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Three Dimensional Lateral Load Analysis of Multistorey Structures
Analyse tridimensionnelle de charge latérale aux structures a plusieurs étages

Dresdimensionale seitliche Lastanalyse von mehrstockigen Bauten

JACOB GLUCK MENACHEM GELLERT
Senior Lecturer Senior Lecturer

Faculty of Civil Engineering, Technion-Israel Institute of Technology

Introduction

Multistory buildings consisting of more than one type of stiffening elements,
namely frames, simple or coupled prismatic or nonprismatic shear walls, etec.,
must generally be analyzed by considering the interaction between the various
elements. In case of structures with symmetric lay-out in plane and symmetric
lateral load, the statical scheme may be reduced to a two-dimensional one,
while in the asymmetric case a three-dimensional scheme must be considered.

The lateral load analysis of multistory structures consists of two types of
methods: 1. The discrete method whereby a highly redundant statically
indeterminate structure is obtained and for which a large capacity high speed
digital computer is essential. 2. The continuous method whereby the discrete
structure is replaced by a continuous one, by substituting horizontal con-
necting beams by a uniform continuous lamella system; the solution is approxi-
mate but can be obtained manually or by the aid of a small electronic digital
computer.

The discrete method for three-dimensional analysis includes the one pre-
sented by WEAVER [5] which treats structures with rectangular patterned
lay-out and prismatic beams and columns, as space frames with horizontal
rigid lamellas at floor levels. WINOKUR [6] treats structures consisting of plane
frames, prismatic or nonprismatic shear walls with the principal axes not
parallel to system axes, by a three-dimensional approach. A continuous
method for three-dimensional analysis was given by the author in a previous
paper [3]. It treats structures consisting of simple or coupled, prismatic or
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nonprismatic shear walls and frames with asymmetric lay-out in plane, normal
strains in frame columns and shear walls being neglected.

The object of this paper is to provide a more complete three-dimensional
analysis including the influence of normal strains in frame columns and shear
walls. As mentioned by CroucH [2] and WEAVER [5] the influence of normal
strains is considerable in this case and is not to be neglected. The unknown
of the problem are the continuous functions of the shear forces in the lamella
system. These functions are derived from a system of second degree non-
homogeneous differential equations with constant coefficients. The homo-
geneous part of the solution is related to an eigenvalue problem of the degree
equal to the number of unknown shear force functions. Knowing the eigen-
values and eigenvectors of the homogeneous part, the problem may be reduced
by separation of variables to second order nonhomogeneous linear differential
equations, each one having as unknown a basic function. The number of
independent equations equals the number of unknown shear force functions.
With the basic functions known all interior forces and displacements of the
individual stiffening elements may be established.

/_:<I

Fig. 1. Floor plane of asymmetric structure.

Fig. 1 shows a horizontal section of an asymmetric structure, where the
circled numbers refer to the shear walls and those enclosed in squares refer to
connecting beams transformed into a continuous lamella system. The principal
axes of the shear wall cross sections are denoted with X, and ¥, which are
element axes, and overall system axes being denoted with X, Y, Z.
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Assumptions and Limitations

1. Floors are undeformable in their planes and have no stiffness normal to
these planes.

2. The discrete structure is substituted by a continuous one in which con-
necting beams are replaced by a uniform distributed lamella system.

Geometric and Elastic Properties of Shear Walls

The relation between internal actions and displacements, including warping
effect and neglecting Saint-Venant torsion, in element axes expressed in
matrix form, is

Q, = —K;D,(2)", (1)
Qs

in WhiCh Q’L = Qyi s (2)
Qs ;

Terms Q,, and_Q—w; represent the respective shear forces in the X; and Y
directions and @y, the torque in shear wall <.
The stiffness matrix of shear wall ¢ is

B EJ, 0 0
K,=| 0 EJ, 0 |, (3)
0 0 EJ,

in which J,; and J,; = the respective moments of inertia about the X; and
Y, axes; and J,,, = the sectorial moment of inertia of shear wall ¢ referred
to shear center.

The displacement vector of shear wall ¢ in local axes passing through shear
center is:
u; (2)
D;(z) = \7;(2) (, (4)

9;(2)

in which %, (z), 7;(2) = the respective displacement functions in X; and ¥,
directions; and 8, (z) = a function of rotation about Z, axis.

Equilibrium equations of the whole structure refer to the (X, Y, Z) system
axes. Transformation of the geometric and physical properties of the shear
walls into this system is possible by combined rotation and translation (5).

The rotation matrix is

cose; sine; 0
R;=| —sina; cose; O (5)
0 0 1
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and she translation is expressed by

?

Y.
T, = qu ) (6)
1

7

SO -
O = O

in which X; and Y; = global coordinates of shear center of element ¢. Trans-
formation of the displacement vector of element ¢ is given by

D;(z) = R, T; D (2), (7)
u (2)

in which D(z) = (v (2) - (8)
0 (z)

Terms % (z), v(2) = the respective displacement functions in the X and Y

directions of the system origin; and 6(z) = a function of rotation about the
Z-axis.
Stiffness matrices K, for the system axes are obtained by the congruent
transformation (5).
K, = TFRTK;R; T, (9)

in which RY and T¥ = the transpose of R; and T; respectively.
Transformation of the action vector into the system axes is given by (5).

