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Dynamic Response of Beams to a Traveling Mass
Réaction dynamique de poutres sur une masse mouvante

Dynamische Reaktion von Trigern auf eine sich bewegende Masse

E. A. ZAGUSTIN D. H. YOUNG
Associate Professor, Civil Engineering Professor, Engineering Mechanics Depart-
Department, California State College at ment, Stanford University, Stanford,
Long Beach, Long Beach, California California
Introduction

Various studies have been made in the past in order to determine the
dynamic behavior of bridge structures under the influence of moving loads.
Let us mention some of the most important papers written on this subject.
In 1847 R. WiLLis established the differential equation for the deflection of a
single span beam, neglecting the inertia of the beam and considering the
moving load as a concentrated mass [1]. An exact solution of this differential
equation was given by G. STOKES in 1849 [2].

In 1905, A. N. KryLov [3] gave a solution assuming that the mass of the
load was negligible in comparison with that of the beam. In 1923 S. P.
TiMOSHENKO [4] solved the problem of a pulsating force traversing a single
span beam with constant velocity. C. E. INGLIS in 1924 [5, 6], made experi-
mental studies of the transverse vibrations of a single span bridge. A. N.
Lowax in 1935 [7], investigated the case in which the velocity of the traversing
force is not constant. In 1937 SCHALLENKAMP [8] studied the case of a mass
moving with constant velocity along a simply supported beam. R. S. AYRE,
G. Forp, and L. S. JACOBSEN, in 1950 [9], studied the vibrations of a two-span
beam under the action of a moving force of constant magnitude. In 1951,
R. S. AYrE, L. S. JacosseN and C. S. Hsvu [10] published ‘“Transverse vibra-
tion of one and two span beams under the action of a moving mass load”’.
This investigation was experimental, with a theoretical analysis for some of
the simpler cases. In 1958 RyAzANovaA [11] studied the case of a moving mass
on a simply supported beam. Her approach is more sophisticated than
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SCHALLENKAMP’S, since it is more general, can be applied to any beam, and
requires less laborious computations.

The work presented here is intended to study the problem of a mass moving
‘with constant velocity along a beam having other than simply supported
ends. As an example of such a case, a cantilever beam will be used. Thanks
to the availability of the modern digital computer, it has been possible to
obtain solutions with reasonable accuracy.

All computations involved were carried out at the Stanford Computation
Center on an IBM 7090 computer.

Derivation of Integral-Differential Equations of Lateral Vibration of a Beam
Under a Moving Mass

Let us consider a beam along which a mass particle is moving as shown
in Fig. 1.

\¢

(x,1)
¥ y(S,1)

]

y(x,t)

Fig. 1. Moving mass, of weight P, on a cantilever beam. The position of the moving mass is
described by S(¢).

The basic idea [11] to be used in the derivation of equations of motion for
the beam is D’Alembert’s principle. To derive these equations, let us consider
for the time being that a mass is moving on a massless beam. Then j (x, S)
represents the deflection of the beam at x under a unit load, the deflection of
the beam due to the force P (1 —g/g) will be

vt = P(1-9)j@9). (1)

where § is a prescribed function of time. The deflection of the beam under
the point of application of the mass is obtained by substituting =S in the
above equation, i.e.,

y (1) = P(I—%@)ﬂs, 9). (2)

To obtain the solution, we must solve the two differential equations (1) and
(2) with two unknowns y (t) and y (x,t). To accomplish this we must first solve
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(2) for y (t) with the initial conditions prescribed only under the mass, viz: at
t=0, y (t) and y (t) are given. When the solution for y () has been found it can
be substituted into (1) and we have the general expression for the deflection
of a massless beam.

Let us now study the problem of free vibrations of a beam with mass. We
consider a beam with any symmetrical cross section and any arbitrary distri-
bution of mass and stiffness, and we also allow for the existence of concentrated
loads fixed to the beam. The length of the beam is divided into small elements
4 n and the force acting on each element is the inertia force given by 4 P =
—pydn, as illustrated in Fig. 2. The deflection of the beam under the force
4 P will be

’ Ay (@,t) = —j(x,n)pgdn.

