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Beitrag zum plastischen Kippen von Trägern mit nichtformtreuem
I-Querschnitt

Contribution to the Plastic Tipping of Beams with Non-conformed I-Section

Contribution au deversement plastique de poutres ä section en I non-conforme

WERNER WARKENTHIN
Dr.-Ing., DDR

1. Problemstellung

Alle bisher bekanntgewordenen Arbeiten auf dem Gebiet des plastischen
Kippens (siehe Literaturzusammenstellung in [1]) gingen stets von den
Ansätzen der klassischen Kipptheorie aus und setzten einen in seiner Ebene
unverformbaren, d.h. formtreuen Trägerquerschnitt voraus, ohne zu prüfen,
inwieweit eine solche Annahme in dem jeweils behandelten Berechnungsfall
gerechtfertigt ist. Die Frage nach der Berechtigung der Annahme formtreuer
Trägerquerschnitte bedarf jedoch für das plastische Kippen gerade deshalb
dringend einer Antwort, weil entsprechende Untersuchungen über das
Torsions- und Kippverhalten dünnwandiger Stäbe im elastischen Bereich (siehe
[2]-[8]) gezeigt haben, dass bei aus mehreren Reckteckelementen zusammengesetzten

dünnwandigen Querschnitten die Annahme der Querschnittsformtreue

nur bei Vorhandensein bestimmter geometrischer Relationen und einer
bestimmten Mindestzahl von Querschnittsaussteifungen gerechtfertigt ist;
anderenfalls ist die effektiv wirksame St.-Venantsche Drillsteifigkeit geringer
als der nach der herkömmlichen Stabtheorie berechnete Wert GJD. In solchen
Fällen mit nicht ausreichend gewährleisteter Querschnittsformtreue errechnet
man deshalb mit den Ansätzen der klassischen Kipptheorie zu hohe Kipplasten.
Letzteres trifft insbesondere für gedrungene quersteifenlose I-Träger zu, und
es ist zu vermuten, dass der Einfluss des Verlustes der Querschnittsformtreue
bei diesem Trägertyp im plastischen Verformungsbereich sogar noch stärkere
Auswirkungen auf die Kipplast hat als im elastischen Bereich.

Als Beitrag zur Klärung dieses Problems wird daher im folgenden das
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Kippverhalten von geraden Trägern mit gleichbleibendem, dünnwandigem,
doppelsymmetrischem I-Querschnitt unter reiner Biegung im elastisch-plastischen

Verformungsbereich in Abhängigkeit vom Grad der Querschnittsaussteifung

untersucht, wobei für die Trägerenden eine ideale Gabellagerung

angenommen wird.

2. Theoretische Grundlagen

2.1. Kipp-Differentialgleichungssystem

Fig. 1 zeigt den Querschnitt eines der betrachteten I-Träger vor und nach

Beginn des Kippens.

°;

*

M^^Mk

— p

b)

M»-M SchubrrutMpunkt M

Fig. 1.

Das wesentliche Merkmal der während des Kippvorganges eintretenden
Querschnittsverformung ist die s-förmige Verbiegung des Steges, welche von
der klassischen Kipptheorie vernachlässigt wird. Im Zusammenhang mit dieser

s-förmigen Stegverbiegung verdrehen sich die Flansche geringer als der Steg.
Setzt man voraus, dass alle gedrückten Querschnittsteile hinreichend

beulsicher sind und dass auf Grund der gewählten Flanschabmessungen ein
Drillknicken des Druckflansches von vornherein ausgeschlossen ist, so kann man
nach Loos [8] die im instabilen Gleichgewichtszustand aus der Faserschrägstellung

entstehenden Drillmomentenanteile der Biegenormalspannungen in
den Flanschen vernachlässigen und bei Gabellagerung der Trägerenden den

Kippzustand der betrachteten I-Träger mit hinreichender Genauigkeit durch
folgendes Differentialgleichungssystem beschreiben:
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¦Pji [y (a)-«(»)]' +12 ^^ ^c« (5) o, (i)
74 7if2

-Wcp""(b) + PDcp"(?l)-2PDFla"(b)+-^cP(b) 0. (2)

Die Herleitung und der Nachweis hinreichender Genauigkeit dieser
Differentialgleichungen für das Kippen wurden von Loos nur für ideal elastische
Verhältnisse gegeben. Beide Differentialgleichungen gelten jedoch prinzipiell
ebenso auch für Träger aus elastisch-plastischem Werkstoff. Deshalb wurden
hier alle in [8] verwendeten elastischen Steifigkeitswerte durch die entsprechenden

Grössen bei elastisch-plastischer Verformung ersetzt. Es bedeutet:

MK kritischer Wert des Biegemomentes Mx Kippmoment).
I Trägerlänge.
h Trägerhöhe Schwerpunktabstand der Flansche).
b Flanschbreite.
ts Stegdicke.
tF Flanschdicke.
5 dimensionslose Koordinate in Trägerlängsrichtung z

z

<p(%) Kippdrehwinkel, der hier als «Stabdrehwinkel» (d.h. mittlere Neigung)
des Steges an der Stelle 5 aufgefasst wird.

a(j) Winkel, um den der Flanschdrillwinkel kleiner als der Kippdrehwinkel
9 (%) ist.

(...)' Ableitung nach 5.

