichungen können mit diesen Schnittgrössen auch folgender-
massen geschrieben werden:

B'(x)-Q(x) 0, (4.17)

M'(x) Q, (4.18)

Q' (x)-ck 0. (4.19)

Wenn 9(x) und k(x) aus (4.8), (4.9) und (4.10) eliminiert werden, ergibt sich
für ß eine Differentialgleichung fünfter Ordnung.

Mit der Lösung ß ß(x) können 9 9(x) und k k(x) einfach bestimmt
werden. Für die allgemeine Lösung folgt:

ß(x) -^C2-(y^2-a<^4)c3 + (y^1 + a^3)c4
/ / I ^ / I \ (4.20)+ (a^2-f-y^4)c5 + (a^1-y03)c6,

9(x) =c1 + c2x-2€fi(c/>1c3 + (l>2c^ + (f>3c5 + ^c6), (4.21)

k(x) (€^1 + 8^3)c3 + (e^2-§^4)c4-(§^1-e^3)c5 + (§^2 + €^4)c6, (4.22)
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mit (^ cosh (a x) sin (y x), (4.23)
cf>2 cosh (a x) cos (y x), (4.24)
(f>3 sinh (a x) cos (y #), (4.25)
c/>4 sinh (<xx) sin (y#), (4.26)

während die Konstanten a, y, e und S definiert sind mit:
a2 a§(l + €), a>0, (4.27)

y2 ag(l-£), y>0, (4.28)

«-i<-*(?)¦• <"•>
S2 l-e2, §>0 (4.30)

und ao=7^' ao>0. (4.31)

Mit (4.14), (4.15), (4.16), (4.20), (4.21) und (4.22) ergibt sich für B(x), M (x)
und Q(x):

B(x) =2 ajj ax (<^ c3 + <f>2 c4 + <£3 c5 + </>4 c6), (4.32)

M (x) a4c2 konstant, (4.33)

+ (a^2-y^4)c5 + (a^1 + y^3)c6}.
(4.34)

Da in (4.20), (4.21) und (4.22) und in (4.32), (4.33) und (4.34) die Funktionen
sin(y#) und cos(y^) auftreten, wird die Lösung einen «schwankenden»
Charakter haben. In den graphischen Darstellungen des fünften Kapitels wird
dies klar zum Ausdruck kommen.

Die Spannungen g, tx und t2 in einem Querschnitt können nach der in 3.

erwähnten Art und Weise bestimmt werden. Dann ergeben sich wieder die
Beziehungen (3.31), (3.32) und (3.33). Für die Berechnung der Schubspannungen

kann natürlich auch das schon im dritten Kapitel genannte, genauere
Verfahren nach [5] angewendet werden.

Ausser diesen Membranspannungen treten Biegespannungen auf, deren
Grösse vom Biegemoment pro Längeneinheit im Querschnitt, Mlx(x,s), und
vom Biegemoment pro Längeneinheit in Längsschnitten, Mls(x,s), bestimmt
ist. Wegen der Behinderung der Querkontraktion bei Biegung gilt:

Mlx vMls. (4.35)

Die maximale Biegespannung ab infolge Mls tritt in den Eckpunkten des

Trägers auf.

Es gilt MXsmax Mls(y=±b2,z=±b1)=icK (4.36)

und deshalb obmax -r~, (4.37)
"min

wobei tmin die kleinste der Wandstärke tx und t2 ist.
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5. Vergleich der Theorien mittels eines konkreten Beispiels

Die ausgeführten Theorien werden an Hand eines konkreten Beispiels
miteinander verglichen. Dabei ergeben sich interessante Differenzen, die sodann
für beliebige Kastenträger mit Rechteckquerschnitt erläutert werden. Grössen
die berechnet werden mit Hilfe der Bredtschen Theorie, der Theorie nach 3

and der Theorie nach 4, werden bezeichnet mit Oberindex b, bzw. s und K In
Fig. 5.1 ist der Träger gezeichnet, dem wir unsere Aufmerksamkeit widmen
wollen. Alle wichtigen Daten sind in der Abbildung angegeben worden.

rP

b± 50 mm
b2 200 mm
t t± t2 5 mm
l 6m
E 200 kN/mm2
v 0,28
P 5kN

f|

,z

b1I t — .ZI—1 * >

^b,[ 1—i_—*r
b2 b2 Querschnitt

Fig. 5.1. Beispiel.

