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Dynamics of Asymmetric Multistory Structures
Dynamique de structures asymétriques a plusieurs étages

Dynamik asymmetrischer mehrstockiger Bauten

J. GLUCK M. GELLERT A. DANAY
Senior Lecturer Senior Lecturer Graduate Student
Faculty of Civil Engineering, Technion-Israel Institute of Technology

Introduction

In multistory building design impulsive lateral loads and earthquake ground
motion lead to a dynamic analysis of such structures. A rigorous solution of
the problem involves a large amount of numerical calculations which may be
carried out with aid of digital computers only. It is well known that severe
earthquakes will produce nonlinear dynamic response while in the case of a
moderate earthquake ground motion the response of the structure may be
assumed linear. Herein is described a method for linear dynamic response of
multistory structures.

Previous reports treat extensively linear and nonlinear dynamic analysis
of multistory buildings by the discrete method, but most of them involve
symmetric structures which leads to two-dimensional analytical models [4],
[5]. A three-dimensional discrete model for linear dynamic analysis of multi-
story buildings was presented by WEAVER [13]. The structure is laid out in a
rectangular grid pattern and consists of shear walls and columns with principal
axes parallel to those of the system. A threedimensional model for statical
analysis was presented by WINOKUR [14].

Another common approach to lateral load analysis of multistory structures
is based on the continuous-medium concept, in which the discrete structure is
represented by a continuous one, by replacing the horizontal connecting beams
and frame by an equivalent continuous medium. The forces borne in this
medium are assumed to be proportional to the second derivative of the dis-
placement. The statical analysis of two-dimensional models was presented by
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CuirTY [3], BECK [2], RosmaN [11], DESPEYROUX [6] and others, and the
dynamics of this model were presented by Osawa [9] and others [10], [8].
A three dimensional model for statical analysis was presented in a previous
paper [7], and the dynamics by BArucH [1]. This model neglects the displace-
ments due to normal strains in columns and shear walls. As mentioned by
previous investigators the effect of normal strains in shear walls is of con-
siderable magnitude and is not to be neglected in dynamic analysis of multi-
story structures.

The object of this paper is to present a more accurate approach to the linear
dynamic analysis of asymmetric multistory structures, using a three-dimen-
sional continuous model, including the effects due to normal strains in columns
and shear walls. The lay-out of the stiffening elements in the plane of the
structure is arbitrary, without restrictions as to shape of the shear wall cross
section, direction of its principal axes and orientation of the frames. Vlasov’s
thin-walled bar theory is used for establishing the torsional properties of shear
walls with non-prismatic section, in which the centroid and shear center do
not coincide. The equations of motion for lateral and normal displacement
functions are formulated in matrix form. The evaluation of the normal modes
leads to an eigenvalue problem of order 2=+ 12, independent of the number
of stories, n being the total number of coupled shear walls. With the normal
modes known the dynamie response to impulsive lateral loads and earthquake
ground motion may be evaluated.

Fig. 1 shows a horizontal section of an asymmetric structure, where the
circled numbers refer to the shear walls and those enclosed in squares refer to
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Fig. 1. Floor plane of asymmetric structure.
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connecting beams transformed into a continuous medium. The local system
of axes (X;,Y;) coincides with the principal axes of shear wall cross section.
System axes are denoted with X, Y, Z.

Assumptions and Limitations

1. Floors have infinite plane rigidity and negligible rigidity perpendicular to
their plane.

2. Columns, beams, shear walls etc. have uniform geometric properties with
regard to height.

3. Shear deformations in shear walls are negligible.

Geometrie and Elastic Properties of Shear Walls

The relation between actions and displacements, expressed in matrix form,
for local axes, including warping effect, is given by:

P:(2) = K;D;(2)'V - K, D, (2)", (1)
ﬁm‘ (z)
in which Pi(2) = 1By ()] (2)
P; (2)

Terms p,,(z) and p,, (z) = the respective lateral load in X, and ¥, directions
and 7P, (z) the torque in shear wall <.
The stiffness matrices of shear wall ¢ are:

EJ, 0 0

K, =| 0 EJ, 0|, (3)
0 0 EJ,
0 0 0

K,,=|0 0 0|, (4)
0 0 QJy,

in which J,; and J,; = the respective moments of inertia about the X, and
Y, axes; J,; = the sectorial moment of inertia of shear wall 4; and J,; = the
Saint-Venant torsion coefficient of shear wall 3.