1 aP= -pyam
v
ﬁw\/\g\/\l )
y n an L
y

Fig. 2. Force acting on each element of the beam in the free vibration problem.

Then, by superposition the deflection due to the distributed mass in the region
0sn=xis

y(x,t) = "Ofpy(t’ n)j (@, n)dn.
Similarly the deflection due to the mass elements in the region x <7< L is
L
y (@ t) =—[pg(t,n)j(x 9)dy.

Hence, the total deflection of the beam due to its mass is given by the sum
of the above expressions, i.e.,

x L

y(x,t) = ~gpy(t,n)7'(x7 n)dn—[pi . m)j(x,n)dy.

T

This can be written in the form
L
2y (t,y) .
y@.t) == [ 40D g n,
P
or, if p is a constant,
L

2
Yy (x,1) =—pf%i(%n)dn- (3)

0

Therefore, the deflection of the beam under a moving mass is given by the
sum of (1) and (3), i.e.,
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L
vt = P12 C00] @) —p [ ELET 0 )y @
0

For the path of the moving mass, we let x=.8 in the above expression and
obtain

L
d?y . 0* .
v = P[1- T80 (5.8 -p [ ZLEj (8,01, @
0

The solution of the problem will be obtained by solving the system of
Egs. (4) and (5) with two unknown functions y (t) and y(x,t). To find the
solution of these equations, let us expand the function j(x,S) in a Fourier

series of eigenfunctions:
[co)

j(@,8) = X a,(8) X, (z). (6)

n=1

To find the coefficients a, (S), we first write an expression for the potential
energy of the beam due to a unit at the point x=.8,

D 0%
H*?f(axz) da. (7)
0
With the notation b, = Lm,,, the above equation becomes
4
4 (9) =2 K ) (13)
b4 j" X2 (x)dx

Substituting this coefficient into (6), it follows that

iL4X(S n (@) (14)
n= b4fX2(x ) dw

Let us now expand y (x,¢) with respect to the eigenfunctions of the free vibra-
tion problem:

y@,1) = 2y, (t) X, (2). (15)

Then the coefficients y,, (¢) will be found by substitution of expressions (15)
and (14) into (4), which yields

ZumoXow = Pli-3 G5
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From the orthogonality relation of the eigenfunctions, it follows that

L L
a2 d2
f{z Z;Z(t) X, (n)}Xn (n)dn = El/tnz(t)X?‘ (n)dn, (17)
0 0

n=1

which when substituted into (16) yields

4 2
EnoXm =5 et - 20 SO
b4fX2dx
F a2 X2 (q)d e
5 x, [ PAa 0 Xa )
n=1 i b4jX2dx

From this expression the following differential equation for y, (¢) is obtained:

d?y, (t b1 a? P 1 d?
X2 (x)dx
pﬁf 5 (x)dx

where a?=D/p. Solving this differential equation with zero initial conditions,
i.e., when t=0, y, (0) = 0, y,, (0) = 0, we obtain

t
P L2 1y ab, (t—7)
v, (1) = 1= POy 18 ())sin 22T g (20)
apbgfxg(x)dxof{ g di } L
0

where 7 is a dummy variable of integration.
The deflection of the beam under the point of application of the mass is
given by
y () = St)—Zyn t) X, (8). (21)

Then, after substituting into this the expression for y, (f) given by (20), we
obtain

y(t) =

! o
PL2J‘{1_ 1 dzy} X, [(S(H1X,[S@®)] . abi(t—f)d’r. (22)
=1

—_ 5 7 Sin 3
ap J U9 IS e X 0y da L
0

This is an integral-differential equation, which must be solved in order to
obtain y(¢). When v (¢) is known, we substitute it into (20) and obtain the
coefficients y,, (t). Finally, substituting these coefficients into (15), we obtain
the general expression for the deflection of the beam.