In Fig. 5.2 bis Fig. 5.5 wurden die interessantesten Spannungs- und
Verformungsdaten angegeben. Es zeigt sich sofort, dass die beiden Theorien
hinsichtlich der Spannungen und des Verformungswinkels k quantitativ und
qualitativ ganz verschieden sind. Nur die Verdrehung 9 des Querschnitts
stimmt in den beiden Theorien gut überein. Experimente zeigen, dass die
Theorie, gestützt auf die Hypothese der verformbaren Profillinie, der Wirklichkeit

sehr nahe kommt. In einer nächsten Veröffentlichung wird noch der Fall
erörtert, in dem eine bestimmte Zahl gut aufgestellter Querschotten im Träger
eine Situation hervorrufen, wobei der Theorie der starren Profillinie gefolgt
werden kann.

Infolge der Wölbbehinderung im Querschnitt x 0 entstehen in beiden
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Fig. 5.2. B und ae Funktionen von x.

verform. Profillinie

unverform. Profillinie -
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1200

800

400

r^:lmrr1000 2000 000 5000
Fig. 5.3. Q und re Funktionen von x.

Theorien Störspannungen, die man hinsichtlich der Bredtschen Schubspannung

(rb 5 N/mm2) als gross bezeichnen kann.
Für die maximale Vergleichspannung nach Mohr-Guest (oidmax) in der

Einspannstelle gilt:

(5.1)CTb
^idmax
crsuidmax
rrb^idmax

1,07,

1,80. (5.2)
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Ausserdem ist auf die Biegespannungen Rücksicht zu nehmen, die, nach der
Theorie der flexiblen Profillinie, bei einem Abstand von ungefähr 500 mm der
Einspannstelle maximal sind. Diese Spannungen kann man aber bestimmt
nicht vernachlässigen.

Die Störung hinsichtlich der Bredtschen Theorie ist in einer bestimmten
Distanz der Einspannstelle verschwunden. In der Theorie mit verformbarer
Profillinie ist diese Entfernung viel grösser als in der Theorie mit starrem
Querschnitt (2300 mm bzw. 360 mm).

Im Gegensatz zur Theorie für starre Querschnitte gibt die Verformbarkeit
der Profillinie auch in der Gegend der Einleitungsstelle des Torsionsmomentes
Abweichungen der Bredtschen Theorie. Diese Abweichungen treten auf, weil
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die Belastung mit zwei Kräften P nach Abb. 5.1 nicht nur ein Torsionsmoment
M, sondern auch ein transversales Bimoment Q verursacht, das in seinem
Absolutwert ebenso gross ist wie M. Die dadurch hervorgerufenen
Biegespannungen in den Platten sind, zusammen mit den Schubspannungen,
verantwortlich für eine grosse Zunahme der maximalen Vergleichsspannung im
Querschnitt x l hinsichtlich Ghidmax\

^p^ 2,00. (5.3)
®id max

In einer Entfernung von etwa 500 mm des belasteten Querschnitts x l treten
sehr grosse axiale Membranspannungen auf (siehe Fig. 5.2). In bezug auf die

Störung beim Rande x l kann man schliessen, dass diese auf 2300 mm des

Randes keinen merkbaren Einfluss mehr ausübt.
Im nächsten Kapitel wird näher auf die anhand des gegebenen Beispiels

festgestellten Erscheinungen eingegangen. Ausserdem wird eine in der Praxis
brauchbare Form der wichtigsten Ergebnisse angestrebt.

6. Allgemeiner Vergleich der Theorien

6.1. Die Störungslänge

Wie aus den im vorigen Kapitel aufgeführten Abbildungen hervorgeht,
haben die Störungen hinsichtlich der Bredtschen Theorie einen «dämpfenden»
Charakter. In einer Entfernung x von der Einleitungsstelle der Störung wird
die Grösse der Störung in der Theorie mit starrer Profillinie bestimmt vom
Wert e~^x und in der Theorie mit verformbarer Profillinie vom Wert e"0LX. Da
e~^ 0,04, wird die Störungslänge l0 - ziemlich arbiträr - definiert durch:

A a0

P0=~. (6.2)
a0

Man beachte, dass in (6.2) a0 statt a benutzt wurde; weil e<< 1 (siehe Fig. 6.3)
sind a und a0 nahezu gleich.

Wenn v 0,28, so ergibt sich mit den Formeln für a0 und A :

1% Möy-^^ + M,) (M2 + M1), (6-3)

% 3^1|/^6f6I(61«1 + 6ata)(61«l + 6aQ)=-i (6.4)

und für den Spezialfall tx t% t erhält man:

ig=M5(61 + 6a), (6.5)

ZS 3,31|/J616a(61 + fta). (6.6)
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Für das Beispiel im fünften Kapitel gilt somit: ls0 =362 mm und lf0 =2310 mm.
Das Gebiet, in dem die Effekte der Randstörung merkbar sind, ist für Träger
mit starrem Querschnitt erheblich kleiner als für Träger mit verformbarem
Querschnitt.