E Elastizitätsmodul.
G Gleitmodul.
v Poissonzahl.

By Biegesteifigkeit über die minimale Querschnittshauptachse. Im elasti¬
schen Bereich ist By gleich E Jy, wobei Jy das minimale Hauptträgheitsmoment

darstellt.
D St.-Venantsche Drillsteifigkeit des GesamtquerSchnittes. Unter ideal

elastischen Verhältnissen ist D gleich GJD, wobei für die betrachteten
I-Träger

^> «W + 2«W***A#+*6*- (3)

DFl St.-Venantsche Drillsteifigkeit eines Flansches. Im Elastischen ist DFl
gleich G JDFl.

JDFl^ibtF' (4)

W Wölbsteifigkeit. Im elastischen Bereich ist W gleich ECM, wobei der
auf den Schubmittelpunkt M bezogene Wölbwiderstand CM bei den zu
untersuchenden dünnwandigen I-Querschnitten näherungsweise aus
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folgender Beziehung errechnet werden kann:

h2
CM™Jyj- (5)

c Steifigkeitskoeffizient des Steges. Unter ideal elastischen Verhältnissen
ist c 6.

2.2. Biegemoment bei elastisch-plastischer Biegung

Unter der Voraussetzung, dass das Spannungs-Dehnungs-Diagramm des

Trägerwerkstoffs punktsymmetrisch sei und demzufolge der Bedingung

cr(e) -«7(-e) (6)

genügt, ergibt sich auf der Grundlage der technischen Biegelehre für das

Biegemoment Mx der betrachteten I-Träger folgender Ansatz:

Mx btFhaR +^{^-JJa(e)ede. (7)

0

Darin bedeutet:

€ Dehnung in Richtung der Trägerlängsachse z

eR Randdehnung. Da der I-Querschnitt als dünnwandig vorausgesetzt wird,
sei hier eR gleich der mittleren Dehnung in den Flanschen Dehnung
im Flanschschwerpunkt).

g die nach dem Spannungs-Dehnungs-Diagramm a(e) der Dehnung e zu¬

geordnete Spannung in Richtung z

JR Randspannung, die bei den hier betrachteten dünnwandigen I-Quer-
schnitten gleich der Spannung im Schwerpunkt der Flansche gesetzt
wird.

°r o- (¦€ €R). (8)

Die in der Praxis auftretenden Werte des Biegemomentes Mx sind nach oben
hin begrenzt durch das nur im theoretischen Idealfall zu erreichende
vollplastische Grenzmoment Mxgr. Unter dessen Wirkung sollen gedachtermassen
die Spannungen g überall im Querschnitt die Fliessspannung gf annehmen.
In Wirklichkeit ist Mx immer kleiner als Mxgr, weil vor Erreichen von Mxgr
Risse in den bis zur Bruchdehnung eB gereckten Randzonen auftreten.

Bei den betrachteten I-Trägern berechnet sich das vollplastische
Grenzmoment zu

Mxgr GFh{btF + lhts). (9)
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Das Verhältnis MxjMxgr ist dann ein Mass für die Plastifizierung des Trägers
und soll als Plastizierungsgrad bezeichnet werden.

2.3. Spannungs-Dehnungs-Gesetz

Eine hinreichend genaue mathematische Formulierung des natürlichen
Spannungs-Dehnungs-Diagramms g (e), des Tangentenmoduls

t<"4: <io>

und des Sekantenmoduls S (e) (11)
€

wird als gegeben vorausgesetzt. Geeignete Lösungsansätze, mit denen die bei
Berechnung der Biegemomente Mx nach Gleichung (7) oftmals entstehenden
Integrationsschwierigkeiten leicht umgangen werden können, sind in [9] zu
finden.

2.4. Massgebende Plastizitätstheorie

Auf Grund der bisher auf dem Gebiet des plastischen Beulens und des

plastischen Kippens durchgeführten Forschung kann verallgemeinernd
festgestellt werden (siehe [1]), dass überall dort, wo im plastischen Bereich mit
mehrachsigen Spannungszuständen verbundene Stabilitätsprobleme zu
untersuchen sind, weder die Plastizitätstheorie von Hencky noch das Prandtl-
Reuss-Gesetz, sondern differentielle Verzerrungs-Spannungs-Gesetze zugrunde
zu legen sind, die auch die von Haus aus vorhandenen, z.B. als Folge des

Walzens entstandenen Werkstoffanisotropien mit berücksichtigen. Im elastischen

Bereich kann dagegen der Werkstoff weiterhin im Sinne der klassischen
Theorie als quasiisotrop angesehen werden, weil sorgfältige Messungen (siehe
z.B. [10)] bestätigt haben, dass das ausgeprägte anisotrope Verformungsverhalten

erst bei Beanspruchungen oberhalb der Proportionalitätsgrenze
beginnt.

Da dünnwandige I-Querschnitte vorausgesetzt wurden, kann man im
weiteren stets mit ebenen Spannungszuständen rechnen. Im Allgemeinfalle können

dabei folgende Spannungskomponenten auftreten:

gz Normalspannungen in Trägerlängsrichtung z.

gs Normalspannungen in der Flansch- bzw. Stegebene rechtwinklig zur
Längsrichtung z.

rzs Schubspannungen in der Flansch- bzw. Stegebene.