The integral-differential Eq. (22) cannot be differentiated twice with respect
to ¢ and thus reduced to an integral equation because the series

i Xa[S ()] X [S (0] 5, b} (1= 1)
Lz
n=1 bZJ‘Xz
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will be divergent after two differentiations. Hence we introduce a new variable
¢ (t) such that

@— @=t T)dT =t -7 T)aT
=0, G=le@d, g0 =[(-nemd.  (23)

Substitution of (23) into (22) gives

t

!(t_T)QD(T)dT =

Psz[ ; ' ]iX"[S(t)]X”[S(T)]sinab%<t_7)d7,

1_793(7) I 2
prgl 4 S ke e v
0

which can be rewritten as

PI f o X, [S@IX, S ab(t=r)

po =1 2 Fyo L2
t

Psz T)ZX (SO, [S( )] .nab?l(t—v-)dT_*_f(t_T)(p(T)dT'

2
pga n=1 b2jX2 L g

Introducing the notation F (t) for the left-hand side of this equation and
L (t,7) for the right-hand side, we have

PIAv X, [S(t)]X [S(T)] b2 (t—7)

5 (25)
PI% =1 fX (x)dx L

Lt,7)=t—7+

sm

L L2

t o
g ry PP {Z X, [SENX,[S()], abd(—7), (26)

If we let =0, it can be seen from (22) that F (t) represents the deflection of
the beam under the point of application of the moving force. In this way,
Eq. (24) can be written as

_ftL (r)dT, (27)
0

which is a Volterra integral equation of the first kind [13] that cannot be
reduced to an integral equation of the second kind. Using the expression for
F (t) together with (23) in (24), we obtain

y(t) =F(t)-

t ©
P12 X, [SH]IX, [S()] . ab2(t—r7)
(p('r) n L Sin e 3 dr. (28)
gf’“of z b2 [ X2 (@) da -
0
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The problem now consists in solving the system of equations given by (23)
and (27), i.e.,

=f (t—7)p(7)dr,
’ (29)

F@)=[L{tr)p(r)dr,

D,

where the unknowns y (¢) and ¢ (f) have to be determined by numerical proce-
dure. To solve these equations by a numerical method, we will replace them
approximately by a system of algebraic equations. Let us divide the interval
of integration (0,t) into n equally spaced points =y,..., 75y, Tg,.--, T, i sSUCh
a way that in the middle of the interval (r,_;,7;) the function L (¢,7) does not
change sign. Assuming that the unknown function ¢ (v) has a constant value
in each interval, we obtain

F(7'1) = ¢1§L(T1,t)dt7

F(T2) =(Pl.fL(Tz,t)dt+¢2fL(T2:t)dt’
o (30)
F(T3 —(PIIL T3>t)dt+¢’2.’.L 7'3’ dt+¢3J‘L(73>t)dt3
Tk
F(Tk) = 9916[11(let)dt'f“(szL(Tmt)dt"‘ c +§DkJL(T}c,t)dt-

Th—1

From this system of equations we can find the values of ¢;, 5, ..., ¢, and then
the values of y are obtained from

Y, = (Pldf (r,—1)dt,

Yo = ¢1I(72—t)dt+¢2f(72—t)dt,
(31)
Ys = <P1f 3—1) dt‘f“sz T3 —1) dt‘*“Psf(Ta'“t ) dt,
Tk
yk—qolf(fk—t dt““sz g—t)dt+ - +op [ (r,—1) dt.

Tk—1

When the values of ¢ (7) and y (r) are known, the deflection at any point of
the beam is obtained from Eqgs. (20) and (15).

Mass Particle Moving with Constant Velocity on a Simply Supported Beam

The eigenfunction for a simply supported beam is

X,(8) = sinnw%.
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For a mass moving with constant velocity S=Vt, and the above expression

becomes
X, (8S) = Sinnrrj;—}.

