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Berechnung orthotroper Stahlplatten im Traglastbereich*)
Calculation of Orthotropic Steel Plates in the Range of Ultimate Load

Calcul de plaques orthotropes en acier dans la portée de charge efficace

BERND MOLLER
Dr.-Ing., Sektion Bauingenieurwesen, Technische Universitit Dresden, DDR

1. Einleitung

Orthotrope Stahlplatten besitzen im Traglastbereich — besonders unter
konzentrierten EKinzellasten — erhebliche Reserven, die bekannterweise durch
die gebrduchlichen linearen Berechnungsverfahren nicht erfasst werden. Die
zunehmende Anwendung dieses Konstruktionselementes im Stahlleichtbau —
neben dem Stahlbriickenbau insbesondere auch im Stahlhochbau, z.B. in
Form von Stahlzellendecken — lidsst es wiinschenswert erscheinen, diesen
Tragbereich theoretisch zu beherrschen. Einer gesonderten Klarung bediirfen
die dabei auftretenden konstruktiven und baupraktischen Probleme, die die
volle Nutzung dieser Tragreserven z. Z. noch einschrinken.

In verschiedenen Veroffentlichungen, z. B. [7], [8], [9], [10], [11], [12], wer-
den bereits Untersuchungen an orthotropen Platten im geometrisch und/oder
physikalisch nichtlinearen Bereich gefiihrt. Gegeniiber diesen Arbeiten, die
auf der Kontinuumsmechanik basieren, wird hier ein diskretes Berechnungs-
verfahren dargelegt, das auf den Einsatz eines Digitalrechners orientiert ist.

Das Kontinuum der orthotropen Platte wird in Elemente endlicher Grosse,
sog. finite Elemente, mit mechanisch approximiertem Deformationszustand
unterteilt. Dem Algorithmus liegt inkrementales Vorgehen zugrunde. Das
inkrementale Vorgehen ist durch die Unterteilung der Gesamtlast in Teillasten
gekennzeichnet. Die Belastung wird stufenweise aufgebracht, und nach jedem
Lastzuwachs werden die unbekannten Deformationsgrossen (Knotenverschie-
bungen) berechnet. Der Deformations- und Spannungszustand aller bereits
durchlaufenen Inkremente ist bekannt.

*) Auszug aus der Dissertation des Verfassers. Referenten: Prof. Dr.-Ing. habil. G.
Biirgermeister, Prof.-Ing. habil. H. Muller, Dr.-Ing. C. Schleicher.
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In jedem Inkrement wird die Gesamtsteifigkeitsmatrix des Systems aus
einer linearen Steifigkeitsmatrix und einer geometrischen Steifigkeitsmatrix
gebildet. Nichtlineares Werkstoffverhalten wird mit den Spannungs-Ver-
zerrungs-Beziehungen von Swainger beriicksichtigt. Durch Beachtung der
spezifischen Besonderheiten bei Stahlplatten gelingt die vollstindige Lineari-
sierung innerhalb jedes Inkrementes.

2. Orthotrope Platte — diskretes mechanisches Modell
Die orthotrope Platte wird durch ein diskretes mechanisches Modell sub-

stituiert, dessen Elemente finite ebene Dreiecke sind. Beispiele zeigen Fig. 1
und Fig. 2.

Fig. 1. Modell einer orthotropen Platte mit torsionsweichen Rippen.
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Fig. 2. Modell einer orthotropen Platte mit torsionssteifen Rippen.

Die Anordnung der Knotenpunkte unterliegt folgenden Einschrinkungen:

1. Knotenpunkte des Deckbleches liegen auf den Schnittlinien zwischen
Deckblech und Léangsrippen.

2. Knotenpunkte nach 1 sind gleichzeitig Knotenpunkte der Langsrippen.

3. Weitere Knotenpunkte der Léngsrippen sind nur auf deren Unterkante
zuldssig.
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Wird weiter vorausgesetzt, dass die Lasteintragung ausschliesslich in den
Knotenpunkten erfolgt und dass Kontinuitdt lediglich beziiglich der Ver-
schiebungen und nicht beziiglich der Verdrehungen gefordert wird, unterliegt
jedes Element nur einem Scheibenspannungszustand.

Auftretende Geometriedinderungen des Deckbleches und der Versteifungs-
rippen bei Laststeigerung werden durch dieses Modell widerspruchsfrei be-
schrieben. So wird beispielsweise aus dem urspriinglich ebenen Deckblech des
unbelasteten Zustandes unter Belastung eine beliebig schwach gekriimmte
Schale, die stiickweise durch ebene dreieckige Elemente approximiert ist.

Der Ubergang vom gekoppelten Scheiben- und Plattenspannungszustand
bei kleinen Deformationen zum Membranspannungszustand bei grossen Defor-
mationen wird erfasst.