Wird der Werkstoff, wie zuvor gefordert, als elastisch-isotrop, plastischanisotrop

angesehen, so kann unter der Voraussetzung, dass der Werkstoff
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zum ersten Male plastisch deformiert wird, sein Spannungs-Verformungs-
Verhalten wie folgt beschrieben werden:

Vergleichsspannung:

ol f,o* -Lcr,<T8 + f.o* + 3/Trfs, (12)

wobei fz, fs, fzs und /T von der jeweiligen Plastizierung abhängige Anisotropieparameter

darstellen, die im Falle der Isotropie, also im elastischen
Verformungsbereich, alle gleich 1 sind.

Verzerrungs-Spannungs-Gesetze:

bei Entlastung oder neutraler Spannungsänderung (§ gv S 0):

K =-^(8<js~v8gz), (13b)

8y*8 -08T*8> (13c)

bei Belastung (8 gv > 0) :

s^ =^-(8orÄ-vSo-Ä) + (f/0c7jB--i/JBS(7fi)dA, (14a)

&*s =-^-(8o-8-i/So-Ä) + (f/8o-8-J/ag<70)dA, (14b)

8Yzs -Q8Tzs + 2fTTzsd\. (14c)

Hierbei bedeuten:

8gv,ogz,ogs,otzs differentielle Änderungen der Spannungen.
8 €z, 8 es, 8 yzs differentielle Änderungen der Verzerrungen.
E Elastizitätsmodul.
G Gleitmodul.
v Poissonzahl.
d A skalarer Faktor differentieller Grösse, der aus der Beziehung

*A=|M (1„l Gv

zu berechnen ist, wobei 8 e^ die differentielle Änderung des

plastischen Anteiles der Vergleichsdehnung €v darstellt.
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+ h[8es-±(8Gs-v8Gz)\ (i6)

+ fz8 8 €Z - jji- (S °0 - V 8 °^)\ P^-^I^S-^^)
-3^[sr,s-^8r,sj}+-

2.5. Steifigkeitsberechnung des infolge Biegung teilweise plastizierten Trägers

Es wird angenommen, dass die zu untersuchenden Träger im unbelasteten
Zustand weder verdreht noch verbogen seien und dass der Biegevorgang im
stabilen Gleichgewichtszustand exakt über die maximale Querschnittsachse
x—x erfolgt. Es gelten die Annahmen der technischen Biegelehre (inkom-
pressibler Werkstoff und lineare Dehnungsverteilung über der Trägerhöhe
nach der Hypothese von Bernoulli-Navier).

Unter diesen Voraussetzungen sind in den zu untersuchenden I-Trägern
im betrachteten Fall der reinen Biegung vor Erreichen der Stabilitätsgrenze
nur Längsspannungen g gz vorhanden, so dass

<t8 tm 0. (17)

Die Verknüpfung zwischen diesen Längsspannungen gz und dem Biegemoment
Mx ist durch die Gleichung (7) gegeben; der Verlauf von gz über der Trägerhöhe

folgt dem Spannungs-Dehnungs-Gesetz o-(e) entsprechend der linearen
Dehnungsverteilung

e e, ^. (18)

Bei Beginn des Kippens treten dann durch die im Verzweigungspunkt beginnende

seitliche Ausbiegung, gekoppelt mit einer entsprechenden Querschnittsverdrehung,

sowie durch die in der gleichen Zeit mögliche Vergrösserung des

Biegemomentes Mx zu dem kritischen Grundspannungszustand gz -> ozkrit
noch Spannungsänderungen 8gz, 8gs und 8rzs hinzu, denen allgemein nach
den Gleichungen (13a,b,c) und (14a,b,c) Verzerrungsänderungen 8ez, 8es
und 8yzs zugeordnet sind. Während die infolge Querschnittsverformung
entstehende Spannungsänderung 8 gs nur im Steg der betrachteten I-Träger
auftritt, treten die Spannungsänderungen 8 gz in allen Querschnittsteilen auf und
setzen sich aus folgenden drei Anteilen zusammen:

— Biegespannungen 8gz(8Mv) infolge des beim seitlichen Ausweichen ent¬
stehenden Biegemomentes 8My;

— Wölbnormalspannungen 8 gz (8 Mz) infolge des mit dem Kippvorgang wirksam

werdenden Torsionsmomentes 8 M'
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— Biegespannungen 8 gz (8 Mx) infolge einer auch unmittelbar bei Beginn des

KippVorganges noch fortwährenden Laststeigerung 8 Mx. Letztere ist
abhängig von der Grösse der Belastungsgeschwindigkeit.

Um den ungünstigsten Fall mit dem kleinsten Kippmoment zu erfassen,
wird nach der Theorie von Engesser-Shanley angenommen, dass die
Belastungsgeschwindigkeit so gross ist, dass während des Kippvorganges überall im Träger

8 gv > 0 ist und demzufolge für die Verknüpfung der Verzerrungs- und
Spannungsänderungen nur die Gleichungen (14a, b,c) massgebend sind.