Substituting these expressions into those for F () and L (¢,7), given by (25)
and (26), we obtain [11]:

g L? . nth . naVr . n2na2(t—r)
F (1) —z(yL)aw fz sin ——sin ' dr, (32a)

(32b)

P\I2\ 1  naVt, naVr, n2a?(t—7)
Lt 7) = (t—7)+2(yL)a7T Zﬁsm——L———sm 7 sin T ,
where p g =1y is the specific weight per unit length of the beam, and y L is the
total weight of the beam. Integration of (32a) yields

Sinnert . (naVi )+ (nzvr?at
7 {sm 7 S 2
n2 nnV n2nxla

2( L T )

(33)

. naVi —gin n2a2at
3 L s 72 }

2(ner 7’&2172&)

L T L

while integration of (32b) between the lower limit 7, and the upper limit =,
yields

nwV

. T
Tu 1 P\ 2 hotd Sln—————L
.;{LU,T)dt:(T"—TZ){T—E(7u+7l)}+2(yl)aﬂ Z >
n=1
. nwV n2n2a n2alar . nnV n2nla n2n2ar
{Sln[T+_LT u“*ﬁ_]_s [ LTIz )Tl_ E ]
nwV n2n2a
. naV n2x2a nenlar . naV  n2x2a nenrlar
Sm[ R I KR 7 ]_Sm[T—_LTTl"'“‘IT—]
- Q(nwV nzwza) }’
L Iz

where P/y L is the ratio between the weight of the traveling mass and the
weight of the beam. Using expressions (33) and (34) in (30), and solving this
system of equations on the computer, we obtain values of ¢, (7). When these
are substituted into (31), we obtain the values of the deflection of the beam
under the point of application of the mass.
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Mass Particle Moving with Constant Velocity on a Cantilever Beam

Let us consider here the problem of a mass moving along a beam which
has the eigenfunction?)

Xn(g) = Chmng_cosmng——gn(Shmng_SIHMng),

where £ =2/L, m,, and 5, are obtained from the tables [14]. To solve this
problem, we must first find the corresponding expressions for F (v) and for

Tu

{ L (t,7)dt and use them in (30), from which we determine the values of ¢y (7).

7l
Substituting the eigenfunction X, (x) into (26) and computing the integral
1) L (¢, 7)dt, we obtain after several simplifications the following expression:

Tl

Vr

© X, |m,—

Tu 1 P 12 n( nL)
-_!;L(t,'r)dt = ('ru—’rl) [T—E(Tu_ﬁ)] +')—/—L——E‘nzl—“—}z%———

a

V'Tl V'Tl . VTl am% ('T—’TZ)
s {Xn (mn T) -+ Ccos (mn —L——) — 8% Sin (mn T)} COS —‘L‘—z——

L2 X Vr, Vo, 5 v
[a[m%_;_(zé)z] [{ n(’mn 7 )+cos(mnT)— » SIN (mnT

+ KI5 [{(1—8 )eXp(m VT“)
2a2mn[mi+(y&£2] " "L
2 (o
—(1+3,) exp( —m, Vlj“)} sin amnl(;rz Tu) (35)
2 (_
{18 esplm 7)1 510 o i 28

" 12 [cos(m V7u+amﬁ(7—7u))_cos(m VTl_l_am?z(T"Tl))
e | R e A I
2 _ 2 —
-3, {sin (mn VLT“ +4 m“g; T“)) —sin (mn VZZ +2 an(; Tl))}]
L2 [cos(—m V’ru+a’m?b(7'—'ru))
Qamn[m +Ka£] “ L L
Vr, am?(r—m)
—cos(—mn Ll Vi Z)
2 _ 2 —
_s, {Sin (Mn Vlz'u _ amng-z 'Tu)) _sin (m V= _amg (7 Tl))}:l]

" L L2

1) The solution described here is also true for other beams with different values of §,.
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Integrating Eq. (25) from 0 to  and comparing it with (26) we obtain

thTdt _fL t—'rdt+gF()

From this equation we conclude that we can get the expression for F (f) by
letting 7,=0 in the terms contained under the summation sign in (35) which,
after some transformations, gives

gL X, (r) [ X, (7)
I

Fir) = (VPL) a?