3. Voraussetzungen, Definitionen

Es wird vorausgesetzt:

1. Inkrementale Lasteintragung.

Dehnungen und Gleitungen sind klein gegeniiber 1.

Drehwinkel der verformten Elemente sind klein gegeniiber 1, jedoch gross
gegeniiber den Dehnungen und Gleitungen.

Verzerrungen innerhalb jedes Elementes sind konstant.

Isotroper Werkstoff.

Isotrope Verfestigung.

Plastisch inkompressibler Werkstoff.

Proportionale Belastung.

L

o> e

Zur Beschreibung des Deformations- und Spannungszustandes eines finiten
dreieckigen Elementes im globalen und lokalen Koordinatensystem (Fig. 3)
werden folgende Matrizen definiert:

Ein beliebiger Punkt mit den Koordinaten

x ={x, #, %3} | (1)

Fig. 3. Element im globalen und lokalen Koordinatensystem.
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erfahrt in einem Belastungsinkrement die Verschiebungen
v={v; vy vg}. (2)

Als Knotenpunkt-Koordinaten im lokalen Koordinatensystem z. B. fiir Punkt ¢
gelten

x (i) = {@, (3) 25(1) x3(0)}. (3)

Die Knotenpunkt-Verschiebungen eines Elementes in lokalen Koordinaten
werden in folgenden Matrizen zusammengefasst:

vy ={v,(¢) v (j) v, (k)},

Vo = {,(1) v5(j) va(k)}, (4)
vy ={v3(1) v3(j) v3(k)}.
vE ={v; v, vg}. (5)

Zur Beschreibung des ebenen Spannungszustandes werden u.a. die Matrizen

s ={sy; S Si2}, (6)
s’ ={s1; S S33 Si2} (7)

benotigt. Striche kennzeichnen Deviatorspannungen. Beim zugehdrigen Ver-
zerrungszustand werden ein elastischer und ein plastischer Anteil definiert:

elastischer Verzerrungsanteil
& ={€11,6 €2, €126 ) (8)
plastischer Verzerrungsanteil

€, ={€1,p €2, €12,p}- (9)

4. Elementsteifigkeitsmatrix — geometrische Steifigkeitsmatrix

Nach (r —1) Belastungsinkrementen wird die Lage eines Punktes mit den
Anfangskoordinaten x des unverformten Zustandes durch

X=X+ Vv (10)

beschrieben. Der Summenoperator > fasst in Gl. (10) alle Verschiebungs-
vektoren v der (r—1) durchlaufenen Inkremente zusammen.

Fiir den unbekannten Verschiebungsvektor v des r-ten Inkrementes wird
entsprechend Voraussetzung 4 der Verschiebungsansatz

v=Mca (11)

getroffen, wobei
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2, 24, 1 0 0 0 0 0 O

M=/0 0 0 2, 2,1 0 0 O |, (12)
0 0 0 0 0 0 z 2 1

o ={u ay o3 0y a5 otg 07 g g} (13)

sind.

Gl. (11) ist die einfachste Form eines konformen Verschiebungsansatzes,
wie er bei Scheibenproblemen verwendet wird. Bei dem eingefiihrten Modell
ist dieser Verschiebungsansatz jedoch nichtkonform, da die Vertraglichkeits-
bedingungen lediglich beziiglich der Verschiebungen erfiillt werden.

Zur iiblichen Herleitung der Elementsteifigkeitsmatrix aus der Form-
danderungsenergie ist die Kenntnis der Verzerrungs-Verschiebungs-Beziehungen
erforderlich. Je nach Art der dabei beriicksichtigten nichtlinearen Glieder
erhilt man zusitzlich zur linearen Elementsteifigkeitsmatrix verschieden auf-
gebaute geometrische Steifigkeitsmatrizen (s.z.B. [4], [5]).

Gegeniiber dem echten Scheibenproblem sind hier die Einzelelemente be-
liebig zur Belastungsrichtung orientiert, so dass nicht nur der Einfluss von v;,
sondern auch der des Drehwinkels w; (s. [6], S. 13) beriicksichtigt wird. Die
sich damit ergebenden Verzerrungs-Verschiebungs-Beziehungen

1 1 o, 1[0vs)?
€11:611+§312w3+—(w3) +s\——1) >

2 2\0x,
= e yemont o0+ ) o
€15 = €10+ (€9 —€47) w3 +’§% 3670:
mit €11 = %’ €22 = 57”22’ %12 = g;)—; %,
o =3l 7

wurden erstmals in [4] verwendet, um die folgende geometrische Steifigkeits-
matrix S, herzuleiten:

= _ g U s t o 1
S,=sn 16 7, w1+522—16FA w2+312——8FA W, (15)
3X, X X, XZ 007 X, X7 X,X{ 007
W, = | X,XI —X,X{ 007 |  w,—| X,Xf 3X,XT 007
007 007 4X, X7 007 007 4X,XT
X, X+ X,XT X, X7+X,XT 007
W,=| X, XT+ X, XI' X, X7+X,XT 007 ,

007 007 —2(X, X{ + X, X7)
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Xl ={x1(jak) ( ) 237 }
X, ={z5(j.k) « ) %2 (2,9)}
0 ={00 0}, (y,k) = 2, (J) —x, (k) usw.

