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Beitrag zum plastischen Kippen von Triigern mit nichtformtreuem

I-Querschnitt
Contribution to the Plastic Tipping of Beams with Non-conformed I-Section

Contribution au déversement plastique de poutres a section en I non-conforme

WERNER WARKENTHIN
Dr.-Ing., DDR

1. Problemstellung

Alle bisher bekanntgewordenen Arbeiten auf dem Gebiet des plastischen
Kippens (siehe Literaturzusammenstellung in [1]) gingen stets von den An-
sitzen der klassischen Kipptheorie aus und setzten einen in seiner Ebene
unverformbaren, d.h. formtreuen Trigerquerschnitt voraus, ohne zu priifen,
inwieweit eine solche Annahme in dem jeweils behandelten Berechnungsfall
gerechtfertigt ist. Die Frage nach der Berechtigung der Annahme formtreuer
Triagerquerschnitte bedarf jedoch fiir das plastische Kippen gerade deshalb
dringend einer Antwort, weil entsprechende Untersuchungen iiber das Tor-
sions- und Kippverhalten diinnwandiger Stibe im elastischen Bereich (siehe
[2]-[8]) gezeigt haben, dass bei aus mehreren Reckteckelementen zusammen-
gesetzten diinnwandigen Querschnitten die Annahme der Querschnittsform-
treue nur bei Vorhandensein bestimmter geometrischer Relationen und einer
bestimmten Mindestzahl von Querschnittsaussteifungen gerechtfertigt ist;
anderenfalls ist die effektiv wirksame St.-Venantsche Drillsteifigkeit geringer
als der nach der herkémmlichen Stabtheorie berechnete Wert G'J ;,. In solchen
Fallen mit nicht ausreichend gewéhrleisteter Querschnittsformtreue errechnet
man deshalb mit den Ansitzen der klassischen Kipptheorie zu hohe Kipplasten.
Letzteres trifft insbesondere fiir gedrungene quersteifenlose I-Triger zu, und
es ist zu vermuten, dass der Einfluss des Verlustes der Querschnittsformtreue
bei diesem Tragertyp im plastischen Verformungsbereich sogar noch stirkere
Auswirkungen auf die Kipplast hat als im elastischen Bereich.

Als Beitrag zur Klarung dieses Problems wird daher im folgenden das
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Kippverhalten von geraden Trigern mit gleichbleibendem, diinnwandigem,
doppelsymmetrischem I-Querschnitt unter reiner Biegung im elastisch-plasti-
scheh Verformungsbereich in Abhéngigkeit vom Grad der Querschnittsaus-
steifung untersucht, wobei fiir die Tridgerenden eine ideale Gabellagerung
angenommen wird.

2. Theoretische Grundlagen

2.1. Kvpp-Differentialgleichungssystem

Fig. 1 zeigt den Querschnitt eines der betrachteten I-Triger vor und nach
Beginn des Kippens.

M, <M,

Fig. 1.

Das wesentliche Merkmal der wihrend des Kippvorganges eintretenden
Querschnittsverformung ist die s-formige Verbiegung des Steges, welche von
der klassischen Kipptheorie vernachlissigt wird. Im Zusammenhang mit dieser
s-formigen Stegverbiegung verdrehen sich die Flansche geringer als der Steg.

Setzt man voraus, dass alle gedriickten Querschnittsteile hinreichend beul-
sicher sind und dass auf Grund der gewahlten Flanschabmessungen ein Drill-
knicken des Druckflansches von vornherein ausgeschlossen ist, so kann man
nach Loos [8] die im instabilen Gleichgewichtszustand aus der Faserschrig-
stellung entstehenden Drillmomentenanteile der Biegenormalspannungen in
den Flanschen vernachlissigen und bei Gabellagerung der Tragerenden den
Kippzustand der betrachteten I-Tréger mit hinreichender Genauigkeit durch
folgendes Differentialgleichungssystem beschreiben:
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Ee I

Do (%)—“(5)]”‘*"13—6‘_—1)—2) EC“(é) =0, (1)
m 2 ” 2 ” Z4M%§
~We" () +1*D¢" (3) - 28 Dpya” 3)+—5 9 (3) = 0. (2)

Y

Die Herleitung und der Nachweis hinreichender Genauigkeit dieser Differen-
tialgleichungen fiir das Kippen wurden von Loos nur fiir ideal elastische Ver-
hiltnisse gegeben. Beide Differentialgleichungen gelten jedoch prinzipiell
ebenso auch fiir Triager aus elastisch-plastischem Werkstoff. Deshalb wurden
hier alle in [8] verwendeten elastischen Steifigkeitswerte durch die entsprechen-
den Grossen bei elastisch-plastischer Verformung ersetzt. Es bedeutet:

M, kritischer Wert des Biegemomentes M, (= Kippmoment).
l Tragerlange.

h Trigerhohe (= Schwerpunktabstand der Flansche).

b Flanschbreite.

t Stegdicke.

tz  Flanschdicke.