Auf Grund von (17) erhält man dann aus (12):

ihoz,

aus (14 a, l),c):

8€* ==jn(8az~v8crs) + 8ez>

8es =^(8gs-v8gz)-\^

87ZS =-Q&'TZS>

wobei 8€f=|/a<70dA

zs§ p

(19)

(20 a)

(20b)

(20 c)

(21)

den plastischen Anteil der Verzerrungsänderung 8 ez darstellt. Mit Einführung
des bei einachsiger Zug-Druck-Beanspruchung in Trägerlängsrichtung gemessenen

Tangentenmoduls

T(cz)
de„

(22)

kann man mit der aus Fig. 2 abzulesenden Beziehung

8 er« S er«
8ep =¦Z T(ez E (23)

% n

ore hin T(€*)

W
%x

rc£M)

are tan E

Fig. 2.
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an Stelle der Gleichungen (20a) und (20b) auch folgendes schreiben:

(24a)

Die Gleichungen (20c), (24a) und (24b) bilden die theoretische Grundlage für
die Berechnung der Steifigkeitswerte der hier betrachteten rein auf Biegung
beanspruchten dünnwandigen I-Träger. Sie zeigen, dass lediglich die
Spannungsänderungen 8 gz plastische Verzerrungsanteile liefern.

Daraus ergeben sich folgende Schlussfolgerungen:

— Der spezifische Gleitwiderstand und demzufolge auch die St.-Venantsche
Drillsteifigkeit der einzelnen Querschnittselemente sind unabhängig vom
Plastizierungsgrad des Trägers (siehe Formel 20 a). Das heisst, dass

D =GJDi (25)

DFl=GJDFl. (26)

— Ebenso ist auf Grund von Formel (24b) der Widerstand des Stegbleches
gegenüber seiner mit Beginn des Kippvorganges einsetzenden «s-förmigen
Verbiegung rechtwinklig zur Ebene y — z, wobei Biegespannungen Scrs und
entsprechende Dehnungsanteile 8gs\E auftreten, unabhängig von den
durch die Längsspannungen gz und 8gz hervorgerufenen plastischen
Verformungen. Der in Gleichung (1) enthaltene Steifigkeitskoeffizient des

Steges ist deshalb bei reiner Biegung stets

c 6. (27)

— Allein bei der Berechnung der Biegesteifigkeit By und der Wölbsteifigkeit W
des durch die Biegespannungen gz teilweise plastizierten dünnwandigen
I-Trägers ist entsprechend Formel (24a) im Ansatz der Steifigkeitsanteile
der einzelnen differentiellen Querschnittselemente, in Abhängigkeit von der
nach Gleichung (18) linear ansteigenden Dehnung ez, an Stelle von E der
entsprechende Tangentenmodul T (ez) zu setzen. Man erhält:

+ 2/Ä

B„ -^ I T (ez) 63 (y) dy (Gleichung (18) einsetzen!)y

-vr

2T(efl)^ + ^§i-jV(6s)^ (28)
0

o(€R)

%T (eR)JyFl+S (eR)JySt,

wobei JyFl und JySt die Trägheitsmomente eines Flansches sowie des Steges

bezogen auf die y-Achse sind.
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W=fT(€z,8)a>*(8)t(8)d8, (29)
F

wobei o) (s) die auf den Schubmittelpunkt bezogene Einheitsverwölbung in
Abhängigkeit von der entlang der Querschnittsmittellinie verlaufenden
Koordinate s darstellt. t(s) ist die Wanddicke an der jeweiligen Schnittstelle

s.

Da beim I-Querschnitt der Steg als quasi-wölbfrei angesehen wird, gilt
für die hier interessierenden, mit Mx konst plastisch gebogenen,
dünnwandigen I-Träger

W T(€r)Cm. (30)

Damit sind für den Fall der reinen Biegung alle in den Differentialgleichungen
(1) und (2) enthaltenen Steifigkeitswerte bestimmt.

In Auswertung der Fachliteratur ist es jedoch notwendig, an dieser Stelle
noch zu einigen Ergebnissen der Plastizitätstheorie von Hencky Stellung zu
nehmen, da diese Theorie in vielen früher zum Problem des plastischen Kip-
pens veröffentlichten Beiträgen eine besondere Rolle spielt.

Nach der Plastizitätstheorie von Hencky erhält man für plastisch gebogene
Träger bei anschliessender Torsionsbeanspruchung generell kleinere St.-
Venantsche Drillsteifigkeiten als nach den Formeln (25) und (26) und speziell
für die ^-förmigen Stegverformungen eines I-Querschnittes Steifigkeitskoeffi-
zienten c<6. Für den Fall, dass der Stegrand die Fliessgrenze gf erreicht,
müsste sich dann bei einem rein auf Biegung beanspruchten I-Träger, als
Sonderfall der s-förmigen StegVerformungen, längs der Flansch-Steg-Verbindung

sogar ein scharnierartiges plastisches Gelenk bilden. Letzteres konnte
jedoch bei plastischen Biege- und Kippversuchen nicht beobachtet werden.
Ebenso konnte in sorgfältig durchgeführten Versuchen von Neal [11]
nachgewiesen werden, dass bei Trägern mit Vollquerschnitt eine Abminderung der
St.-Venantschen Drillsteifigkeit auf Grund vorangegangener plastischer
Biegung nicht erforderlich ist. Wenn also bei unausgesteiften, kurzen, plastisch
gebogenen und anschliessend geringfügig tordierten I-Trägern geringere effektive

St.-Venantsche Drillsteifigkeiten als GJD festzustellen sind, so ist das,
wie im folgenden gezeigt wird, in der Hauptsache auf den Verlust der
Querschnittsformtreue zurückzuführen. (Etwaige Einflüsse von Imperfektionen
sollen hier ausser acht bleiben!)