S11> Sa2, S12 Spannungen nach (r—1) durchlaufenen Inkrementen, F; Fliche
des Elementes, ¢t Dicke des Elementes.

5. Fliessgesetz

Von den verschiedenen Fliessbedingungen wird hier auf die Fliessbedingung
nach v. Mises zuriickgegriffen. Wegen der vorausgesetzten plastischen Inkom-
pressibilitit und bei Vernachlissigung des Bauschinger-Effektes besteht zwi-
schen der zweiten Invarianten des Spannungsdeviators I;; und der Ver-
gleichsspannung s, des einachsigen Zustandes folgender Zusammenhang in
inkrementaler Darstellung

Sl =33st, (16)
Yy

s, =(3xEreess) a7
1 1/2

s, =( S (s Tb3Zs) . (18)

Der Summenoperator > fasst die Spannungen der einzelnen Inkremente zu-
sammen. Die Matrizen b2 und b3 haben folgenden Aufbau

1(1)03 -2 —1 0

b2 |9 1001 b3=| -1 2 0] (19)
001 0 0 o 6
0 00 2 _

6. Spannungs-Verzerrungs-Beziehungen

6.1. Elastischer Bereich

Im elastischen Bereich gibt das Hookesche Gesetz den Zusammenhang
zwischen Spannungen und Verzerrungen an:

&, = E;'s, (20)
1 0 1 — 0
E # 1 K
E.=7—=|» 1 0 | El=4|—# 1 0 | @
1o o 1-p)2 0 0 2(1+p)
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6.2. Plastischer Bereich

Dem plastischen Bereich werden die finiten Spannungs-Verzerrungs-Be-
ziehungen nach SWAINGER [2] zugrunde gelegt. Das s,-¢,-Diagramm wird
oberhalb der elastischen Grenzspannung s, stiickweise linearisiert (s. Fig. 4).
Durch r—1 und r seien der Anfang bzw. das Ende des r-ten Inkrementes
gekennzeichnet.

14

L
SefH— — —— el —=—m
St ——— ! e -1 tanm =E
I / tan m, =B,
S — — _' tan m._, = P
/ / tanw, =P
/ /
[
/ /
/
—-Ev
2 I
€1 Epr  Ee
Fig. 4. Einachsiger Vergleichszustand.
Aus den vorhergehenden Schritten sind ¢, ;,...,¢, ,_; bekannt. Die totale
Dehnung ist dann
€=¢c,tey 1t ey, 1, (22)

Aus den Swaingerschen Spannungs-Verzerrungs-Beziehungen erhilt man fiir
den plastischen Anteil der Verzerrungen eines Inkrementes

1(1 1
= — — (r — glr—1)
Epr = 5 (R E) b3 (s —s1), . (23)
s und s"V sind die zu den Laststufen » und » — 1 gehtrenden Spaltenmatrizen
der Spannungen des ebenen Spannungszustandes.

Die gesamten Verzerrungen ergeben sich aus der Zusammenfassung von

Gl. (20) und GI. (23):

e = (E +E;L)s. (24)
Dabei sind
1/1 1
-1 _ — — 2
E,.r 2(Pr E) b3, (25)

s =sN—grD, (26)
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Gl. (24) stellt noch keine vollstindig linearisierte Beziehung zwischen den
Verzerrungen und den Spannungen dar, da E;% eine Funktion des Spannungs-
zustandes ist. Zu Beginn jedes Inkrementes muss F, bekannt sein. Eine ein-
fache Moglichkeit besteht darin, fiir £, anhand der vorhergehenden Schritte
einen geschitzten Wert einzufithren. Es ist weiter moglich, diesen Ausgangs-
wert iterativ zu verbessern (s.z.B. [3]).

Da hier insbesondere orthotrope Platten aus Stahl betrachtet werden, wird
die vollstandige Linearisierung von Gl. (24) durch Einfiihren eines bilinearen
Spannungs-Dehnungs-Diagrammes fiir den einachsigen Vergleichszustand
erreicht. Der diskrete Tangentenmodul P ist nunmehr unabhéngig vom
Spannungszustand.