3 dimensionslose Koordinate in Tréigerlingsrichtung 2
2
§=7

¢ (3) Kippdrehwinkel, der hier als «Stabdrehwinkel» (d.h. mittlere Neigung)
des Steges an der Stelle 3 aufgefasst wird.

«(3) Winkel, um den der Flanschdrillwinkel kleiner als der Kippdrehwinkel
¢ (3) ist.

(...)" Ableitung nach 3.

E  Elastizitdtsmodul.

G Gleitmodul.

v Poissonzahl.

B, Biegesteifigkeit iiber die minimale Querschnittshauptachse. Im elasti-

schen Bereich ist B, gleich EJ,, wobei J, das minimale Haupttrigheits-

moment darstellt.

D St.-Venantsche Drillsteifigkeit des Gesamtquerschnittes. Unter ideal
elastischen Verhiltnissen ist D gleich GJ,,, wobei fiir die betrachteten
I-Trager

Jp = JIpsiegt2Ipm ~ 3t} +5b1%. (3)

Dy;  St.-Venantsche Drillsteifigkeit eines Flansches. Im Elastischen ist Dz,

gleich G Jpz;. .
Jpm~ 3bt%. (4)

W  Wolbsteifigkeit. Im elastischen Bereich ist W gleich ECy;, wobei der
auf den Schubmittelpunkt M bezogene Wolbwiderstand (5, bei den zu
untersuchenden diinnwandigen I-Querschnitten ndherungsweise aus
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folgender Beziehung errechnet werden kann:

h2
OM NJyZ. (5)

c Steifigkeitskoeffizient des Steges. Unter ideal elastischen Verhéltnissen
ist ¢c=6.

2.2. Biegemoment bei elastisch-plastischer Biegung

Unter der Voraussetzung, dass das Spannungs-Dehnungs-Diagramm des
Tragerwerkstoffs punktsymmetrisch sei und demzufolge der Bedingung

o(e) = —o(—e) (6)

geniigt, ergibt sich auf der Grundlage der technischen Biegelehre fiir das
Biegemoment M, der betrachteten I-Triager folgender Ansatz:

R\
Mx=thh0'R+—(—) o(e)ede. (7)
2 €p
' 0

Darin bedeutet:

€ Dehnung in Richtung der Tréigerlingsachse z
€ =€,.

eg  Randdehnung. Da der I-Querschnitt als diinnwandig vorausgesetzt wird,
sei hier ep gleich der mittleren Dehnung in den Flanschen (= Dehnung
im Flanschschwerpunkt).

o die nach dem Spannungs-Dehnungs-Diagramm o (¢) der Dehnung e zu-
geordnete Spannung in Richtung z

o = 0,.

ocr ~ Randspannung, die bei den hier betrachteten diinnwandigen I-Quer-
schnitten gleich der Spannung im Schwerpunkt der Flansche gesetzt
wird.

op =0(e = €p). (8)

Die in der Praxis auftretenden Werte des Biegemomentes M, sind nach oben
hin begrenzt durch das nur im theoretischen Idealfall zu erreichende voll-
plastische Grenzmoment M ;. Unter dessen Wirkung sollen gedachtermassen
die Spannungen ¢ iiberall im Querschnitt die Fliessspannung oz annehmen.
In Wirklichkeit ist M, immer kleiner als M_,., weil vor Erreichen von M,
Risse in den bis zur Bruchdehnung e; gereckten Randzonen auftreten.

Bei den betrachteten I-Tragern berechnet sich das vollplastische Grenz-

moment zu
ng,,=th(th+%hts). (9)
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Das Verhaltnis M, /M, ist dann ein Mass fiir die Plastifizierung des Trégers
und soll als Plastizierungsgrad bezeichnet werden.

2.3. Spannungs-Dehnungs-Gesetz

Eine hinreichend genaue mathematische Formulierung des natiirlichen
Spannungs-Dehnungs-Diagramms o (¢), des Tangentenmoduls

do

T(E) =Eg

(10)

und des Sekantenmoduls S (e) = (11)
wird als gegeben vorausgesetzt. Geeignete Lisungsansitze, mit denen die bei
Berechnung der Biegemomente M, nach Gleichung (7) oftmals entstehenden
Integrationsschwierigkeiten leicht umgangen werden konnen, sind in [9] zu

finden.

2.4. Massgebende Plastizititstheorie

Auf Grund der bisher auf dem Gebiet des plastischen Beulens und des
plastischen Kippens durchgefithrten Forschung kann verallgemeinernd fest-
gestellt werden (siehe [1]), dass iiberall dort, wo im plastischen Bereich mit
mehrachsigen Spannungszustinden verbundene Stabilitdtsprobleme zu unter-
suchen sind, weder die Plastizitdtstheorie von Hencky noch das Prandtl-
Reuss-Gesetz, sondern differentielle Verzerrungs-Spannungs-Gesetze zugrunde
zu legen sind, die auch die von Haus aus vorhandenen, z.B. als Folge des
Walzens entstandenen Werkstoffanisotropien mit beriicksichtigen. Im elasti-
schen Bereich kann dagegen der Werkstoff weiterhin im Sinne der klassischen
Theorie als quasiisotrop angesehen werden, weil sorgfialtige Messungen (siehe
z.B. [10)] bestdtigt haben, dass das ausgeprigte anisotrope Verformungs-
verhalten erst bei Beanspruchungen oberhalb der Proportionalitidtsgrenze
beginnt.