The displacement vector of shear center of wall ¢ in local axes is:

D, (z) =

%; (2)
?_)i (z) s . (5)
0;(z) '

in which %;(2), 9;(z) = the respective displacement functions in X, and Y
directions; and 6, (z) = the rotation function about Z, axis.
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Equilibrium equations of the whole structure refer to the (X, Y, Z) system
axes. Transformation of the geometric and physical properties from local into
system axes is obtained by combined rotation and translation [12].

Transformation of the displacement vector is given by:

D;(z) = T; R; D (2), (6)
in which the rotation matrix is given by:

cosa; sine; 0

R, =|—sina; cosa; O], (7)
0 0 1
the translation matrix is given by:
1 0 -Y, ’
T,=(0 1 X, (8)
0 0 1
and the system displacement vector is:
u (2)
D(z) = {v (2) . (9)
0 (2)

Terms X, ¥; = the coordinates of shear center of wall in system axes; u (z),
v(2) = the respective displacement functions in X and Y directions of the
system axes; and 6(z) = the rotation function about Z axis.

Stiffness matrices K; for system axes are obtained by congruent trans-
formation (12).

K; = TiTRg'KiRi T, (10)

in which RY and T¥ = the transpose of R; and T; respectively.
Stiffness matrix K;; does not change with transformation.

Ky = K—Ti' (11)
Transformation of the action vector into system axes is given by (12)
p:(2) = T RY p; (). (12)
Substituting Eqs. (1) and (6) in Eq. (12) yields:
| P (2) = K;D(2)'V — K, D (2)". (13)

Geometric and Elastic Properties of Connecting Beams

Since the stiffness of the shear walls is much more higher than that of the
connecting beams, the walls may be assumed rigid, undeformable compared
with the latter. In this case the mid point of the connecting beam is a contra-
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flexure point with zero bending moment. In a cut at this section as shown in
Fig. 2a only a shear force will suffice to provide continuity. These concentrated
shear forces are transformed into an equivalent distributed shear force (by
dividing it by story height) acting on a continuous media with shear stiffness
equal to that of the cut connecting beam divided by story height as shown in
Fig. 2b.
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Fig. 3. Cross section of coupled nonprismatic shear wall.

A cross section of a coupled shear wall with notations used in the text is
shown in Fig. 3. Lateral deflections and rotation of the shear wall at the cut
ends will result in a gap 7 (see Fig. 4a, b, ¢) which expressed in a matrix form is:

M = Mo+ Ny + 50 = —ef Dy(2) + oF D,(2)’, (14)
X0
in which e =1Y, (> (15)
(Wyo
)_—(_-ro
e,. - :YTO (]'6)
?’T)r()
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b G

a) Due to displacement in X direction only. b) Due to displacement in Y direction only.

; %
-
/
/
8 ——
]
¢) Due to warping only. d) Due to displacement in Z direction only.
: /’ ¢ e) Due to shear and bending de-
/ formation of the connecting beams.

Fig. 4. Gaps in cut ends due to displacements in X, Y and Z directions and rotation.

In Egs. (15) and (16), X, ¥, and X,,, Y., = coordinates of mid point 0
in left element local axes respective right; and w, and w, the sectorial coordi-
nates, respectively left and right element shear centers.

Substituting Eq. (6) into Eq. (14) yields:

;(2) = —(ef RyT,—el' R, T,) D (2)", (17)

denoting e; =e'RT,—e'R.T,. (18)
Eq. (17) may be written as

n;(2) = —e; D (2)'. (19)

‘The gap at cut ends due to axial displacements of the shear walls may be
written as

5,(:) = UF W, (20)

W (2)

: W, (2)
in which Wz)= - . (21)

W, (%)
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In Eq. (21) W is the vector of axial displacements of the shear walls;
n = the total number of coupled shear walls of the structure.

It is assumed that g; (2) is positive when producing tension in the left shear
wall (denoted with ©) and compression in the right one (denoted with ®). In
Eq. (20) U; = a Boolean vector related to positive action of g;(z). If tension
is produced in the shear walls connected to continuous media j, a plus one
appears in vector U;, a minus one if compression, and a zero for all other
coupled shear walls. For the example building given in Fig. 1 the matrix U
containing all vectors U; is

U=(U,U,U,.. Uy, (22)

-1 -1 0o o0
1 0 1 0

O OO
SO O OO

in which U=| 0 1 -1 1 (23)
O o0 0 -1
0 o o0 0 -

Due to shear and bending of the cohnecting beam, the gap which results
at cut ends is given by

P = fj q; (), (24)
3 .

in which f; = (IQLEjlj + Gljil )h (25)
J

In Eq. (25), fI,- = the effective area of the connecting beam cross section; and
I; its moment of inertia.