3. Berechnung der Engesser-Shanleyschen Kippmomente querausgesteifter
I-Träger in Abhängigkeit von der Steifenzahl

Da Gabellagerung der Trägerenden sowie konstanter Biegemomenten- und
Querschnittsverlauf vorausgesetzt sind, werden unter der Annahme, dass die
Stegquersteifen gleichmässig über die Trägerlänge verteilt, extrem drillweich
und hinsichtlich Biegung rechtwinklig zur Stegebene quasistarr sind, für die
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Variablen 99 und a folgende Näherungslösungen gewählt:

cp ax sin TT §,

bi sin 77 ft, für 0 < z < -— und 1 — -— < ä < 1,

-^sin7rj(l —cos2m7rj), für ^-^<^<;i

(31)

(32)

2m' 2m

Dabei bedeutet:

m Anzahl der von den Stegquersteifen abgegrenzten Stegfelder (siehe Fig. 3).
Die Zahl der Stegquersteifen ist dann m-f-1.

MdL 2

Gabetlogerung!

Feld 3 Feicl(m-i) Feki(m-f)

Gabelkxgerung

(£)-< Fig. 3.

Mit c 6 entsprechend (27) erhält man damit aus (1) und (2) folgende Galer -

kinsche Gleichungen:

aus (1):

^ J^^-^^J^ä +^^Y^^^^J^^-^ (33)

aus (2):
1 1

r» //// /» //

j a17T j ax jr
0 0

(34)

Nach Einsetzen von (31) und (32) und Auflösen der Integrale wurde daraus
folgendes Gleichungssystem gewonnen:

aus (33):

aus (34):

—+4>[*-<->+ü^i;£;]-o. <36>

/ _2 1K/T2 72\

*i(-^p--D+-g^)+612DOTA1(m) 0 (36)
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mit

i x If, 1 1 77 (-l)m[(2m-l)2 / 1 \
kAm) =-{1+ sin ' -^-sinm + 2

2\ m tt m 2tt [ w& —1 \ m ]

(2m+l)2 / 1 \ "11
(37)

+ m-h.

i / x f1 3 3 • w /. » iJ™-1 ^r'^hJL(ra) =-tf1^ + ^ Tr-sm — + (4m2+l) — + —A —2V N[2 2m 2t7 m
v y [ 4m 4t7 J

(-lf [2m2-2m+l / 1 \
—

v ' sin\m-\ 2 77
277 L m~ 1 \ m I

[2m2-2m+l
; 1

m— 1

2 m2 + 2 m
+ m-f

w+1 / 1\ 1

r— *in\m-mr\
(38)

+ — (2m-1) sin (2m + 3j77 + (2m+ 1) sin (2m lj 77 1,

1 Jl 3 3 77 (_irrsin(m-r-^--2)77 smjm-^-,
^(m,"F(2 + S"2;Sinm""ir[ m~^l + m+1 J

+ ¦
m sinfl 177 sin(2mH 3)77 sin(2m lj
4m

N
1 1 77

1-1 sin —
m tt m

877(2m-l)
1

in Im H 2)

m — 1 ' m+:

877(2m+l) j'
— 2)77 sin Im p

m- m-hF-l

(39)

(40)

m *i k,^ /C3

1 1,000 1,000 1,000
2 0,53780 3,9270 0,80486
3 0,51160 9,1257 0,76784
4 0,50496 16,262 0,75773
5 0,50255 25,353 0,75402
6 0,50148 36,416 0,75233
8 0,50062 64,498 0,75099

10 0,50030 100,548 0,75052
15 0,50005 225,619 0,75015
00 0,5 00 0,75

l m nähern sich kx k2 und k3 asymptotisch den Funktionen

h ™h (37a)
/C2 aa m2 + f, (38a)

/c3 ~f. (39 a)

Durch Nullsetzen der Koeffizientendeterminante der Gleichungen (35) und
(36) erhält man unter Beachtung von (25) und (26) für das Engesser-Shan-
leysche Kippmoment schliesslich folgende Beziehung:
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^¦f^r^r 2GJDFlhAm) TT^2111/2

^2 W + 2(l_v2)7r2 ^ gj^
Dieses Moment unterscheidet sich von dem unter Voraussetzung idealer
Querschnittsformtreue nach der klassischen Kipptheorie ermittelten Engesser-
Shanleysehen Kippmoment allein durch das in (41) enthaltene mittlere Glied
der eckigen Klammer. Dieses Glied ist die bei mangelnder Stegquersteifigkeit
infolge des Verlustes der Querschnittsformtreue entstehende Verringerung der
effektiven St.-Venantschen Drillsteifigkeit.

