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Berechnung orthotroper Stahlplatten im Traglastbereich*)

Calculation of Orthotropic Steel Plates in the Range of Ultimate Load

Calcul de plagues orthotropes en acier dans la portee de charge efficace

BERND MÖLLER
Dr.-Ing., Sektion Bauingenieurwesen, Technische Universität Dresden, DDR

1. Einleitung

Orthotrope Stahlplatten besitzen im Traglastbereich - besonders unter
konzentrierten Einzellasten - erhebliche Reserven, die bekannterweise durch
die gebräuchlichen linearen Berechnungsverfahren nicht erfasst werden. Die
zunehmende Anwendung dieses Konstruktionselementes im Stahlleichtbau -
neben dem Stahlbrückenbau insbesondere auch im Stahlhochbau, z.B. in
Form von Stahlzellendecken — lässt es wünschenswert erscheinen, diesen
Tragbereich theoretisch zu beherrschen. Einer gesonderten Klärung bedürfen
die dabei auftretenden konstruktiven und baupraktischen Probleme, die die
volle Nutzung dieser Tragreserven z.Z. noch einschränken.

In verschiedenen Veröffentlichungen, z.B. [7], [8], [9], [10], [11], [12], werden

bereits Untersuchungen an orthotropen Platten im geometrisch und/oder
physikalisch nichtlinearen Bereich geführt. Gegenüber diesen Arbeiten, die
auf der Kontinuumsmechanik basieren, wird hier ein diskretes Berechnungsverfahren

dargelegt, das auf den Einsatz eines Digitalrechners orientiert ist.
Das Kontinuum der orthotropen Platte wird in Elemente endlicher Grösse,

sog. finite Elemente, mit mechanisch approximiertem Deformationszustand
unterteilt. Dem Algorithmus liegt inkrementales Vorgehen zugrunde. Das
inkrementale Vorgehen ist durch die Unterteilung der Gesamtlast in Teillasten
gekennzeichnet. Die Belastung wird stufenweise aufgebracht, und nach jedem
Lastzuwachs werden die unbekannten Deformationsgrössen (Knotenverschiebungen)

berechnet. Der Deformations- und Spannungszustand aller bereits
durchlaufenen Inkremente ist bekannt.

*) Auszug aus der Dissertation des Verfassers. Referenten: Prof. Dr.-Ing. habil. G.

Bürgermeister, Prof.-Ing. habil. H. Müller, Dr.-Ing. C. Schleicher.



168 BERND MÖLLER

In jedem Inkrement wird die Gesamtsteifigkeitsmatrix des Systems aus
einer linearen Steifigkeitsmatrix und einer geometrischen Steifigkeitsmatrix
gebildet. Nichtlineares Werkstoffverhalten wird mit den
Spannungs-Verzerrungs-Beziehungen von Swainger berücksichtigt. Durch Beachtung der

spezifischen Besonderheiten bei Stahlplatten gelingt die vollständige Linearisierung

innerhalb jedes Inkrementes.

2. Orthotrope Platte — diskretes mechanisches Modell

Die orthotrope Platte wird durch ein diskretes mechanisches Modell
substituiert, dessen Elemente finite ebene Dreiecke sind. Beispiele zeigen Fig. 1

und Fig. 2.

Fig. 1. Modell einer orthotropen Platte mit torsionsweichen Rippen.

Fig. 2. Modell einer orthotropen Platte mit torsionssteifen Rippen.

Die Anordnung der Knotenpunkte unterliegt folgenden Einschränkungen:

1. Knotenpunkte des Deckbleches liegen auf den Schnittlinien zwischen
Deckblech und Längsrippen.

2. Knotenpunkte nach 1 sind gleichzeitig Knotenpunkte der Längsrippen.
3. Weitere Knotenpunkte der Längsrippen sind nur auf deren Unterkante

zulässig.
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Wird weiter vorausgesetzt, dass die Lasteintragung ausschliesslich in den
Knotenpunkten erfolgt und dass Kontinuität lediglich bezüglich der
Verschiebungen und nicht bezüglich der Verdrehungen gefordert wird, unterliegt
jedes Element nur einem Scheibenspannungszustand.

Auftretende Geometrieänderungen des Deckbleches und der Versteifungsrippen

bei Laststeigerung werden durch dieses Modell widerspruchsfrei
beschrieben. So wird beispielsweise aus dem ursprünglich ebenen Deckblech des

unbelasteten Zustandes unter Belastung eine beliebig schwach gekrümmte
Schale, die stückweise durch ebene dreieckige Elemente approximiert ist.