Compatibility Equations
The compatibility equations at the cut end of the connecting beams at

row j may be expressed as follows:
Substituting Eqgs. (19), (20), and (24) into Eq. (26) results

—e;D(2) +1,4;(x)+ UF W(z) = 0. (27)
fl0...0
0 fy...0
Denoting f=1: ’ (28)
0 fs
e,
e = ?2 , (29)
e,

in which s = the total number of connecting beams.
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The system of differential equations expressing compatibility at cut ends

of connecting beams may be expressed in matrix form as:
—eD@)+fq(z)+UTW(z) =0,

9’1]
in which q= ?2 :
)

Equations of Motion
Denoting el =TI R ¢—TT R e,
and el = (efef...el).
The equations of motion for given dynamic loads may be written:

KD (z,t)V —K; D (z,t)" —e” q(2,1) + MD (2,1) = p (2,1),
F1W(2,1)"+ Ugq(z,t)+ M*W (2,t) = P(z,1),

N -
in which K = > K,
i=1
N
Ky = Z Kz,
=1
m 0 O
M =0 m Of,
0 0 J,
m,; 0 O
0 my O
M* =|. ,
0 m,
Pz (2:1)
p(z1) =1p, (29,
p0(z’t)
P (z,1)
P, (z,1
P(Z,t) = '2( ) )
I;n(z,t)
1
T4, 0 0
1
F _ 0 74, 0
1
0 T4,

(30)

(31)

(32)
(33)

(34)
(35) .

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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In Eq.(36), N = the total number of shear walls (coupled or not); in Eq. (38),

m = the average mass per unit height; in Eq. (39), m;,m,, . .. m, = the masses

of the shear walls, per unit height; J, = the polar moment of inertia per unit
height:

Jp = fpPdm, (43)

in which p = the radius vector in horizontal plane.
By solving the vector of the shear force functions from Eq. (30) results

q=fleD —f1UTW. (44)

The substitution of Eq. (44) ind Eqs. (34) and (35) yields the following
systems of equations:

KDV — (K, +elfle)D +eTfUTW +MD = p, (45)
FAW' —Uf UTW+Uf'leD' + M*W = P. (46)

A generalized vector of displacements X (z,¢) is defined by

X(z,8) = {;(é,t;:))}' (47)
Eqs. (45) and (46) may then be written as:
aXWV (2, )+ bX" (2,t)+¢c X (z,t) +dX (z,t) +gX =L, (48)
in which a= I; gl, (49)
b— — (K, +0eTf—1 e) 1;31 , (50)
a=lo _U;?—lUT’ (52)
g = J:,I 1‘2* ; (53)
L-{El. (54)

Eqgs. (48) represent a system of n+ 3 differential equations with the same
number of unknown functions (3 lateral displacement functions u (2,%), v (2, t),
0 (z,t) and n axial displacement functions w,,w,, ... w, (2,t).
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Homogeneous Solution of the System of Differential Equations

The proposed éolution is:
X, (2,t) = Ae”sinwt = X, (z)sinwt, (55)

in which r = the characteristic value; w = the circular frequency and 4 = the
characteristic vector

A= : (56)
Apio
Substitution of Eq. (55) into the homogeneous part of Eq. (48) yields
(rfa+r’b+re+d—-w?g)Ae?sinwt =0. (87)

The condition for existence of nonzero 4 in Eq. (57) is vanishing of the
determinant of the coefficients. The characteristic equation is therefore

det (rta+r2b+rc+d—w?g) =0. (58)

In Eq. (58) there are two unknowns, 7 and w, the solution of which requires
a second equation. This equation will be obtained from the boundary condi-
tions. For a given w?, 2n+ 12 eigenvalues r are obtained, and for each one a
corresponding eigenvector A will be calculated.

The normal mode X, (z,t) for a given w? is

2n+12 D
Xy (2) = iijl A Cper? = {WZ:L ((zz))}. (59)

The solution obtained contains 27 + 12 constants which are calculated from
the boundary equations, expressed by a system of 27»+12 homogeneous
algebraic equations. The solution of this system calls for vanishing of the
coefficients determinant.