Da diinnwandige I-Querschnitte vorausgesetzt wurden, kann man im wei-
teren stets mit ebenen Spannungszustéinden rechnen. Im Allgemeinfalle kon-
nen dabei folgende Spannungskomponenten auftreten:

o, Normalspannungen in Tragerlangsrichtung z.

o,  Normalspannungen in der Flansch- bzw. Stegebene rechtwinklig zur
Léangsrichtung z.

7,  Schubspannungen in der Flansch- bzw. Stegebene.

Wird der Werkstoff, wie zuvor gefordert, als elastisch-isotrop, plastisch-
anisotrop angesehen, so kann unter der Voraussetzung, dass der Werkstoff
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zum ersten Male plastisch deformiert wird, sein Spannungs-Verformungs-
Verhalten wie folgt beschrieben werden:

Vergleichsspannung:
o5 = f,03 —fus0 05t [s08 +3f7 75, (12)

wobei f,, f,, [, und f, von der jeweiligen Plastizierung abhingige Anisotropie-
parameter darstellen, die im Falle der Isotropie, also im elastischen Verfor-
mungsbereich, alle gleich 1 sind.

Verzerrungs-Spannungs-Gesetze:

bei Entlastung oder neutraler Spannungsidnderung (8 ¢, < 0):

Se, =—;—](30‘z—1/808), (13a)
Se. =~ (50,—v5 13b
& =% o,—v00,), ( )
1
87z3=—é‘87zs’ (13¢)
bei Belastung (8 ¢,> 0):
862 =-;’—(80'2_V80's)+(%fzo'z—.'%fzsos)dAr (14a)
863 =%(80’8—1/80'2)+(%f30's—%fz30'z)dA, (14b)
5 = g5 7+ 2 ooy (140)

Hierbei bedeuten:

80,,80,,80,,37, differentielle Anderungen der Spannungen.

d€,, O€;, 0y, differentielle Anderungen der Verzerrungen.
E Elastizitdtsmodul.
G Gleitmodul.
v Poissonzahl.
dA skalarer Faktor differentieller Grosse, der aus der Beziehung
=22 (15)
2 o,

zu berechnen ist, wobei 8 ¢? die differentielle Anderung des
plastischen Anteiles der Vergleichsdehnung e, darstellt.
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5 ={fsfz (]‘S[Be E(Saz—VSUS)]2

+f, [SGS—E—(SGS—VS%)]z (16)

+f23[5€z——E17(802—V803)] [ses_f(aos—vaoz)])
1

1 2)1/2
“a g |

2.5. Steifigkeitsberechnung des infolge Biegung teilweise plastizierten Trigers

1

Es wird angenommen, dass die zu untersuchenden Triger im unbelasteten
Zustand weder verdreht noch verbogen seien und dass der Biegevorgang im
stabilen Gleichgewichtszustand exakt tiber die maximale Querschnittsachse
x—ux erfolgt. Es gelten die Annahmen der technischen Biegelehre (inkom-
pressibler Werkstoff und lineare Dehnungsverteilung iiber der Trigerhohe
nach der Hypothese von Bernoulli-Navier).

Unter diesen Voraussetzungen sind in den zu untersuchenden I-Tragern
im betrachteten Fall der reinen Biegung vor Erreichen der Stabilitdtsgrenze
nur Langsspannungen o = o, vorhanden, so dass

o =0. (17)

s = 7

28

Die Verkniipfung zwischen diesen Lidngsspannungen o, und dem Biegemoment
M, ist durch die Gleichung (7) gegeben; der Verlauf von o, iiber der Triger-
héhe folgt dem Spannungs-Dehnungs-Gesetz o (¢) entsprechend der linearen
Dehnungsverteilung

€e=eg=y— (18)
Bei Beginn des Kippens treten dann durch die im Verzweigungspunkt begin-
nende seitliche Ausbiegung, gekoppelt mit einer entsprechenden Querschnitts-
verdrehung, sowie durch die in der gleichen Zeit mogliche Vergrosserung des
Biegemomentes M, zu dem kritischen Grundspannungszustand o, — o,
noch Spannungsidnderungen 8o,, 8o, und &7, hinzu, denen allgemein nach
den Gleichungen (13a,b,c) und (14a,b,c) Verzerrungsinderungen Se,, de,
und 3 y,; zugeordnet sind. Wiahrend die infolge Querschnittsverformung ent-
stehende Spannungséinderung 8 o, nur im Steg der betrachteten I-Triger auf-
tritt, treten die Spannungséinderungen 6 o, in allen Querschnittsteilen auf und
setzen sich aus folgenden drei Anteilen zusammen:

— Biegespannungen 5o, (8 M,) infolge des beim seitlichen Ausweichen ent-
stehenden Biegemomentes 8 M/ ;

— Wélbnormalspannungen § o, (SM ) infolge des mit dem Kippvorgang wirk-
sam werdenden Torsionsmomentes § M ;
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— Biegespannungen 3o, (8 M,) infolge einer auch unmittelbar bei Beginn des
Kippvorganges noch fortwihrenden Laststeigerung & M, . Letztere ist ab-
héngig von der Grosse der Belastungsgeschwindigkeit.