2 g (0
2(VL2 ¢
o] | miar
_.m cos (mnf)—cos( VL )] (36)
n a -
V L\2
e
m%*(f_[’)“ I 7 am, VL
a

As we recall from page 224, F (¢) represents the deflection of the beam under
the point of application of the force, and when the characterictic value m,
approaches V L/a we obtain the case of a resonance. In this case we must use
L’Hoépital’s rule to evaluate the following expressions:

ami-r . VL
cos (m,, T) — cos ( ) 2 78in (T T)

lim VL) _
mn——>(VL/a) m% . (P’ L)4 4(&)3 2
a a
. VL . [ami~+ V L VL . (VL
Sll’l(mn'T)—am sin |+ — T Cos|—_—7|+sin(—=7
lim 2 =
ma—>(V Lja) mé — (Z_L_)“ 4 (ZE)“ ’
a a

which, when substituted into (36), give for F (7), in the case of resonance

re =05 Zx {2, )+ 3,2 E sin (7]
—9 TVCL—LCOS(VTLT)}

By evaluating (35) and (36) on the computer for different times and substituting
these expressions into (30), we obtain a system of equations for ¢, (7). When
¢ (7) has been determined, we obtain the deflection of the beam under the
point of application of the mass from (31).

As an illustrative example, let us consider the case of a force and a mass
moving with constant velocity along a cantilever beam as shown in Fig. 3a.
Let us take V' =120 ft/sec,

(37)
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) 2
a = ‘/_12 = 20636&—, P 1,
P sec. y L 2

L = 60 ft.,
and assume that the mass particle starts moving from the built-in end. The
beam is divided in ten equal parts and ten terms of the series (35) and (36)
are taken into consideration. The path of the point of application of the mass
as well as the path of the point of application of the force P given by (36)
are illustrated in Fig. 3a, and the numerical values of the path are given in
Table I. The acceleration of the mass is shown in Fig. 3b and the numerical
values of the acceleration are shown in Table II.

%———s=w————lp
—

-
1
N
o]
-
=
N

- 0.05

- 010

- 0.15

Fig. 3a. Path of the point of application of the force (in dotted line) and of the mass (in solid
line) moving with constant velocity V=120 ft/sec on a cantilever beam. The beam has the

following properties: L=460 ft., a:l/ﬁ/;=20636 ft?/sec., PlyL=1/2.

Table I. Numerical values of the defiection due to the mass and the force for different positions =
of the load on the beam described in Fig. 3a

T Yforce ft. Ymass ft. T Yforce ft. Ymass ft.
0.1 1.223 x 104 1.196 x 104 0.6 3.730 x 102 3.341 x 102
0.2 8.634 x 10—¢ 8.349x 10 0.7 5.767 x 102 5.243 x 102
0.3 3.227x 1073 3.073x 10-3 0.8 8.211 x 102 7.591 x 102
0.4 9.241 x 103 8.550x 103 0.9 1.144x 101 1.049 x 101
0.5 2.067 x 102 1.865 x 102 1.0 1.596 x 101 1.632 x 101

Let us take as a second example a cantilever beam with the following
characteristics: L=5m; a=12.8x10~*cm?/sec; Py L=1. The mass particle
moves on the beam with V' =10m/sec. For this case, the path of the point of
application of the traveling force and the traveling mass are shown in Fig. 4a
and the numerical values are given in Table III. Fig. 4b represents the accelera-

tion of the mass at chosen instants of time with the numerical values shown
in Table IV.
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20
VY= () ft/sec?

Fig. 3b. The acceleration of the mass particle for its different positions on the beam.