Der Übergang vom gekoppelten Scheiben- und Plattenspannungszustand
bei kleinen Deformationen zum Membranspannungszustand bei grossen
Deformationen wird erfasst.

3. Voraussetzungen, Definitionen

Es wird vorausgesetzt:

1. Inkrementale Lasteintragung.
2. Dehnungen und Gleitungen sind klein gegenüber 1.

3. Drehwinkel der verformten Elemente sind klein gegenüber 1, jedoch gross
gegenüber den Dehnungen und Gleitungen.

4. Verzerrungen innerhalb jedes Elementes sind konstant.
5. Isotroper Werkstoff.
6. Isotrope Verfestigung.
7. Plastisch inkompressibler Werkstoff.
8. Proportionale Belastung.

Zur Beschreibung des Deformations- und Spannungszustandes eines finiten
dreieckigen Elementes im globalen und lokalen Koordinatensystem (Fig. 3)
werden folgende Matrizen definiert:

Ein beliebiger Punkt mit den Koordinaten

x {x± x2 xs} (1)

>q,v

>c„v3,T3

Fig. 3. Element im globalen und lokalen Koordinatensystem.
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erfährt in einem Belastungsinkrement die Verschiebungen

v ={vx v2 vs}. (2)

Als Knotenpunkt-Koordinaten im lokalen Koordinatensystem z.B. für Punkt i
gelten

x(i) ={xt(i) x2{i) xs(i)}. (3)

Die Knotenpunkt-Verschiebungen eines Elementes in lokalen Koordinaten
werden in folgenden Matrizen zusammengefasst:

v1 {v1(i) v±(j) v1(k)},
v2 {M^) M?) Mfc)}> (4)

v^ {Vl v2 v3}. (5)

Zur Beschreibung des ebenen Spannungszustandes werden u.a. die Matrizen

s {sn s22 s12}, (6)

s ={sn s22 s33 s12 } (7)

benötigt. Striche kennzeichnen DeviatorSpannungen. Beim zugehörigen
Verzerrungszustand werden ein elastischer und ein plastischer Anteil definiert:

elastischer Verzerrungsanteil

ee lell,e e22,e €12,e )> ($)

plastischer Verzerrungsanteil

ep l€ll,i> €22sp e12,p}' (9)

4. Elementsteifigkeitsmatrix — geometrische Steifigkeitsmatrix

Nach (r — 1) Belastungsinkrementen wird die Lage eines Punktes mit den
Anfangskoordinaten x des unverformten Zustandes durch

x x + 2v (10)

beschrieben. Der Summenoperator 2 fasst in Gl. (10) alle Verschiebungsvektoren

v der (r — 1) durchlaufenen Inkremente zusammen.
Für den unbekannten Verschiebungsvektor v des r-ten Inkrementes wird

entsprechend Voraussetzung 4 der Verschiebungsansatz

v Ma (11)

getroffen, wobei
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M
x± x2 1 0 0 0 0 0 0

000 xx x2 1000000000 ^ x2 1

a {ax a2 a3 a4 a5 a6 a7 a8 a9}

(12)

(13)

sind.
Gl. (11) ist die einfachste Form eines konformen Verschiebungsansatzes,

wie er bei Scheibenproblemen verwendet wird. Bei dem eingeführten Modell
ist dieser Verschiebungsansatz jedoch nichtkonform, da die Verträglichkeits-
bedingungen lediglich bezüglich der Verschiebungen erfüllt werden.

Zur üblichen Herleitung der Elementsteifigkeitsmatrix aus der
Formänderungsenergie ist die Kenntnis der Verzerrungs-Verschiebungs-Beziehungen
erforderlich. Je nach Art der dabei berücksichtigten nichtlinearen Glieder
erhält man zusätzlich zur linearen Elementsteifigkeitsmatrix verschieden
aufgebaute geometrische Steifigkeitsmatrizen (s.z.B. [4], [5]).

Gegenüber dem echten Scheibenproblem sind hier die Einzelelemente
beliebig zur Belastungsrichtung orientiert, so dass nicht nur der Einfluss von v3,
sondern auch der des Drehwinkels o>3 (s. [6], S. 13) berücksichtigt wird. Die
sich damit ergebenden Verzerrungs-Verschiebungs-Beziehungen

1 1, v« WaM2

€99 — e9
1 1, v, W^3\2 (14)

_ dv3 dvs
e12 — ei2 + (e22 ~~ eil) w3 + -ß^T £^T

mit *ii
cv.
dx1'

622 —
8v2

dx2
dvx dv2

^12 "o •"* "ö '

ax2 0 x1

1 / b v2 dv1

2\dx1 dx2

wurden erstmals in [4] verwendet, um die folgende geometrische Steifigkeits-

(15)

matrix Sg herzuleiten:

Sff-slll6i^W1 + &
t w +" S12 0 p "3 >S2216J^W2

~3XxXf XXX% 00T " "-XiXf XiXf OO2, '

w1 X2Xf -X2Xf 00T w2 X2Xf 3X2Xf 00r
003" OCF 4X2X2r_ 00T 0<F 4X1Xf

ws
"XxXf + XaXf X1Xf + X2Xf 0<F

XiXf + XaXf X^f+ XgXf 00r
0<F 0<F -2(X1Xf + X2Xf)_
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X1 {x1(j,k) x±(k,i) x^i^j)},
X2 {x2(j,k) x2(k,i) x2(i,j)},
0 ={000}, %i(j,k) x1(j)— x±(k) usw.

sn, s22, s12 Spannungen nach (r— 1) durchlaufenen Inkrementen, F^ Fläche
des Elementes, t Dicke des Elementes.

5. Fliessgesetz

Von den verschiedenen Fliessbedingungen wird hier auf die Fliessbedingung
nach v. Mises zurückgegriffen. Wegen der vorausgesetzten plastischen Inkom-
pressibilität und bei Vernachlässigung des Bauschinger-Effektes besteht
zwischen der zweiten Invarianten des Spannungsdeviators I2s und der
Vergleichsspannung sv des einachsigen Zustandes folgender Zusammenhang in
inkrementaler Darstellung

Zj ¦* 2, s ~ o 2j Sv

13 \1/2
2 s, =(|Z(srM2s') >

/l \1/2
2S, =g2(8)rM28j

(16)

(17)

(18)

Der Summenoperator 2 f&sst die Spannungen der einzelnen Inkremente
zusammen. Die Matrizen 62 und 63 haben folgenden Aufbau

62

10 0 0

0 10 0

0 0 10
0 0 0 2

63
2-1 0"

12 0

0 0 6

(19)

6. Spannungs-Verzerrungs-Beziehungen

6.1. Elastischer Bereich

Im elastischen Bereich gibt das Hookesche Gesetz den Zusammenhang
zwischen Spannungen und Verzerrungen an:

et1 s,

E
1- V-'

"1 /* 0

0

0 0 (l-/*)/2

1
1 -ix 0

0

0 0 2(1+/jl)_

(20)

(21)



BERECHNUNG ORTHOTROPER STAHLPLATTEN IM TRAGLASTBEREICH 173

6.2. Plastischer Bereich

Dem plastischen Bereich werden die finiten Spannungs-Verzerrungs-Be-
ziehungen nach Swainger [2] zugrunde gelegt. Das sv-ev-Diagramm wird
oberhalb der elastischen Grenzspannung sg stückweise linearisiert (s. Fig. 4).
Durch r — 1 und r seien der Anfang bzw. das Ende des r-ten Inkrementes
gekennzeichnet.

r-1Sr-1

tan 77

ran tt,
So

Sp

SDr

E

tan 7rr_, Pr_,

tan wr Pr

€P,r-1

Fig. 4. Einachsiger Vergleichszustand.

Aus den vorhergehenden Schritten sind €pl, • ..»^r-i bekannt. Die totale
Dehnung ist dann

(22)e €e + ep,! + €Pi f—1 ' ^p, r '

Aus den Swaingerschen Spannungs-Verzerrungs-Beziehungen erhält man für
den plastischen Anteil der Verzerrungen eines Inkrementes

^-ikri)^-«™)- (23)

s(r) und s(r_1) sind die zu den Laststufen r und r — 1 gehörenden Spaltenmatrizen
der Spannungen des ebenen Spannungszustandes.

Die gesamten Verzerrungen ergeben sich aus der Zusammenfassung von
Gl. (20) und Gl. (23):

^ (E~1+E-1,)s. (24)

Dabei sind

^-2\¥r~E\m'
cW-sH).

(25)

(26)
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Gl. (24) stellt noch keine vollständig linearisierte Beziehung zwischen den

Verzerrungen und den Spannungen dar, da E~\ eine Funktion des Spannungszustandes

ist. Zu Beginn jedes Inkrementes muss Pr bekannt sein. Eine
einfache Möglichkeit besteht darin, für Pr anhand der vorhergehenden Schritte
einen geschätzten Wert einzuführen. Es ist weiter möglich, diesen Ausgangswert

iterativ zu verbessern (s.z.B. [3]).
Da hier insbesondere orthotrope Platten aus Stahl betrachtet werden, wird

die vollständige Linearisierung von Gl. (24) durch Einführen eines bilinearen
Spannungs-Dehnungs-Diagrammes für den einachsigen Vergleichszustand
erreicht. Der diskrete Tangentenmodul P ist nunmehr unabhängig vom
Spannungszustand.