Um den ungiinstigsten Fall mit dem kleinsten Kippmoment zu erfassen,
wird nach der Theorie von Engesser-Shanley angenommen, dass die Belastungs-
geschwindigkeit so gross ist, dass wihrend des Kippvorganges iiberall im Tré-
ger 30,>0 ist und demzufolge fiir die Verkniipfung der Verzerrungs- und
Spannungsédnderungen nur die Gleichungen (14a,b,c) massgebend sind.

Auf Grund von (17) erhédlt man dann aus (12):

o, = Vf, 0., (19)
aus (14a,b,c):
de, =%(30’z—v803)+3€§, (20a)
1 17,
de, =-E,—(803—V802)~§f—286§, (20Db)
1
8')’.zs =E87zs’ (20¢)
wobei , o€l =%f,0,dA (21)

den plastischen Anteil der Verzerrungsinderung 6 e, darstellt. Mit Einfiihrung
des bei einachsiger Zug-Druck-Beanspruchung in Tragerlangsrichtung gemes-
senen Tangentenmoduls

do,

T(e) =52

(22)

kann man mit der aus Fig. 2 abzulesenden Beziehung

(23)

arc tan T (&)

X«: tan E
Fig. 2.

=£E
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an Stelle der Gleichungen (20a) und (20b) auch folgendes schreiben:

do, 80'8 do, 80, o, 3 o,

S L () o o ]

Die Gleichungen (20c¢), (24a) und (24b) bilden die theoretische Grundlage fiir
die Berechnung der Steifigkeitswerte der hier betrachteten rein auf Biegung
beanspruchten dimnwandigen I-Tréger. Sie zeigen, dass lediglich die Span-
nungsinderungen 3 o, plastische Verzerrungsanteile liefern.

Daraus ergeben sich folgende Schlussfolgerungen:

— Der spezifische Gleitwiderstand und demzufolge auch die St.-Venantsche
Drillsteifigkeit der einzelnen Querschnittselemente sind unabhingig vom
Plastizierungsgrad des Tréigers (siche Formel 20a). Das heisst, dass

D =GJp, (25)
DFZ GJDFZ (26)

— Ebenso ist auf Grund von Formel (24b) der Widerstand des Stegbleches
gegeniiber seiner mit Beginn des Kippvorganges einsetzenden s-formigen
Verbiegung rechtwinklig zur Ebene y —z, wobei Biegespannungen 6o, und
entsprechende Dehnungsanteile 3o,/E auftreten, unabhingig von den
durch die Liéngsspannungen o, und 8o, hervorgerufenen plastischen Ver-
formungen. Der in Gleichung (1) enthaltene Steifigkeitskoeffizient des
Steges ist deshalb bei reiner Biegung stets

c=6. (27)

— Allein bei der Berechnung der Biegesteifigkeit B, und der Wolbsteifigkeit W
des durch die Biegespannungen o, teilweise plastizierten diinnwandigen
I-Triagers ist entsprechend Formel (24a) im Ansatz der Steifigkeitsanteile
der einzelnen differentiellen Querschnittselemente, in Abhéngigkeit von der
nach Gleichung (18) linear ansteigenden Dehnung ¢,, an Stelle von # der
entsprechende Tangentenmodul 7' (e,) zu setzen. Man erhilt:

+YR

= T]éfT (e,) 0% (y) dy (Gleichung (18) einsetzen!)
—YR
b3t
=27y 12 - fT (28)

= o(elz)

= 2T (er)Jym+ S (er) Jysi>

wobei J, ;; und J, g, die Trigheitsmomente eines Flansches sowie des Ste-
ges bezogen auf die y-Achse sind.
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W = [T (e,,s)w?(s)t(s)ds, (29)
b

wobei w (s) die auf den Schubmittelpunkt bezogene Einheitsverwolbung in
Abhingigkeit von der entlang der Querschnittsmittellinie verlaufenden
Koordinate s darstellt. ¢(s) ist die Wanddicke an der jeweiligen Schnitt-
stelle s.

Da beim I-Querschnitt der Steg als quasi-wolbfrei angesehen wird, gilt
fiir die hier interessierenden, mit M, = konst plastisch gebogenen, diinn-

wandigen I-Tréger

Damit sind fiir den Fall der reinen Biegung alle in den Differentialgleichun-
gen (1) und (2) enthaltenen Steifigkeitswerte bestimmt.