Table 11. Numerical values of the acceleration of the mass particle for its d@'ﬁerent positions
on the beam. The characteristics of the beam are described in Fig. 3a

T i (ft/sec?) T ¥ (ft/sec?)
0.1 0.096 0.6 1.793
0.2 0.381 0.7 1.606
0.3 0.837 0.8 1.967
0.4 1.755 0.9 2.461
0.5 1.941 1.0 20.940

AN\

~100cm \

y
Fig. 4a. Path of the point of application of the force (in dotted line) and of the mass (in solid
line) moving with constant velocity V=10 m/sec on a cantilever beam with the following pro-
perties: -L=>5m, a=VD[p=12.8 x 10* cm?/sec., Pjy L=1.
The period of free vibration corresponding to the first mode of the beam in 7',=3.5 sec., and,

to the second mode, T,=0.56 sec. Since the mass crosses the beam in 0.50 sec., which is close to
T,, the effect of the second mode of free vibrations is considerable.

Table IT1I. Numerical values of the defiection in the case of a force and mass which move on
the beam whose characteristics are described in Fig. 4a

T YF (cm) Ym (cm) T yr (cm) Ym (cm)
0.1 0.455 0.135 0.6 27.700 13.436
0.2 2.481 0.830 0.7 30.245 18.535
0.3 6.243 2.480 0.8 31.699 22.163
0.4 11.093 5.041 0.9 49.818 26.701
0.5 18.8601 8.552 1.0 112.332 26.121
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g S=Vit ——lp
A

L = 500¢cm —J
- -6000
L _ 4000
L 2000
T T T T T 1/-1 T T 3
| +1000 \j
y=¢(7)

Fig. 4b. The acceleration of the mass particle for different positions on the beam. As we can see
from this figure the acceleration of the mass particle at the free end of the beam is approximately
5¢9, which requires some device to keep the mass attached to the beam.

Table IV. Numerical values of the acceleration of the mass particle which moves on a beam
described in Fig. 4a

T 4 (cm/sec?) T 4 (cm/sec?)
0.1 107.7 0.6 641.6
0.2 340.9 0.7 —468.6
0.3 422.9 0.8 -708.5
0.4 305.5 0.9 1436.0
0.5 455.5 1.0 -5530.1

In this example, the period of free vibrations corresponding to the first
mode of the beam is 7} =3.5sec. and that corresponding to the second mode
is T,=0.56 sec. Since the mass crosses the beam in 0.50sec., which is close to
T,, the effect of the second mode of free vibrations is considerable. This
explains the upward concavity of the path of the mass in the middle part of
the beam. From Fig. 4a we see that there is a noticeable difference between
the effect of a traveling force and that of a traveling mass, which is due mainly
to the characteristic @ =y D/p of the beam and to the large velocity V of the
mass.

As a third example let us consider a beam built-in at one end and simply
supported at the other end, as illustrated in Fig. 5a, with the following cha-
racteristics: L =60ft., a =20636ft.2/sec., P/y L =1/2. The mass particle moves
on this beam with ¥ =120ft./sec. The paths of the point of application of the
traveling mass and of the traveling force, computed by the method described
in this section, are shown in Fig. 5b. From the numerical values of both paths
given in Table V we see that there is a small difference between them.
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- 1x1073
- 2x1073
- 3x10°2
- 4x1073

- 5x1072
y

Fig. 5b.

Fig. 5. Path of the point of application of the force and of the mass moving with constant
velocity I"=120 ft/sec on a beam built-in at one end and simply supported at another end.
The beam has the following characteristics:

L=60 ft., a=VD/[p=20636 ft?[sec., and P/yL=1/2.

Table V. Numerical values for the deflections of the beam described in Fig. sa.

From here we can conclude that there is very small difference between the effects of a
moving force and a moving mass.

