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Free Vibration of Curved and Straight Beam-Slab or Box-Girder Bridges

Vibrations de ponts ä section en T ou en caisson, courbes ou droits

Schwingungen gekrümmter oder gerader Plattenbalken- oder Kastenträgerbrücken
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Introduetion

This paper describes the application of a finite strip method to the deter-
mination of the natural frequencies and modal shapes of undamped Vibration
of curved or straight singel-spanned bridges (Fig. 1 a) made up of thin plates
connected together along circumferential (longitudinal) edges.

ez?
Fig. la. A Curved Box Bridge and It's Idealization into Strips.

The static analysis of such right bridges has been presented by Chu and
Dudnik [6], using the elasticity theory developed by Goldberg and Leve [7],
and by Cheung [3], using the finite strip approach, and very good accuracy
has been demonstrated in all the numerical examples.

The static analyses of curved girder bridges have been presented by Bell
and Heinz [1], using a slope-deflection Fourier series method. However, an
approximation has been introduced since the torsional and bending rigidities
of each girder must be assigned somehow to account for the composite action
of the plate and girder. Furthermore, the method presented is unsuitable for
the analysis of box girders. Recently, the writers [2] have successfully applied
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the finite strip method to the static analysis of curved box girder bridges. In
the present paper, the dynamic analysis of such bridges will be dealt with.

In this method, the plates are divided into strips extending from one support
to the other. Displacement functions given in the form of the product of a
Fourier series in the circumferential (longitudinal) direction and a simple
polynomial in the transverse direction can be chosen for the displacements
u, v and w and the stiffness and mass matrices of a strip can be formulated
according to the usual finite element procedure. By virtue of the orthogonality
of the Fourier series, all the terms of the series uncouple and only small
matrices are needed for the eigenvalue Solutions of each term.

The general formulation of stiffness and mass matrices has been presented
in detail eisewhere [4], [5], and shall not be repeated here. Also the straight
strip will simply be interpreted as a special case of the curved strip, in which
the radius of curvature r is infinitely large, the subtended angle a infinitely
small, and the product r a is equal to the span of a straight strip.

In a paper by Wittrick and Williams [8], a similar approach is used to
obtain the natural frequencies of rectangular stiffened plates. However, since
the governing differential equations (for simply-supported case only) were
solved exactly, the resulting stiffness matrix contains transcendental terms
and therefore, a complicated eigenvalue Solution had to be used.

Stiffness and Mass Matrices

A. Curved Interior and Exterior Webs of Box Girder

Each web is in general a part of a conical frustum (Fig. lb), but becomes a

cylindrical panel when it is in a vertical position. For such a curved surface
the membrane and bending actions are coupled, and the stiffness matrix is

of the sixe 8x8.

Fig. Ib. A Conical Web Strip.



FREE VIBRATION OF BEAM-SLAB OR BOX-GIRDER BRIDGES 43

Displacement functions:

U^ —
m-rrd

»-

OL

mird
a

(i-|)%m+(|«,m]

v™ =[(1-i)v<»+(d)v*]
\L 3 z2 2z3\ / 2 z2 z3\

/3 z2 2z3\ /z3 z2\ 1

(1)

mrrd

Strain displacement relationship:

du
Jz

\ dv wcoscf> + usin(f>

r dd r
1 du

y
dv vsvci<f)

r dd dz r
d2w

"Jz2
1 d2w cos<f) dv sin<j> dw

r2 d29 r2 dd r dz

(la)

€z

€9

7z9
» •

Xz

xe

Xzß
m

2 -
1 02w sin</> dw cos^> dv sin</>coS(£

r dzdt dz ¦)j

[5m]{8m}> (2)

where {Sm} is equal to {uim, vim, wim, i/jim, ujm, vjm, wjm, tfjjm}T.