In Auswertung der Fachliteratur ist es jedoch notwendig, an dieser Stelle
noch zu einigen Ergebnissen der Plastizitétstheorie von Hencky Stellung zu
nehmen, da diese Theorie in vielen frither zum Problem des plastischen Kip-
pens veroffentlichten Beitragen eine besondere Rolle spielt.

Nach der Plastizitdtstheorie von Hencky erhélt man fiir plastisch gebogene
Triger bei anschliessender Torsionsbeanspruchung generell kleinere St.-
Venantsche Drillsteifigkeiten als nach den Formeln (25) und (26) und speziell
fiir die s-formigen Stegverformungen eines I-Querschnittes Steifigkeitskoeffi-
zienten ¢ <6. Fir den Fall, dass der Stegrand die Fliessgrenze oy erreicht,
miisste sich dann bei einem rein auf Biegung beanspruchten I-Tréger, als
Sonderfall der s-formigen Stegverformungen, lings der Flansch-Steg-Verbin-
dung sogar ein scharnierartiges plastisches Gelenk bilden. Letzteres konnte
jedoch bei plastischen Biege- und Kippversuchen nicht beobachtet werden.
Ebenso konnte in sorgfiltig durchgefithrten Versuchen von NEAL [11] nach-
gewiesen werden, dass bei Tréagern mit Vollquerschnitt eine Abminderung der
St.-Venantschen Drillsteifigkeit auf Grund vorangegangener plastischer Bie-
gung nicht erforderlich ist. Wenn also bei unausgesteiften, kurzen, plastisch
gebogenen und anschliessend geringfiigig tordierten I-Triagern geringere effek-
tive St.-Venantsche Drillsteifigkeiten als G J,, festzustellen sind, so ist das,
wie im folgenden gezeigt wird, in der Hauptsache auf den Verlust der Quer-
schnittsformtreue zuriickzufithren. (Etwaige Einfliisse von Imperfektionen
sollen hier ausser acht bleiben!)

3. Berechnung der Engesser-Shanleyschen Kippmomente querausgesteifter
I-Triager in Abhéngigkeit von der Steifenzahl

Da Gabellagerung der Triagerenden sowie konstanter Biegemomenten- und
Querschnittsverlauf vorausgesetzt sind, werden unter der Annahme, dass die
Stegquersteifen gleichmissig iber die Tragerldnge verteilt, extrem drillweich
und hinsichtlich Biegung rechtwinklig zur Stegebene quasistarr sind, fir die
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Variablen ¢ und « folgende Naherungslosungen gewihlt:

p =a,sinw3, (31)
. 1 1
ir 0<z2<-— - <2<
bysinmy, fiir Ozgzzm und 1 2m=3=1,
o = (32)
élsinv-r (1 —cos2mm3) fiir L <1—i
g S TE &) Im=8=" T

Dabei bedeutet:

m Anzahl der von den Stegquersteifen abgegrenzten Stegfelder (siehe Fig. 3).
Die Zahl der Stegquersteifen ist dann m + 1.

Feld 4 | Feld 2 | Feld 3 Feld (m~2)| Fetd (m-4)| Feld m
- s
Gobellagerung! Gabellogerung!
4 ig. 3.

l 1

Mit ¢ =6 entsprechend (27) erhélt man damit aus (1) und (2) folgende Galer-
kinsche Gleichungen:

aus (1):
1

1
5 @ o _ 0 o’ o 1 1?2 B "_oc_
oy falblwzda by fb§w2d5+b12(1—v)k DF,J =0 (33
0 0

aus (2):

1
144 "
—a, 7t Wf(p (pd5+a 2 [2 q; q;dg

i (34)

1
M2t [ o2 o
+a1—Bfi~f&—?d5—b12Dml2n2J‘a 535 =0.
0 0

1177

Nach Einsetzen von (31) und (32) und Auflésen der Integrale wurde daraus
folgendes Gleichungssystem gewonnen:

aus (33):
ks (m I2E
aus (34):
2 M
y
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mit
1 1 1 . —1)m[(2m—1)2 . 1
kl(m)=§{l+—ﬁ——;sm%—(2ﬂ) [(m—l) 31n(m+—7;b—~2)7r
' 37
(2m+1)% . 1) | (37)
+ ——=sin{m ——|n|;,
m+1 m)] " |
sin(1-L)
1 (1 3 3 . m m—1 “m
_ ] [, - 2
ey (m) N{2+2m 5 Sy (A +1)[ am T 4n ]
— 1)y [2m2— 1.
-—( )" [2mE—2m+ sin m+i—-2 T
27 m—1 m -
2m2+2m+1 . 1 (38)
sin{m——|=
m+1 m
1 . 1 . 1
+—1C2m-Dsin{2m+——-3|7+2m+1)sin{Zm—-——1]=|;,
8 m m
. 1 9 . 1
SVWUNN2 T 2m 27 m 27 m—1 m+1
2 —1 Sin(l——%)w sin(2m+—7}%——3)w sin(2m—-%-—1)7r (39)
T m YT i T T 8m@m—1) T 8n@m+l) }
sin(m+ 1 2)11 sin(m l)rr
—1)m m “m
R S S PO A . 4
A + ﬂsnm 27 [ m—1 T m+1 ] (40)
m kl kz k3
1 1,000 1,000 1,000
2 0,53780 3,9270 0,80486
3 0,51160 9,1257 0,76784
4 0,50496 16,262 0,75773
5 0,50255 25,353 0,75402
6 0,50148 36,416 0,75233
8 0,50062 64,498 0,75099
10 0,50030 100,548 0,75052
15 0,50005 225,619 0,75015
ool 0,5 fe'o) 0,75