Man kann also den Einfluss des Verlustes der Querschnittsformtreue in den
Ansätzen der klassischen Kipptheorie allgemein dadurch erfassen, dass man
als St.-Venantsche Drillsteifigkeit nicht GJD, sondern &GJD einführt, wobei
bei Ausserachtlassen von Drillkoppeleffekten stets

& £ 1 (42)

ist. Bei den hier untersuchten I-Trägern mit extrem drillweichen, jedoch
biegestarren Stegquersteifen ist

*Wl~fc(m)1 M»») *¦ ** • (43)
/e*\m> + 2(l-v*)** h QJDpi

Es ist zu vermerken, dass von den in # enthaltenen Grössen allein die Trägerlänge

Z, die hier als kritische Trägerlänge lK (MK) aufzufassen ist, vom Plasti-
zierungsgrad des Trägers abhängt. Nur dadurch, dass bei zunehmender
Plastizierung die Steifigkeiten By und W und damit auch die kritische Trägerlänge

lK stark abfallen, verringert sich der Wert # im plastischen Bereich
stärker als bei ideal elastischer Kippung.

Die Formel (43) gilt strenggenommen nur für I-Träger mit reiner Biegung;
denn wie aus den allgemeinen Verzerrungs-Spannungs-Gesetzen (14a-c) zu
erkennen ist, sind bei Vorhandensein von Querspannungen gs und
Schubspannungen rzs unter der Voraussetzung hinreichend grosser
Belastungsgeschwindigkeit nicht nur die Spannungsänderung Scr^, sondern auch die
Spannungsänderungen 8gs und 8rzs von Anfang an mit plastischen
Formänderungsanteilen behaftet. Dies hat insbesondere für Stegblechbereiche unter
örtlich konzentrierten Querlasten grosse Bedeutung; dort fällt bei plastischer
Biegung der Widerstand des Steges gegen Verformungen in der Querschnitts-
ebene besonders stark ab. Darum sollten an diesen Stellen stets kräftige
Stegquersteifen angeordnet werden, damit der nachteilige Einfluss des Verlustes
der Querschnittsformtreue nicht extrem hohe Werte annimmt. Da aber bei
einer am Trägerrand angreifenden Einzellast die Querspannungen gs rechts
und links von der Lasteintragungsstelle verhältnismässig schnell abklingen,
kann man bei genügend steifen, die gesamte Trägerhöhe erfassenden
Stegquersteifen die Querschnittsformtreue im Einflussbereich der Querlast als aus-
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reichend gesichert ansehen. Deshalb darf die oben angegebene Formel (43)
näherungsweise auch auf Träger mit konzentrierten Querlasten angewandt
werden, wenn bei diesen an jeder Lasteintragungsstelle eine hinreichend
bemessene Stegquersteife vorhanden ist.

In diesem Zusammenhang ergibt sich dann die Frage, wieviel Steg
quersteifen notwendig sind, um einen I-Träger als hinreichend querschnittsformtreu

ansehen zu können.
Die Lösung dieses Problems lässt sich sehr schnell finden, wenn man den

Steg des Trägers gänzlich vernachlässigt und annimmt, dass die Formtreue
allein durch die in gleichmässigen Abständen angeordneten und quer zur
Stegebene biegesteif mit den Flanschen verbundenen Steifen erreicht werden soll.
Man erhält dann eine untere Schranke für &. Diese nähert sich um so mehr
dem Wert 1, dem Grenzfall idealer Querschnittsformtreue, je stärker das
Verhältnis kx (m)/k2 (m) mit zunehmender Stegfeldzahl m gegen Null geht.

m A'1/A*2

1 1,0000
2 0,1369
3 0,0561
4 0,0310
5 0,0198
6 0,0138
8 0,0078

Ab m 4 ist die Verringerung des Verhältnisses k1(m)lk2{m) praktisch ohne

Bedeutung, so dass demzufolge bei einem I-Träger die von der klassischen

Kipptheorie vorausgesetzte Querschnittsformtreue hinreichend gewährleistet
ist, wenn bei diesem kräftige Stegquersteifen über den Stützen, in Trägermitte,
in den Viertelspunkten des Trägers und überall dort angeordnet werden, wo
örtlich konzentriert Querlasten angreifen.

Diese Feststellung gilt jedoch nur unter der im Zusammenhang mit der
Formulierung der Kipp-Differentialgleichungen (1) und (2) getroffenen
Annahme, dass alle gedrückten Querschnittsteile beulsicher sind. Bei plastisch
gebogenen I-Trägern aus gewöhnlichem Baustahl ist das der Fall, wenn fol-
fende Bedingungen erfüllt sind (siehe [12]):

U. M (44)

''7M'+£>('+•.«»£)'

F er*ts r uF

Dabei bedeutet:

b Flanschbreite
tF Flanschdicke
h Steghöhe
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ts Stegdicke
eF Dehnung bei Beginn des reinen Fliessens

gf Fliessspannung
gb Bruchspannung
E Elastizitätsmodul
Ev Tangentenmodul bei Beginn der Wiederverfestigung

nach Durchlaufen des Fliessbereiches

4. Beispiel und praktische Schlussfolgerungen

Um die Aussage über den Einfluss der Querschnittsaussteifungen auf das

plastische Kippen von I-Trägern zu vervollständigen, werden abschliessend
einige Ergebnisse eines praktischen Berechnungsbeispiels mitgeteilt.

Querschnittsabmessungen:

h 660 mm, b 300 mm,
ts 12 mm, tF 30 mm.

Werkstoff: St 38 mit E 2100 Mp/cm2, gf 2,4 Mp/cm2.