Boundary Conditions

At z=0 with lateral and normal deflections = 0

D, (0) =0 (60)
W,(0)=0. (61)
At z=0 with full restraint at support

D; (0) = 0. (62)
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At z=H with moments in shear walls = 0
Dy (0) = 0. (63)
At z=H with shear forces at the top of the structure = 0
KDy (H)—(Ky+eTf'e)D;, (H)+eTf1UTW,(H) =0. (64)
At z=H with normal strains at the top of the shear walls = 0
W, (H) =0. (65)

In case of structures with foundations on elastic subgrade similar boundary
conditions may be expressed.

General Solution of the System of Differential Equations

Assuming that the dynamic load may be expressed in the form
L(z,t) =L ()P (1), (66)

in which L (z) = a vector showing the distribution of the load with height of
the structure

(2))
(2)
()

(2) (67)
 (2)

2

RIS IS

n(z),
and @ (t) = a time function, Eq. (48) may be written:
aXWV (2, )+ bX" (2,t)+c X (z,t)+d X (2,t) +g X (2,) = L(2) D (t). (68)

The solution proposed for Eq. (68) will be the sum of the normal modes
X,; () multiplied by a corresponding time function B; (t),i.e.

X (z,t) = —21 X (2) B; (t). (69)
Premultiplying Eq. (68) with X}, ()T and integrating results
H ..
[ X}, @) [aXV (2,t) + bX" (2,8) +c X' (2,t) +d X (2,t) + g X (2,8)]dz =
0

H (70)
[ X (2) L ()P (1) dz.
0
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Substituting Eq. (69) into Eq. (70) yields

H
of [D, (ay; DY 4 by, Dy 4+ €35 Why)

+ Wi, (by Wi+ doy Wi+ €3y Dy;)1dz B, (1)

itz

T

H . . (71)
+{ (Dff, M Dy + Wiy, M W) dz By (£) =

(DL p+WE, P)dz® ().

Qbﬁm

Due to orthogonality of the normal modes all crossed products of two normal
modes are equal to zero, leading to the decoupling of the normal modes.
Denoting the generalized mass with

=f[D,1{'nMDhn+ wL.M*W,,ldz, (72)

the generalized exciting force with
L,D(t) t)f[Dhnp—}—W,{'nP]dz (73)

and the generalized stiffness with

f [D7 (a1 DEY + by Dy + €35 Why))
W (b Wiy W + 03y D5 )1, (74)
the uncoupled equation of motion for the n-th mode will be:
K,B,({t)+M,B, ()= L,®(t). (75)

The solution of Eq. (75) may be written
t

B, Q2 (@(T)Slng (t—7)dr, (76)

"9
in which Q2 = %—: (77)
and Vo = %l[ﬂ (78)

In case of earthquake motion the dynamic load vector may be expressed
in the form

L(z)®(t) = — {ﬁf&,ﬁtzt)}. | (79)

The components of the earth acceleration vector may be independent and
variable according to n + 3 different time functions
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. U (t)
D, (t) = o, (t) (80)
6o (2)
Wi (1)
.. Wo (1
and W,(t) = ;2"( a8 (81)
Wno (t)
H
| DE, (2) Mdz
Denoting with VB, = ~"f (82)
" n
{WE, (2) M*dz
and YN, = =2 i (83)
The solution of Eq. (75) may be expressed
t
1 . .. .
B, (1) = @Ef[?’g,. Dy (7)+Yn, Wo(7)]sinQ (t—7)dr. (84)
0

Interior Forces and Displacements

Knowing the displacement vector D (z,¢) for system axes, that for local
axes D, (z,t) for shear wall ¢ will be obtained by Eq. (6).

The shear force vector q (z,1) is calculated from Eq. (44).

The shear force in the connecting beam belonging to row j and storey k
with ordinate z, is given by

Zg+h/2 ‘
Pg; = [q;(2,t)dz. (85)
Zr—h|2

The shear forces and torque in shear wall ¢ are

- Qxi (z3 t) o
Q; (2,8) = 1@y (2,1) | = —K; 3 D;(2)" B; (t)
Qo (2,1) =t : (86)

+ KT'i;-il'ﬁi (2), B'L (t) + ZZ € q (z: t) - ; €,.q, (z: t) .