Mit wachsendem m ndhern sich k,, k, und k; asymptotisch den Funktionen

kl N%: (373‘)
ky ~m?+%, (38a)
NES (39a)

Durch Nullsetzen der Koeffizientendeterminante der Gleichungen (35) und
(36) erhilt man unter Beachtung von (25) und (26) fiir das Engesser-Shan-
leysche Kippmoment schliesslich folgende Beziehung:
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2 2 1/2
My N—?{By [GJD— Gif(l;;i)kl(zz) o +W7—2]} . (41)
ke (m)+ o0y & Gom

Dieses Moment unterscheidet sich von dem unter Voraussetzung idealer Quer-
schnittsformtreue nach der klassischen Kipptheorie ermittelten Engesser-
Shanleyschen Kippmoment allein durch das in (41) enthaltene mittlere Glied
der eckigen Klammer. Dieses Glied ist die bei mangelnder Stegquersteifigkeit
infolge des Verlustes der Querschnittsformtreue entstehende Verringerung der
effektiven St.-Venantschen Drillsteifigkeit.

Man kann also den Einfluss des Verlustes der Querschnittsformtreue in den
Ansitzen der klassischen Kipptheorie allgemein dadurch erfassen, dass man
als St.-Venantsche Drillsteifigkeit nicht ¢'J,, sondern & G'J;, einfiihrt, wobei
bei Ausserachtlassen von Drillkoppeleffekten stets

=<1 (42)

ist. Bei den hier untersuchten I-Trigern mit extrem drillweichen, jedoch biege-

starren Stegquersteifen ist

QJTDF‘I ky (m)

D
da~ 11— el EE (43)

2(1—v2) =2 h GJIpr

Es ist zu vermerken, dass von den in & enthaltenen Grossen allein die Trager-
linge I, die hier als kritische Triagerlinge I (M x) aufzufassen ist, vom Plasti-
zierungsgrad des Triagers abhingt. Nur dadurch, dass bei zunehmender
Plastizierung die Steifigkeiten B, und W und damit auch die kritische Triger-
lainge l; stark abfallen, verringert sich der Wert & im plastischen Bereich
stirker als bei ideal elastischer Kippung. .

Die Formel (43) gilt strenggenommen nur fiir I-Trédger mit reiner Biegung;
denn wie aus den allgemeinen Verzerrungs-Spannungs-Gesetzen (l4a—c) zu
erkennen ist, sind bei Vorhandensein von Querspannungen o, und Schub-
spannungen 7,, unter der Voraussetzung hinreichend grosser Belastungs-
geschwindigkeit nicht nur die Spannungsinderung &o,, sondern auch die
Spannungsédnderungen 8o, und 87,, von Anfang an mit plastischen Form-
dnderungsanteilen behaftet. Dies hat insbesondere fiir Stegblechbereiche unter
ortlich konzentrierten Querlasten grosse Bedeutung; dort fiallt bei plastischer
Biegung der Widerstand des Steges gegen Verformungen in der Querschnitts-
ebene besonders stark ab. Darum sollten an diesen Stellen stets kraftige Steg-
quersteifen angeordnet werden, damit der nachteilige Einfluss des Verlustes
der Querschnittsformtreue nicht extrem hohe Werte annimmt. Da aber bei
einer am Trigerrand angreifenden Einzellast die Querspannungen o, rechts
und links von der Lasteintragungsstelle verhidltnisméssig schnell abklingen,
kann man bei geniigend steifen, die gesamte Trigerhohe erfassenden Steg-
quersteifen die Querschnittsformtreue im Einflussbereich der Querlast als aus-
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reichend gesichert ansehen. Deshalb darf die oben angegebene Formel (43)
ndherungsweise auch auf Triger mit konzentrierten Querlasten angewandt
werden, wenn bei diesen an jeder Lasteintragungsstelle eine hinreichend be-
messene Stegquersteife vorhanden ist.

In diesem Zusammenhang ergibt sich dann die Frage, wieviel Stegquer-
steifen notwendig sind, um einen I-Triger als hinreichend querschnittsform-
treu ansehen zu konnen.