7. Besonderheiten bei Platten mit torsionsweichen Liingsrippen

Torsionsweiche Liangsrippen besitzen im eingefiihrten Modell senkrecht zu
ihrer Ebene keine bzw. im verformten Zustand fast keine Steifigkeit. Damit
stehen fiir Knotenpunkte an den Rippenunterkanten nur zwei Gleichgewichts-
bedingungen zur Verfiigung. Anderenfalls wiirde die Gesamtsteifigkeitsmatrix
singuldr bzw. fast singuldr.

Der vollstindige Verschiebungszustand dieser Knotenpunkte wird darum
in jedem Inkrement in zwei Stufen berechnet (Fig. 5).

1. Stufe: Aufstellen der Gesamtsteifigkeitsmatrix unter Vernachlissigung
der Steifigkeiten rechtwinklig zur Rippenebene. Nach Auswertung der Be-
stimmungsgleichungen erhilt man fiir den Knoten s die Verschiebungen 9 (s)
und v (s). Verschiebungen in ,-Richtung treten nicht auf (¢ (s)=0).

- Schnitt A-A
X3
Xz
Verschiebung Visenkrecht s+11
zur Rippenebene s
V3 (S):
S
Xg
Rippenkante im
verformten Zustand'|

Fig. 5. Verformung torsionsweicher Lingsrippen.
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2. Stufe: Korrektur des Verformungszustandes der Rippe. Korrektur-
bedingung: Lingsrippe und Deckblech stehen aufeinander senkrecht (p=/2).

Mit der Korrekturbedingung p=m/2 wird die Forménderungsenergie zu
klein angesetzt. Die Traglast wird durch diese Festlegung also etwas zu niedrig
errechnet.

8. Beispiel
Es wird das Ergebnis fiir eine rechteckige orthotrope Platte unter mittiger

Einzellast mitgeteilt. Geometrie, Lasteintragung und Randbedingungen sind
aus Fig. 6 ersichtlich.

. &
T T T | 1T T 17T
m?%; ¥ ¥ m 1 IOxI?~00=3OOOmm ‘%7

|||||||||
R R O
R
||'ILX’}'I= ;
||| | oy | S
|{|73||P||}=—>§
EEEEEEEE
B
EEREE RN

S T O 5

i 1

] i,
2

p—

Fig. 6. Geometrie und Belastung einer Platte mit torsionsweichen Rippen.

Die Platte wurde fiir 20 Belastungsinkremente (maximale Gesamtbelastung
P =43,6 Mp) untersucht. Bis P=5Mp verhielt sich die Platte voll elastisch
(s. Fig. 7). Ab P=5Mp traten plastische Verformungen auf, und zwar zuerst
in Langsrippe I unter der Einzellast. Bei P=23Mp begann die benachbarte
Léangsrippe II von der Mitte aus zu plastizieren. Bei P = 33,6 Mp setzte Plasti-
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zierung im Deckblech ein. Die Lastdurchsenkungskurve, Fig. 7, fiir den Last-
angriffspunkt zeigt den charakteristischen Verlauf. Zum Vergleich sind die
Ergebnisse von Miiller und Risse und eine Versuchskurve nach Pelikan ange-

geben.
P inMp
a5}
42 5 - P,/o
39 /
36 /|
Beginn der Plastizierung im Deckblech|
33 T T T —
| A
30
27 ?e\.\*o(\ |
24 7 ——[-———1Beginn der Plastizierung in Ldngsrippe I
5y / / |
18
15
12
9 / )
6 __B__egm der Plastizierung in l___d_ng_sri_pgg_l_
|
3
| | t _
+ +— T - imncm
05 | 15 2 25 3 35 4 45 5 °
Fig. 7. Lastdurchsenkungskurve des Lastangriffspunktes.
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Zusammenfassung

Das Verhalten orthotroper Stahlplatten im Traglastbereich wird mit Hilfe
eines diskreten mechanischen Modells aus finiten dreieckigen Elementen unter-
sucht. Alle mechanischen Beziehungen werden fiir inkrementales Vorgehen
aufgestellt. Die Grundrissgeometrie unterliegt keinerlei Einschrinkung. Eine
grosse Anzahl gebrauchlicher Plattenquerschnitte lasst sich mit diesem Modell
berechnen.

Summary

The behaviour of orthotropic steel plates in the range of ultimate load is
examined by means of a discrete mechanical model consisting of finite triangular
elements. All mechanical relations are stated for an incremental proceeding.
The geometry of the outline is not subjected to any restriction. A big number
of usual plate sections may be calculated by the help of this model.

Résumé

Le comportement de plaques orthotropes en acier dans la portée de charge
efficace est étudié a 1’aide d’'un modéle mécanique discret constitué par des
éléments triangulaires finis. Toutes les relations mécaniques sont établies pour
une méthode incrémentale. La géométrie de plan n’est soumise & aucune
restriction. Un grand nombre de sections de plaque usuelles peut étre calculé
moyennant ce modele.
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