7. Besonderheiten bei Platten mit torsionsweichen Längsrippen

Torsionsweiche Längsrippen besitzen im eingeführten Modell senkrecht zu
ihrer Ebene keine bzw. im verformten Zustand fast keine Steifigkeit. Damit
stehen für Knotenpunkte an den Rippenunterkanten nur zwei Gleichgewichtsbedingungen

zur Verfügung. Anderenfalls würde die Gesamtsteifigkeitsmatrix
singulär bzw. fast singulär.

Der vollständige Verschiebungszustand dieser Knotenpunkte wird darum
in jedem Inkrement in zwei Stufen berechnet (Fig. 5).

1. Stufe: Aufstellen der Gesamtsteifigkeitsmatrix unter Vernachlässigung
der Steifigkeiten rechtwinklig zur Rippenebene. Nach Auswertung der
Bestimmungsgleichungen erhält man für den Knoten s die Verschiebungen tfp (s)

und ^(s). Verschiebungen in J3-Richtung treten nicht auf (v31)(s) 0).

Schnitt A-A

T V
A E

Verschiebung V3senkrecht

zur Rippenebene

x3

x2

S+1

v3 (S)

OCs\

Rippenkante imx
verformten Zustand

Fig. 5. Verformung torsionsweicher Längsrippen.
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2. Stufe: Korrektur des Verformungszustandes der Rippe. Korrekturbedingung:

Längsrippe und Deckblech stehen aufeinander senkrecht v(p 7r/2).
Mit der Korrekturbedingung p — Tr\2 wird die Formänderungsenergie zu

klein angesetzt. Die Traglast wird durch diese Festlegung also etwas zu niedrig
errechnet.

8. Beispiel

Es wird das Ergebnis für eine rechteckige orthotrope Platte unter mittiger
Einzellast mitgeteilt. Geometrie, Lasteintragung und Randbedingungen sind
aus Fig. 6 ersichtlich.

^K w
T"
n i i10x300 3000 mm

i r "1

4X>

p

rftr

¦^i

1
1 t

290 mm

—

^
10 10

Fig. 6. Geometrie und Belastung einer Platte mit torsionsweichen Rippen.

Die Platte wurde für 20 Belastungsinkremente (maximale Gesamtbelastung
P 43,6Mp) untersucht. Bis P 5Mp verhielt sich die Platte voll elastisch
(s. Fig. 7). Ab P 5Mp traten plastische Verformungen auf, und zwar zuerst
in Längsrippe I unter der Einzellast. Bei P 23Mp begann die benachbarte
Längsrippe II von der Mitte aus zu plastizieren. Bei P 33,6Mp setzte Plasti-
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zierung im Deckblech ein. Die Lastdurchsenkungskurve, Fig. 7, für den
Lastangriffspunkt zeigt den charakteristischen Verlauf. Zum Vergleich sind die

Ergebnisse von Müller und Risse und eine Versuchskurve nach Pelikan
angegeben.

P inMpn

39

Beginn der Plastizierung im Deckblech

o3
vfl£o^

24

\0^

^
&^

Beginn der Plastizierung in Langsrippe I

^-^[Beginn der Plastizierung in Longsrippe I

0,5 I 1,5 2 2,5 3 3,5 4 4,5

Fig. 7. Lastdurchsenkungskurve des Lastangriffspunktes.

V2 in cm
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Zusammenfassung

Das Verhalten orthotroper Stahlplatten im Traglastbereich wird mit Hilfe
eines diskreten mechanischen Modells aus finiten dreieckigen Elementen untersucht.

Alle mechanischen Beziehungen werden für inkrementales Vorgehen
aufgestellt. Die Grundrissgeometrie unterliegt keinerlei Einschränkung. Eine
grosse Anzahl gebräuchlicher Plattenquerschnitte lässt sich mit diesem Modell
berechnen.

Summary

The behaviour of orthotropic steel plates in the ränge of ultimate load is
examined by means ofa discrete mechanical model consisting of finite triangulär
elements. All mechanical relations are stated for an incremental proceeding.
The geometry of the outline is not subjected to any restriction. A big number
of usual plate sections may be calculated by the help of this model.

Resume

Le comportement de plaques orthotropes en acier dans la portee de charge
efficace est etudie a l'aide d'un modele mecanique discret constitue par des

elements triangulaires finis. Toutes les relations mecaniques sont etablies pour
une methode incrementale. La geometrie de plan n'est soumise ä aucune
restriction. Un grand nombre de sections de plaque usuelles peut etre calcule
moyennant ce modele.
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