Für t^t^t gilt:
Ä 1/2e 0,439U {b! + bs)t. (6.7)

In Fig. 6.1, 6.2 und 6.3 sind l%jb1, V(ijb1 und e dargestellt in Abhängigkeit von
b2jb1 und tjb2, unter der Bedingung t1 t2 t. Aus Fig. 6.3 geht hervor, dass
e < 1 für reelle Massen des Trägers.

Wenn die Länge l des Trägers grösser ist als Z0, werden der Spannungs- und
Deformationszustand an einem Rand des Trägers nicht oder nur sehr wenig

Fig. 6.1. Zg/öj. Funktion von b2jb1.
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bi

Fig. 6.3. e Funktion von b2fb1.

von den Bedingungen am anderen Rand beeinflusst. Ein Träger mit l>l0
wird als «unendlich lang» bezeichnet.

6.2. Das axiale Bimoment B bei Wölbbehinderung

Wird ein Träger, der sich als unendlich lang betrachten lässt, im
Querschnitt x l mit einem Torsionsmoment M belastet, so wird im allgemeinen
eine Verwölbung der Querschnitte auftreten. Wird die Verwölbung im
Querschnitt x 0 völlig behindert (siehe Fig. 5.1), so wird bei x 0 ein axiales
Bimoment B (0) auftreten. Annäherungsweise gilt:

^M -^iYeM,

und deshalb:

Bs(0)

J5'(0) =-±^eM

i5s(0)

(6.8)

(6.9)

(6.10)

Aus Fig. 6.3 und Gleichung (6.10) geht klar hervor, dass bei Behinderung der

Verwölbung zwischen den axialen Bimomenten Bs (0) und Bf (0) grosse
Unterschiede auftreten können. Diese Behauptung ist augenfällig, wenn man (6.8),
(6.9) und (6.10) spezifiziert für t1 t2 t:

5S(0) 0,462 (äj-ft^If, (6.11)

Bf{0) 0,405 (&1-62)]/-^-(61 + &8)*Jlf, (6.12)

(6.13)

Man kann darlegen, dass |S(0)| im vorliegenden Fall den Maximalwert von
\B(x)\ darstellt.
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Die infolge B (0) auftretende maximale axiale Normalspannung in den
Eckpunkten des Trägers, cax(0), kann mit der Schubspannung rb nach Bredt
verglichen werden.

Da «..<°> -iraTM5 (6-14)

wird für einen Träger mit konstanter Wandstärke gelten:

<xW 2,77/x, (6.15)

rf

und deshalb:

^i°) _7584/xj/e (6J6)

44S 2>83^- <6-17)
<x (°)

6.3. Das transversale Bimoment Q bei Wölbbehinderung

Wenn im Querschnitt x 0 die Verwölbung behindert ist, so treten
hinsichtlich der Theorie nach Bredt zusätzliche Schubspannungen re auf, deren
Grösse durch das transversale Bimoment Q (0) bestimmt ist. Die nähere
Untersuchung ergibt:

Q>(0)=tiM9_ (6.18)

Q*(0) 4:€fjiM, (6.19)

Qf(0)
Qs(0)

4e. (6.20)

Die Schubspannungsverteilung im Querschnitt lässt sich mit (3.32) und (3.33)
einfach bestimmen.

6.4. Die Vergleichsspannung Gid bei Wölbbehinderung

Wir erwähnen die Ergebnisse für die Vergleichsspannung Gid nach Mohr-
Guest im Querschnitt in dem die Verwölbung behindert ist und beschränken
uns dabei auf Träger mit konstanter Wandstärke t1 t2 t. Wenn b± ^ b2 (und
deshalb jtx^O) und v 0,28, dann ergibt sich:

Jid 2yl + 2^ + 2,92^2, (6.21)

rb
i* 2/l + (8+15,36/x)iLte + 16/x2e2. (6.22)

6.5. Die Plattenbiegung bei Wölbbehinderung

Aus den graphischen Darstellungen in Kapitel 5 geht hervor, dass bei
Wölbbehinderung für Träger mit verformbarer Profillinie in einer Entfernung
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von etwa x0 \ l0 von der Einspannstelle maximale Biegespannungen Gb in
den Platten auftreten. Wenn t± t2 t und b1> b2 gilt:

*&> -15,5^«0^ -48,7^^. (6.23)

Wie aus (6.23) ersichtlich sein wird, sind diese Biegespannungen sicherlich
nicht immer vernachlässigbar.

6.6 Effekte infolge eines transversalen Bimomentes Q

Aus dem Beispiel im fünften Kapitel folgt, dass die Beanspruchung durch
ein transversales Bimoment Q für Träger mit verformbarer Profillinie zu einer

ganz anderen Spannungsverteilung Anlass gibt als von der Bredtschen Theorie
vorausgesagt wird. Wenn der Querschnitt starr ist, gibt eine Belastung Q keine
zusätzlichen Spannungen.