Property matrix:

[2>]

Kz K2 0 0 0 0

K2 K9 0 0 0 0

0 0 Kzd 0 0 0

in which

A — -:

0 0 0 Dz D2 0

0 0 0 D2 D0 0

0 0 0 0 0 DzQ

Fat

(3)

D, Ej*
i2(i-v,vey

K* veKz,

D2 =vgDs,

l~vzv6

\2{\-vsveY

KzB Ctzet,

D.fl
12

The strain matrix [Bm] and stiffness [Sm] can be found in reference [2],
while the corresponding mass matrix [mm] (8x8) is given in Appendix I.
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B. Top and Bottom Flanges

The top and bottom flanges of the box girder are flat plates which are
curved in plan (Fig. lc), and therefore the membrane and bending actions
can actually be uncoupled and treated separately first and then subsequently
combined together. Such a formulation has been attempted and the stiffness
matrix can be found in reference [2].

V=

Fig. lc. A Flange Strip.

However, it is much easier, from the programming point of view, to com-
pute the flange strip stiffness and mass matrices directly from those of the
web strip. In such cases, the angle <f> (Fig. lb) would be simply taken as equal
to 90°.

The stiffness matrix and mass matrix of a strip are given by the following
well-known relationships:

[Sm]=UBmr[D][BJdA, (4)

[mm]=jPh[Nmr[Nm]dA. (5)

Eqs. (4) and (5) refer to matrices for the local coordinate system, and such
matrices must be transformed to the global coordinate system before assem-

blage.
The transformation matrix for a strip can be given in terms of the angle

of inclination </>, such that

sin</> 0 cos<£ 0

0 10 0

cos</> 0 — sin</> 0

0 0 0-1
where [R]

(6a)

(6b)

and {8m}, {8'm} are the displacements in the local and global coordinates respectively.

The transformed stiffness and mass matrices will have the form of

and
[S'm]=[W[Sm][R]

(8)
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Once the transformed matrices of a strip have been computed, they are
assembled into overall stiffness and mass matrices in the same way as for
those of a plane frame, and the resulting equation

{[S'm\-a>*\_M'm\}{A'm} 0 (9)

solved by any eigenvalue Solution.

Some Illustrative Numerical Examples

To illustrate the application of the preceding theory and to demonstrate
its accuracy, a selection of numerical examples for both straight and curved
bridges will now be presented.

Table 1. Natural Frequencies of a Stiffened Panel (l 6b') in the Rayige 0<n^0.1

_J^o.o^b, n ri n __

Section of
the panel

Tr i0.02b' 0.5b'
fi

i i

1
1

'o.5bH* .,•
m - b- - -• s +>m J

Mode
Number

ri
col

VWp Wave Number
m

Type of
Symmetry

Finite Strip Reference (8)

1 0.0287 0.0286 A
2 0.0292 0.0291 S
3 0.0365 0.0359 S
4 0.0366 0.0362 A
5 0.0394 0.0391 S
6 0.0396 0.0395 2 S
7 0.0411 0.0410 2 A
8 0.0504 0.0504 3 S
9 0.0521 0.0519 3 A

10 0.0557 0.0555 2 S
11 0.0639 0.0636 1 A
12 0.0643 0.0641 4 8

In Table 1, the natural frequencies of a rectangular simply supported
stiffened panel have been computed (using rectangular strips) and compared
against the results of Wittrick and Williams [8], and the two sets of results
are found to be nearly identical. A total of 12 strips is used for this problem,
although if symmetrical and antisymmetrical conditions were used, it would
only be necessary to use 6 strips in the computation.

The circular frequencies of a curved box girder bridge (Fig. 2 a) were
computed by the curved strip program and the frequencies are presented in Table 2.
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44'

78' I Radian

Fig. 2 a. Plan of a Curved Box Girder Bridge.

44'

100

Fig. 2b. Plan of a Straight Box Girder Bridge.

,8"

-6"

18'

Fig. 2 c. Section of the Box Girder Bridges.

Table 2. Circular Frequencies of a Curved Box Girder Bridge (E=l, v 0.16, p — 1)

Longitudinal
Mode

Circular Frequencies

wi co2 cu- o>4 *>5

m 1

m 2

m 3

m 4

0.002620
0.008002
0.009436
0.010608

0.004249
0.008605
0.010257
0.011556

0.008066
0.009107
0.011821
0.013459

0.008501
0.011427
0.012246
0.013523

0.008553
0.013644
0.020046
0.025243

The modal shapes corresponding to the given frequencies are sketched in
Fig. 3.