In Eq. (86) the sum on [ refers to connecting beams joining the shear wall
from left and r that from right.

The bending moments and bimoment in shear wall are given by
_ M i (zv t) -
B; (z,t) ‘

D; (2)" B;(t). (87)

b8
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Conclusions

A general method for dynamic analysis of multistory structures is presented.
On the basis of this method a computer program may be prepared for dynamic
analysis of multistory structures with arbitrary layout of shear walls. With
adequate boundary conditions the method may be applied for cases with
sudden changes in height of the geometric properties and loads. For g number
of changes the evaluation of normal modes leads to an eigenvalue problem of
order (2n+12)(g+1). The influence of normal strains in the shear wall is
included. Vertical dynamic loads can be taken into account.

List of Symbols and Notations

Upper bar magnitudes in local systems of axes.

) index for shear wall.

7 index for connecting beam or continuous media.
A characteristic vector.

A cross section area.

B bimoment.

B(t) displacement time function.

C; constants.

D (2) lateral displacement vector.

D, (t) earth acceleration vector.

E modulus of elasticity.

F flexibility matrix to normal strains.

G shear modulus.

H height of the structure.

J, moment of inertia in X respective Y direction and sectorial

moment of inertia.

Jp Saint-Venant torsion coefficient.

K, K, stiffness matrices.

L clear span of connecting beam.
load vector.

M, M* mass matrices.

M, 3 x 1 vector consisting bending moment in X and Y direction
and bimoment with respect to local axes.

M, generalized mass.

M, M, moments.

N total number of shear walls (coupled or not).

P(z,t), p(2,t) dynamic load vectors.

P, shear force in connecting beam at story level k.

P, generalized exciting force.
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rotation matrix.

translation matrix.

3% 1 vector consisting shear forces in X and Y direction and
torsion moment with respect to origin of the system axes.
matrix dfined in the text.

coordinates.

generalized displacement vector.

matrices defined in the text.

vector defined in the text.

flexibility matrix of lamella system.

number of changes in characteristics of stiffening elements.
story height.

indexes.

number of shear walls having joints with connecting beams.
shear force function in lamella system.

characteristic values.

local system of axes for connecting beams.

number of lamella systems.

angle between main axis X and system axis X.

gap at cut end due to bending and shear of connecting beam,
respectively strains in shear walls and bending and warping of
the shear walls.

circular frequency.

load time functions.

circular frequency of the nth decoupled equations.

sectorial coordinate.

lateral displacement functions in X and Y directions and
rotation with respect to origin of the system axes.

W, (t), — W, (¢) axial displacement functions.
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Summary

A general method for three dimensional dynamic analysis of asymmetric
multistorey structures based on the continuum method approach is presented.
There are no restrictions referring to types of stiffening elements and layout
in floor plane. The dynamic loads may be vertical and lateral at arbitrary
locations. The lateral and axial displacements of the shear walls are selected
as independent variables. Normal strains and vertical dynamic loads and
earth accelerations can also be taken into account.

Résumé

On présente une méthode générale pour l’analyse tridimensionnelle de
structures asymétriques & plusieurs étages basée sur la méthode approchée du
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continuum. Il n’existe pas des restrictions quant au types des éléments rai-
disseurs et au layout dans le plan des étages. Les charges dynamiques peuvent
agir verticalement ou latéralement & des endroits arbitraires. Les déplacements
latéraux et axiaux des parois de cisaillement sont sélectionnés comme variables
indépendants. Des sollicitations normaux et des charges dynamiques verticaux
ainsi que des accélérations terrestres peuvent également étre prises en con-
sidération.

Zusammenfassung

Es wird eine allgemeine Methode fiir die dreidimensionale Analyse von
asymmetrischen mehrstockigen Bauten auf Grund der Kontinuum-N#herungs-
methode dargelegt. Es bestehen keine Einschriankungen hinsichtlich der Typen
von Versteifungselementen und des Entwurfs in der Stockwerkebene. Die
dynamischen Belastungen konnen vertikal und seitlich an beliebigen Stellen
wirken. Die seitlichen und axialen Verschiebungen der Schubwinde werden
als unabhiingige Variable gewidhlt. Normale Beanspruchungen und vertikale
dynamische Belastungen sowie Erdbeschleunigungen kénnen ebenfalls beriick-
sichtigt werden.
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