Die Losung dieses Problems ldsst sich sehr schnell finden, wenn man den
Steg des Trégers gidnzlich vernachlissigt und annimmt, dass die Formtreue
allein durch die in gleichméssigen Abstéinden angeordneten und quer zur Steg-
ebene biegesteif mit den Flanschen verbundenen Steifen erreicht werden soll.
Man erhélt dann eine untere Schranke fiir §. Diese nidhert sich um so mehr
dem Wert 1, dem Grenzfall idealer Querschnittsformtreue, je stirker das Ver-
héltnis &, (m)/ky(m) mit zunehmender Stegfeldzahl m gegen Null geht.

keyfks

1,0000
0,1369
0,0561
0,0310
0,0198
0,0138
0,0078

0D U W = 3

Ab m=4 ist die Verringerung des Verhaltnisses k, (m)/k,(m) praktisch ohne
Bedeutung, so dass demzufolge bei einem I-Triger die von der klassischen
Kipptheorie vorausgesetzte Querschnittsformtreue hinreichend gewihrleistet
ist, wenn bei diesem kréaftige Stegquersteifen iiber den Stiitzen, in Tragermitte,
in den Viertelspunkten des Tragers und iiberall dort angeordnet werden, wo
ortlich konzentriert Querlasten angreifen.

Diese Feststellung gilt jedoch nur unter der im Zusammenhang mit der
Formulierung der Kipp-Differentialgleichungen (1) und (2) getroffenen An-
nahme, dass alle gedriickten Querschnittsteile beulsicher sind. Bei plastisch
gebogenen I-Trigern aus gewohnlichem Baustahl ist das der Fall, wenn fol-
fende Bedingungen erfiillt sind (siehe [12]):

b a»
F }/eF(3 +§§)(1 +0,192E£)

2
e g o
ts Op

Dabei bedeutet:

b  Flanschbreite
tp  Flanschdicke
h  Steghohe
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€F
op
Op
E
E

v
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Stegdicke

Dehnung bei Beginn des reinen Fliessens
Fliessspannung

Bruchspannung

Elastizitdtsmodul

Tangentenmodul bei Beginn der Wiederverfestigung
nach Durchlaufen des Fliessbereiches

4. Beispiel und praktische Schlussfolgerungen

Um die Aussage

iiber den Einfluss der Querschnittsaussteifungen auf das

plastische Kippen von I-Trégern zu vervollstindigen, werden abschliessend
einige Ergebnisse eines praktischen Berechnungsbeispiels mitgeteilt.

Querschnittsabmessungen:

h =
t. =

8

Werkstoff: St 3

660 mm,
12 mm,

b

tp

300 mm,
30 mm.

8 mit ¥ = 2100 Mp/em?2, o = 2,4 Mp/cm?2.

Spannungs-Dehnungs-Diagramm o (€) siehe Fig. 4.

A

s
S

Proportionalitatsgrense

!

g
™

\

Fig. 4.

Die Bedingungen (44) und (45) sind in diesem Falle erfiillt, so dass der
Tréager auch bei plastischer Biegung im Druckbereich nicht beult.

Die Fig. 5, 6 und

7 zeigen dann in dimensionsloser Form die Quersteifigkeit

B,, die Wolbsteifigkeit W und die effektive St.-Venantsche Drillsteifigkeit
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Fig. 7.

¥ GJp in Abhéngigkeit vom Plastizierungsgrad M /M, sowie der Stegfeld-
zahl m. _ '

Man erkennt, dass wegen des Verlustes der Querschnittsformtreue die effek-
tive St.-Venantsche Drillsteifigkeit & G J;, beim unausgesteiften I-Tréager (m =1)
mit zunehmender Plastizierung sehr stark abfillt; erreicht die Stegoberkante
die Fliessspannung o, so ist in diesem Falle praktisch nur noch die St.-Venant-
sche Drillsteifigkeit des Steges wirksam. Ein Vernachlissigen des Verlustes
der Querschnittsformtreue ist deshalb bei unausgesteiften I-Triagern im plasti-
schen Bereich nicht zuldssig. Es geniigen aber bereits wenige Stegquersteifen,
um -den Verlust der Querschnittsformtreue beim Kippen weitgehend auszu-
schalten und die Flansche an der St.-Venantschen Drillung mit zu beteiligen.

Im Bereich der elastischen Kippung ist dagegen der Einfluss des Verlustes
der Querschnittsformtreue meistens relativ klein; lediglich bei I-Triagern, deren
Flansche als Hohlquerschnitt ausgebildet sind, hat der Verlust der Quer-
schnittsformtreue auch fiir das Kippen im elastischen Bereich grossere Be-
deutung.

An Hand des oben genannten Beispiels wurde ferner gefunden, dass die
in der dimensionslosen Form M /M (M, |M ;) aufgetragenen Kippmomente
M i fiir alle Werte m nahezu zu einer einzigen Kurve zusammenfallen, wenn
man den Verlust der Querschnittsformtreue bereits im Ansatz fiir das ideale
Kippmoment M g, mit beriicksichtigt.
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T2

MKi=-’ll]/EJy(ﬂGJD+l2E0m). (46)

Diese Feststellung hat sich bei der Untersuchung weiterer Beispiele bestétigt.