Für die Belastungslage in Fig. 5.1 ist Q dem Torsionsmoment M gleich.
Für Träger mit tx t2 t gilt für die maximale Biegespannung Gh in
Längsflächen bei x l:

4(i) 12 «0^=37,7^. (6.24)

Die im Querschnitt x l auftretenden maximalen Schubspannungen sind ihrem
Absolutwert nach zweimal so gross wie rb.

Die axialen Membranspannungen, die für x l gleich null sind, erreichen
ihren Maximalwert in einer Entfernung von etwa x0 ^l0 vom belasteten
Rand her. Für diese Spannungen gilt:

"kfrf-*-») ,_ 1,08 «,***-• -3,39*£». (6.25)
T t t In

6.7. Die Torsionssteifigkeit

Auch die Torsionssteifigkeit ist von den Randbedingungen und der
angewandten Theorie abhängig. Zur Berechnung der Steifigkeit betrachten wir
einen Träger mit Länge l grösser als l0, der belastet ist wie in Fig. 6.4
angegeben ist.

M M «-*-*-
B B

Q Q

-•*•¦- M M

B =o
Q =o

—-—0(o) -— Ö(l)

Fig. 6.4. Träger mit Länge l>l0.

Für Träger mit starrer Profillinie ergibt sich:

M —
9(l)~9(0) =—l + iJL(l-e-Xl)B, (6.26)
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wahrend für Trager mit verformbarer Profillinie gilt:

M d P.0(l)-8(O)=—l + r(l-f1-fi)B-£4,1Q, (6.27)

mit 0! e-«*1 sin (a01), (6.28)
</,2 e-«»1 cos (<x0l). (6.29)

7. Schlussbemerkungen

Der Vergleich von Ergebnissen, unter Zuhilfenahme zwei verschiedener
Theorien für dünnwandige Trager, zeigt klar, dass das Deformieren oder nicht
Deformieren der Profillinie grundsatzliche Unterschiede mit sich bringt.
Manchmal wird falschlich die Theorie für Trager mit unverformbarem
Querschnitt angewandt.

In der Praxis ist Unverformbarkeit der Profillinie nur annähernd herstellbar,

wenn genügend viele Querschotte angebracht worden sind. Die obige
Darstellung zeigt, dass derartige Querschotte nicht immer unbedingt eine
Besserung des Spannungszustandes mit sich bringen. Die in 5. studierte
Konstruktion zeigt zum Beispiel, dass die Spannungen in der Nahe der Wolb-
behinderungsstelle bei einem Trager mit unverformbarem Querschnitt (also
mit vielen Querschotten) um etwa 70% hoher sind als bei einem Trager mit
verformbarer Profillinie (also ohne Querschotte). Das Beispiel zeigt auch,
dass ein Querschott beim Einfuhren einer Torsionsbelastung einen positiven
Effekt hat.

Mit der Theorie für Trager mit verformbarer Profillinie kann die Wirkung
von Querschotten auf die Spannungen und Verformungen analysiert werden.
In einer folgenden Veröffentlichung soll darauf naher eingegangen werden.
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Zusammenfassung

Mit zwei verschiedenen Gruppen von Voraussetzungen über die Verschiebungen

ergeben sich zwei Torsionstheorien für dünnwandige Kastenträger mit
Rechteckquerschnitt, nämlich eine Theorie, bei der die Profillinie als starr
angenommen wird, und eine Theorie, wobei eine gewisse Verformung der
Profillinie möglich ist. Die Analysen beruhen auf dem Prinzip der minimalen
potentiellen Energie. Anhand eines konkreten Beispiels werden die
charakteristischen Unterschiede zwischen diesen Theorien untersucht. Die Ergebnisse
werden auf Träger mit willkürlichem Rechteckquerschnitt verallgemeinert.

Summary

From two different groups of conditions about displacements, two torsion
theories of thin-walled box-girders of rectangular section are resulting. In one

theory the profile-curve is assumed to be fixed, in the other a certain deformation

is possible. The analyses are based on the principal of minimum potential
energy. The characteristic differences between both theories are demonstrated
by an example. The results are generalized for girders with arbitrary rectangular
sections.

Resume

Avec deux groupes differents de conditions de deplacement on obtient deux
theories de torsion pour les poutres en caisson ä sections rectangulaires: une
premiere dans laquelle la ligne du profil est consideree comme fixe, et une
seconde oü une certaine deformation est possible. Les analyses se basent sur
le principe de l'energie potentielle minimale. Un exemple concret illustre les

differences caracteristiques entre les deux theories. Les resultats sont gene-
ralises pour des poutres ä sections rectangulaires arbitraires.
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