T 18Xy, ft. 103Xyr T 13X ym ft. 103X yp
0.1 0.109 0.109 0.6 4.833 4.825
0.2 0.764 0.771 0.7 4.237 4.222
0.3 2.015 2.014 0.8 2.661 2.662
0.4 3.416 3.414 0.9 0.909 0.909
0.5 4.454 4.440 1.0 0 0

Conclusions

The solution of the problem of a moving mass along a beam with arbitrary
boundary conditions is obtained in this paper by an integral equation approach.
This method has the advantage because by using it one can treat the problem
of a mass moving with arbitrary acceleration on a beam which has arbitrary
boundary conditions.

In the example illustrated in Fig. 4a one can see that there is a considerable
difference between the path of the force and the path of the mass, this differ-
ence will be even more pronounced for bigger velocities. In Fig. 5b an illustra-
tion is given of a moving mass on a beam which is clamped at one end and
simply supported at the other end.

This method could be applied to problems such as a moving mass on a
plate resting on an elastic foundation, which has practical applications in the
design of the airports. The same approach can be applied to the problem of a
moving mass with arbitrary acceleration on a beam lying on an elastic founda-
tion, which has important applications for the design of an efficient high-speed
railroad transportation.
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Notation

—_
K

-
~

~—

Displacement of the beam at any point x.
Abscissa of the moving load.
Time coordinate.
Mass per unit length of the beam.
Gravity force (weight of the moving mass particle).
Bending stiffness of the beam.
Length of the beam. ‘
t)=y(8,t) Displacement of the beam under the point of application S of
the mass.
t) Contact force acting on the beam.
, S) Static deflection of the beam under a unit load in place of P (¢).
() The n-th eigenfunction.
Angular frequency of the beam.
Potential energy of the beam.
Acceleration of gravity.
Velocity of the moving mass.
Specific weight per unit length of the beam.
= VD/p.
= pila®.
= Lm,.
d2y
=

—_~
N
N
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Summary

The problem of a mass moving along a beam having other than simply
supported ends has not been given much attention. As an example of such a
case a cantilever beam will be used. An integral equation approach is used
for the response of a cantilever beam to a mass particle moving with constant
velocity on a beam. The obtained solution is true for the case of a concentrated
mass moving with arbitrary accelerated motion on any beam whose eigen-
function has the same form as that of a cantilever beam. This method has the
advantage that it can be applied to a moving mass on a plate and also to
moving masses on plates or beams which rest on an elastic foundation.

Résumé

On n’a pas prété beaucoup d’attention au probléme d’une masse se mou-
vant le long d’une poutre ayant d’autres bouts que ceux qui sont simplement
supportés. Comme exemple on utilise un porte-a-faux. Une équation inté-
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grale approximative est utilisée pour la réaction d'un porte-a-faux sur une
masse partielle se mouvant le long d’une poutre avec une vitesse constante. La
solution obtenue est valable pour le cas d’'une masse concentrée se mouvant
d’une vitesse accélérée arbitraire sur chaque poutre dont la valeur propre a la
méme forme comme celle d’un porte-a-faux. Cette méthode présente 1’avan-
tage de pouvoir étre appliquée & une masse se mouvant sur une dalle et de
méme a des masses se mouvant sur des dalles ou sur des poutres qui reposent
sur une fondation élastique.

Zusammenfassung

Dem Problem einer Masse, die sich lings eines Tréigers mit anderen als
einfach gestiitzten Enden bewegt, wurde noch nicht viel Aufmerksamkeit
‘geschenkt. Als Beispiel eines solchen Falles wird ein Kragarm gewéhlt. Eine
niaherungsweise Losung in Form einer Integralgleichung wird fiir die Reaktion
eines Kragarms auf ein Massenelement verwendet, welches sich mit konstanter
Geschwindigkeit auf einem Trager vorwérts bewegt. Die erhaltene Ldsung
stimmt genau im Falle einer beliebigen beschleunigten Bewegung fiir jeden
Triger, dessen Eigenwert mit jenem des Kragarms iibereinstimmt. Die Me-
thode bietet zudem den Vorteil, dass sie sich auch auf Massenbewegungen
auf einfach oder elastisch gestiitzten Platten anwenden lasst.
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