Daraus ergibt sich die Moglichkeit, fiir die Kippmomente von Triagern mit
nichtformtreuem I-Querschnitt eine einfache Niaherungslosung anzugeben.
Denn wie in [13] gezeigt werden konnte, fallen die Kippkurven M /M, (M,
M ;) von I-Tragern mit formtreuem Querschnitt mit sehr guter Genauigkeit
zusammen, wenn man als Bezugsgrosse nicht das vollplastische Grenzmoment
M,,, sondern dasjenige Biegemoment M, verwendet, bei dem die Flansche
vollstindig plastiziert werden, der Steg jedoch gerade erst an seinen Réndern
zu fliessen beginnt. Fir I-Tréger aus gewohnlichem Baustahl gilt:

MjrmoFk(th+—éhts). (47)
Vergleiche mit Formel (9)!

Lasst man den Kippbereich oberhalb M} ausser acht, so braucht man also
nur noch eine einzige Kippkurve zur Beschreibung des Kippverhaltens von
I-Tragern, ndmlich die Kippkurve des Trigers mit Sandwich-Querschnitt
(hty, — 0). Dafiir gilt:

M g _ oleg) _ox (A,)
M% = op = op (48)
o T (er)
gr _ E — OF
My ~ ol — oga(h)’ (49)
op

Diese Kippkurve enthilt nur noch Werte des natiirlichen Spannungs-Deh-
nungs-Diagramms und ist identisch mit der Engesser-Shanleyschen Knick-
spannungslinie ox/op (op/og;) des jeweiligen Tragerwerkstoffs. Gewdohnlich
liegt o als Funktion der Schlankheit A vor. Ist das der Fall, so kann man
dann das Engesser-Shanleysche Kippmoment des Tragers mit nicht form-
treuem I-Querschnitt ndiherungsweise wie folgt berechnen:

My ~h th+-;-kts) o (), (50)
1
_ T/Ek(th+5hts)
wobei Ay =7 |, i . (51)
Kz

und Mg, das nach Formel (46) unter Beriicksichtigung der Querschnittsaus-
steifung berechnete ideale Kippmoment des Trigers ist.

Die Engesser-Shanleysche Knickspannung ox (A) = o (,) ist den jeweils
massgebenden Stabilitdtsvorschriften zu entnehmen. Verwendet man an Stelle
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von ox die Traglastspannungen og,, so erhdlt man aus Formel (50) eine
brauchbare Nédherung fiir das Kippmoment von I-Trigern mit Imperfek-
tionen.

10.
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Zusammenfassung

Es werden die Engesser-Shanley’schen Kippmomente von diinnwandigen
doppelsymmetrischen I-Trédgern aus elastisch-plastischem Werkstoff unter
Beriicksichtigung des Einflusses der beim Kippen auftretenden Querschnitts-
verformungen in Abhéingigkeit vom Grad der Querschnittsaussteifungen unter-
sucht. Es zeigte sich, dass der Verlust der Querschnittsformtreue beim plasti-
schen Kippen gravierender als beim elastischen Kippen ist, dass jedoch bereits
wenige Querschnittsaussteifungen (z.B. Stegquersteifen iiber den Stiitzen, in
den Viertelspunkten, in Triagermitte und an Stellen 6rtlich konzentrierter
Lasteintragung) geniigen, um im Sinne der klassischen Kipptheorie mit einem
quasi-formtreuen Querschnitt rechnen zu konnen. Abschliessend wird ein ein-
faches Verfahren zur ndherungsweisen Berechnung der plastischen Kipp-
momente von Trigern mit nichtformtreuem I-Querschnitt mitgeteilt.

Summary

The Engesser-Shanley tipping moments of double symmetrical thin wall
I-beams of elastic-plastic material are examined in consideration of the influ-
ence of the deformations of sections appearing during the tipping as a function
of the degree of the shear reinforcement. It showed that the deformation of
section was greater during the plastic tipping than during the elastic tipping,
but that already a few reinforcements (e. g. reinforcements of the centroid
above the supports, in the quarter points, in the centre of the beam and in
points of concentrated loads) are enough to allow to consider an almost con-
formed section in the sense of the classical tipping theory.

Finally, a simple method is presented for the approximative calculation
of the plastic tipping moments of beams with non-conformed I-section.

Résumé

Les moments de déversement selon Engesser-Shanley de profil & I avec un
matériel élastique-plastique sont examinés en considérant l'influence des
déformations de la section se manifestant pendant le déversement en fonction
du degré des renforcements de section. On a constaté que la déformation de
la section était plus importante lors du déversement plastique que lors du
déversement élastique. Pourtant, un renforcement faible (p. e. des raidisseurs
* transversales sur les appuis, dans les points de quart, au milieu de la poutre
et aux endroits de charges concentrées) suffit pour envisager le calcul du
déversement selon la théorie classique (contours de la section conservée).

Finalement une méthode simple est communiquée pour un calcul approxi-
matif des moments de déversement de profil non-conforme.
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