Each sketch is prepared directly from the eigenvector output which includes
all the nodal displacement parameters of the box girder.
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cu 0.002620 (m 1) cü 0.004249 (m 1)

oo 0.008002 (m 2) oo 0.008605 (m 2)

oo 0.009436 (m 3) oo 0.010257 (w 3)

oo 0.010608 (m 4) oo 0.011556 (w 4)

Fig. 3. Modal Shapes of a Curved Box Girder Bridge (E=l,v 0.16, p 1).

Since the writers are unaware of any previous work on this type of structure,
no comparison is offered. However, in order to test the correctness of the
curved strip program, it was used to analyze a straight bridge (Fig. 2 b) by
assuming the subtended angle to be 0.005 radian and the mid-radius of the
bridge to be 20 000 feet, so that the mid-circumferential span works out to be

100 feet. The results are then compared with those obtained from the proven
straight strip program in Table 3 and the agreement has been found to be

excellent for all the frequencies.
The fourth example involves the frequency analysis of the same curved

box girder bridge (Example 2) with a concentrated mass attached to the top
of the mid-section of the outer web. This concentrated mass, which can be

due to presence of a heavy stationary vehicle, is assumed to be equal to one
eighth of the total mass of the structure. From Table 4 it is possible to conclude
that the additional mass will, in general, lower the natural frequencies of the
bridge. However, if the concentrated mass is placed near or on a nodal line,
there will be little or no effect on the frequencies. For example, no change can
be observed for the frequencies which correspond to the antisymmetric modes.
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Notations

a length of the strip.
[B] strain matrix.
d width of the strip.
\P\ property matrix.

v0>GzS
z\ orthotropic material properties.

[m] strip mass matrix.
[22] transformation matrix.
r,6 polar coordinates.

USi inner and outer radius of a strip
[S] strip stiffness matrix.
U,V,W displacement functions.
OL subtended angle
{§} displacement parameters.
60 circular frequencies.
P mass density.
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Appendix I

Mass Matrix of a Curved Strip

[mm]=pt-

"(n^-J)

*$*++*)
./6-i0. 13 \

»(*sa++£>'<) di^+w^)
'(iW-?)

'&*+$
Jdd a 9 \
d\m8++Tör*j *(*>a++m')

-»(ros++m'<) -*(4ös++mr<)

S</) sin<f).
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symmetrical
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Summary

The natural frequencies of curved and straight beam-slab or box girder
bridges have been computed by the finite strip method. The bridge plates are
divided into a number of curved or straight strips extending from one support
to the other. By assuming suitable displacement functions for the u, v and w
displacements it is possible to formulate the stiffness and mass matrices of a

strip. An eigenvalue Solution of the assembled overall dynamic stiffness equations

will produce the desired frequencies. The stiffness and mass matrices of
the straight strip can be obtained directly from those of the curved strip by
changing certain variables.

Resume

Les oscillations propres de ponts ä section en T ou en caisson, courbes et
droits, ont ete calculees par la methode des bandes finies. Partant d'un appui,
les dalles du pont sont divisees en un nombre de bandes courbes ou droites.
En supposant des fonctions de deplacement convenables pour les deplacements
u, v et w on arrive ä formuler les matrices de rigidite et de masse d'une bände.
Une Solution des valeurs propres des equations dynamiques de rigidite pro-
duit les frequences desirees. Les matrices de rigidite et de masse des bandes
droites peuvent etre obtenues directement de Celles des bandes courbes en
changeant certaines variables.

Zusammenfassung

Die Eigenschwingungen gekrümmter und gerader Plattenbalken- oder
Kastenträgerbrücken wurden mittels der Methode der finiten Elemente
berechnet. Ausgehend von einem Auflager werden die Brückenplatten in eine
Anzahl gekrümmter oder gerader Streifen unterteilt. Unter der Annahme
passender Verschiebungsansätze für die u-, v- und w-Verschiebungen ist es

möglich, die Steifigkeits- und Massmatrizen eines Streifens zu bilden. Eine
Eigenwertlösung der dynamischen zusammengesetzten Steifigkeitsgleichungen
liefern die Nutzfrequenzen. Die Steifigkeits- und Massmatrizen der geraden
Streifen können durch Austausch gewisser Variabler direkt aus denen der
gekrümmten Elemente gewonnen werden.
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