Spannungs-Dehnungs-Diagramm g (e) siehe Fig. 4.

<//•
Btgmn cfcs r*n*n FüeAens

Proportional! taHgntnte

6 E

Fig. 4.

Die Bedingungen (44) und (45) sind in diesem Falle erfüllt, so dass der
Träger auch bei plastischer Biegung im Druckbereich nicht beult.

Die Fig. 5, 6 und 7 zeigen dann in dimensionsloser Form die Quersteifigkeit
By, die Wölbsteifigkeit W und die effektive St.-Venantsche Drillsteifigkeit
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J l

nii>
¦"-»

o.s-

- m-/

— Ä.

Fig. 7.

# 6? JD in Abhängigkeit vom Plastizierungsgrad MKjMgr sowie der Stegfeldzahl

m.
Man erkennt, dass wegen des Verlustes der Querschnittsformtreue die effektive

St.-Venantsche Drillsteifigkeit &GJD beim unausgesteiftenI-Träger (m l)
mit zunehmender Plastizierung sehr stark abfällt; erreicht die Stegoberkante
die Fliessspannung gf so ist in diesem Falle praktisch nur noch die St.-Venant¬
sche Drillsteifigkeit des Steges wirksam. Ein Vernachlässigen des Verlustes
der Querschnittsformtreue ist deshalb bei unausgesteiften I-Trägern im plastischen

Bereich nicht zulässig. Es genügen aber bereits wenige Stegquersteifen,
um den Verlust der Querschnittsformtreue beim Kippen weitgehend
auszuschalten und die Flansche an der St.-Venantschen Drillung mit zu beteiligen.

Im Bereich der elastischen Kippung ist dagegen der Einfluss des Verlustes
der Querschnittsformtreue meistens relativ klein; lediglich bei I-Trägern, deren
Flansche als Hohlquerschnitt ausgebildet sind, hat der Verlust der
Querschnittsformtreue auch für das Kippen im elastischen Bereich grössere
Bedeutung.

An Hand des oben genannten Beispiels wurde ferner gefunden, dass die
in der dimensionslosen Form MKjMgr (MgrjMKi) aufgetragenen Kippmomente
MK für alle Werte m nahezu zu einer einzigen Kurve zusammenfallen, wenn
man den Verlust der Querschnittsformtreue bereits im Ansatz für das ideale
Kippmoment MKi mit berücksichtigt.
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MKi j iJeJv\&GJd+£eC^ (46)

Diese Feststellung hat sich bei der Untersuchung weiterer Beispiele bestätigt.
Daraus ergibt sich die Möglichkeit, für die Kippmomente von Trägern mit

nichtformtreuem I-Querschnitt eine einfache Näherungslösung anzugeben.
Denn wie in [13] gezeigt werden konnte, fallen die Kippkurven MKjMgr(Mgrj
MKi) von I-Trägern mit formtreuem Querschnitt mit sehr guter Genauigkeit
zusammen, wenn man als Bezugsgrösse nicht das vollplastische Grenzmoment
Mgr, sondern dasjenige Biegemoment M*r verwendet, bei dem die Flansche
vollständig plastiziert werden, der Steg jedoch gerade erst an seinen Rändern
zu fliessen beginnt. Für I-Träger aus gewöhnlichem Baustahl gilt:

M£&aFhlbtF+lhtA. (47)

Vergleiche mit Formel (9)!

Lässt man den Kippbereich oberhalb Mgr ausser acht, so braucht man also

nur noch eine einzige Kippkurve zur Beschreibung des Kippverhaltens von
I-Trägern, nämlich die Kippkurve des Trägers mit Sandwich-Querschnitt
(H-> 0). Dafür gilt:

(48)

(49)

Diese Kippkurve enthält nur noch Werte des natürlichen Spannungs-Deh-
nungs-Diagramms und ist identisch mit der Engesser-Shanleyschen Knick-
spannungslinie gk\gf(gf\gk?) des jeweiligen Trägerwerkstoffs. Gewöhnlich
liegt gk als Funktion der Schlankheit A vor. Ist das der Fall, so kann man
dann das Engesser-Shanleysche Kippmoment des Trägers mit nicht
formtreuem I-Querschnitt näherungsweise wie folgt berechnen:

MK&h\btF +^Kt\oK{\), (50)

-i/jßlhlbtir + lht,)
wobei A, 77 [/

* 6 j. (51)

und MKi das nach Formel (46) unter Berücksichtigung der Querschnittsaussteifung

berechnete ideale Kippmoment des Trägers ist.
Die Engesser-Shanleysche Knickspannung gk (A) gk (AJ ist den jeweils

massgebenden StabilitätsVorschriften zu entnehmen. Verwendet man an Stelle

MK a (€r)
GF

_ gg (K)
GF

Jf*
T(€R)

E GF

MKi GKi (K)
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von gk die Traglastspannungen GKr, so erhalt man aus Formel (50) eine
brauchbare Näherung für das Kippmoment von I-Tragern mit Imperfek-
tionen.

Schrifttum

1. Warkenthin, W.: Zum derzeitigen Stand der Forschung auf dem Gebiet des plasti¬
schen Kippens; Vortrag auf der «Tagung Festkorpermechanik» der TU Dresden,
Sektion Grundlagen des Maschinenwesens, Oktober 1970 (erscheint demnächst m
der Wissenschaftlichen Zeitschrift der TU Dresden)

2. Nylander, H.: Drehungsvorgange und gebundene Kippung bei geraden,
doppelsymmetrischen I-Tragern, Ingemors Vetenskaps Akademien, Handlmgar Nr. 174,
Stockholm, 1943.

3. Scheer, J.: Zum Problem der Gesamtstab llitat von einfach-symmetrischen I-Tragern,

Stahlbau 28 (1959), H. 5, S. 113 u H 6, S 165
4. Protte, W : Ein Beitrag zum Problem der Gesamtstabüitat querausgesteifter Trager

im Kippbereich; Stahlbau 30 (1961), H 4, S 103-113
5. Witte, H.: Ein Beitrag zum Kipp-Problem bei doppelt-symmetrischen Profilen mit

besonderer Berücksichtigung des Stegblechbeulens, Berichte aus Forschung und
Entwicklung unserer Werke (Firma Hoesch AG) 2/1966.

6. Fischer, M.: Das Kipp-Problem querbelasteter exzentrisch durch Normalkraft
beanspruchter I-Trager bei Verzicht auf die Voraussetzung der Querschnittsformtreue;

Dissertation, Universität Stuttgart 1966. Auszugsweise veröffentlicht in:
Stahlbau 36 (1967), H. 3, S 77.

7. Schmied, R.: Die Gesamtstabihtat von zweiachsig aussermittig gedruckten
dünnwandigen I-Stäben unter Berücksichtigung der Querschnittsverformung nach der
nichtlmearen Plattentheorie; Dissertation, TH Darmstadt 1966. Auszugsweise
veröffentlicht in: Stahlbau 36 (1967), H 1, S 1 u. H 2, S 50.

8. Loos, W.: Beitrag zur Gesamtstabihtat quersteifenloser I-Trager im Kippbereich;
Dissertation, Hochschule für Bauwesen Leipzig 1965.

9. Warkenthin, W.: Kippuntersuchungen im plastischen Bereich; Bauplanung —

Bautechnik 23 (1969), H. 5, S. 227-229.
10. Reckling, K.-A.: Experimente zur Feststellung der Werkstoffanisotropie und zur

Überprüfung der Hillschen Verfestigungshypothese, Stahlbau 38 (1969), H. 2, S. 43.
11. Neal, B. G.: The Lateral Instabihty of Yielded Mild Steel Beams of Rectangular

Cross-Sections; Philosophical Transactions, Royal Soc of London, Series A, Vol. 242
(1950).

12. Vogel, U.: Über die Anwendung des Traglastverfahrens im Stahlbau; Stahlbau 38

(1969), S. 329.
13. Warkenthin, W.: Kippsicherheitsnachweis von I-Tragern; Bauplanung - Bau¬

technik 24 (1970), H. 11, S. 550-552.



218 WERNER WARKENTHIN

Zusammenfassung

Es werden die Engesser-Shanley'schen Kippmomente von dünnwandigen
doppelsymmetrischen I-Trägern aus elastisch-plastischem Werkstoff unter
Berücksichtigung des Einflusses der beim Kippen auftretenden
Querschnittsverformungen in Abhängigkeit vom Grad der Querschnittsaussteifungen untersucht.

Es zeigte sich, dass der Verlust der Querschnittsformtreue beim plastischen

Kippen gravierender als beim elastischen Kippen ist, dass jedoch bereits
wenige Querschnittsaussteifungen (z.B. Stegquersteifen über den Stützen, in
den Viertelspunkten, in Trägermitte und an Stellen örtlich konzentrierter
Lasteintragung) genügen, um im Sinne der klassischen Kipptheorie mit einem
quasi-formtreuen Querschnitt rechnen zu können. Abschliessend wird ein
einfaches Verfahren zur näherungsweisen Berechnung der plastischen
Kippmomente von Trägern mit nichtformtreuem I-Querschnitt mitgeteilt.

Summary

The Engesser-Shanley tipping moments of double symmetrical thin wall
I-beams of elastic-plastic material are examined in consideration of the influence

of the deformations of sections appearing during the tipping as a function
of the degree of the shear reinforcement. It showed that the deformation of
section was greater during the plastic tipping than during the elastic tipping,
but that already a few reinforcements (e. g. reinforcements of the centroid
above the supports, in the quarter points, in the centre of the beam and in
points of concentrated loads) are enough to allow to consider an almost con-
formed section in the sense of the classical tipping theory.

Finally, a simple method is presented for the approximative calculation
of the plastic tipping moments of beams with non-conformed I-section.

Resume

Les moments de deversement selon Engesser-Shanley de profil ä I avec un
materiel elastique-plastique sont examines en considerant l'influence des

deformations de la section se manifestant pendant le deversement en fonction
du degre des renforcements de section. On a constate que la deformation de

la section etait plus importante lors du deversement plastique que lors du
deversement elastique. Pourtant, un renforcement faible (p. e. des raidisseurs
transversales sur les appuis, dans les points de quart, au milieu de la poutre
et aux endroits de charges concentrees) suffit pour envisager le calcul du
deversement selon la theorie classique (contours de la section conservee).

Finalement une methode simple est communiquee pour un calcul approxi-
matif des moments de deversement de profil non-conforme.
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