Q; = Tf RY Q,. (10)
Substituting Eqgs. (1), (7) and (9) into Eq. (10) results
Q. =—-K;D(z)". (11)

Geometric and Elastic Properties of Connecting Beams

In evaluating the influence of connecting beams on the shear wall it is
assumed that the stiffness of the latter is high compared with that of the
former, in which case the walls may be regarded as rigid indeformable bodies.
In this case the mid point of the connecting beam is a contraflexure point
with zero bending moment. Cutting the connecting beam at this point, only

z)

il L,
h/2 r——r

a) b)
Fig. 2.

IQ(
=
=
—

LI




THREE DIMENSIONAL LOAD ANALYSIS OF MULTISTOREY STRUCTURES 81

Fig. 3. Cross section of coupled nonprismatic shear wall.

L
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a) Due to displacement in X direction only. b) Due to displacement in Y direction only.

v
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¢) Due to warping only. d) Due to displacement in Z direction only.

ke
e) Due to shear and bending de- / ~ 3
formation of the connecting beams. e

Fig. 4. Gaps in cut ends due to displacements in X, Y and Z directions and rotation.
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a shear force at the two sides of the cut, as shown in Fig. 2a, will suffice to
provide continuity at this point. This shear force is transformed in a equivalent
distributed shear force (by dividing it by story height), as shown in Fig. 2b.

Fig. 3 shows a cross section of a coupled shear wall with the cut connecting
beam at the mid point. Due to lateral deflection and torsion of the shear walls,
the cut ends will incur a gap 7 (see Fig. 4a,b,c), which written in matrix
form is

;= Njz+ M+ 10 = ef Dy(z)' — el D, (z)’, (12)

in which e =Y,

[, (13)

e, = 1Y, (- (14)
Wyo

In Egs. (13) and (14) X4, Y;, and X,,, ¥,, = coordinates of mid point 0, in
left element centroid local axes respective right; and w;,, w,, = sectorial co-

ordinates of point 0 respectively to left and right element shear center.
Substituting Eq. (7) into Eq. (12) results

73(2) = (ef T,R—ef T, R,) D(z), (15)
denoting e, =¢elTR—el'T.R,. (16)
Eq. (15) gets 7; (2) = e; D (2)'. (17)

The gap at cut end due to axial displacements of the shear walls may be
written as

z H z H
3;(2)=—UFFU[dz| q(z)dz—v} F[dz{ pdz, (18)
0 z 0 z
- _
7i ° 0
0 1 0
in which F = E4, " , (19)
1
L. O 0 EA”_
¢: (?)
qs (?)
az) =1"""1, (20)
I (2)
1
p = ];02 . (21)
P
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It is assumed that the shear force function g; (2) in lamella system is positiv
when producing tension in the left shear wall (denoted with ©) and com-
pression in the right one (denoted with ®). In Eq. (21) p = the exterior vertical
load vector acting along G.C. lines of the shear walls. In Eq. (18) U;,V; =
Boolean vectors related to positiv action of respectively ¢; (z) and p;. If tension
is produced by g;(z) in the shear walls connected by lamella system j, a plus
one appears in vector U;, and a minus one if compression, and a zero for all
other coupled shear walls. If the exterior vertical loads acting in the left or
right shear wall connected by lamella system j are in the positive direction of
¢; () (upward in the left and downward in the right), a plus one appears in
vector V; and for the negative direction a minus one, and a zero for all other
shear walls. For the example building given in Fig. 1 the matrix U containing
all vectors Uj is

(-1 0 0 0 0 O
1 1.1 0 0 O
0O 0 0-1 0 O
U = (U17 U25 UG) = 0 -1 -1 1 1 0 * (22)
0O 0 0 0-1 O
000 0 0 0]

Due to shear and bending of the connecting beam the gap which results, is

®; = [;4;(2), (23)
' L3 L;

in which f; = ( e )h (24)
! 12EJ; @ A4,

In Eq. (24) A—j = the effective area of the connecting beam cross section; and
J; its moment of inertia.

Compatibility Equation

The compatibility condition at the cut end of the connecting beams at row j
may be expressed as follows:

—’Y]j+8j+(Pj=0. : (25)

Substituting Eqs. (17), (18) and (23) into Eq. (25) and differentiating twice,
results

—e]-D(z)’”—l—quj(z)”—UjTFUq(z)—VjTFp=O. (26)
Denoting
fj, 0 ... 0
0 ... 0 ‘
p=|0 B 0 (27)

.........
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e = . (28)

The system of differential equations expressing compatibility at cut ends
of all lamella systems may be expressed in matrix form as:

—eD(2)"+fq(z)'—UT'FUq(z)—VZFp = 0. (29)

For the example building given in Fig. 1, assuming that all vertical loads
act downward, the matrix V containing all vectors V; is

1 00 0 0 O]

-1-1-1 0 O O

O 0 01 0 O
V=(V1,V2,...V6)= 01 1-1-1 ol (30)

O 0 0 0 1 o

| 00 0 0 0 0

Equilibrium Equation

Denoting el =RI T e,—RT T e, (31)
and eT = (ef,el,...el). (32)

The basic equation of bending for the whole structure in system coordinates
may be written in the form

~KD ()" = Q,+e” q(2), ' (33)
in which - K= Z" K, (34)
i=1
on
Qo = Qyo . (35)
Qool

Terms @,, and @, , represent the respective shear forces in X and Y directions
and @y, the torque through system axis Z due to exterior loading.
Isolating D (z) from Eq. (33) and substituting in Eq. (29) results

+eK'1Q,+eK1lel' q(z)-U'FUq(z)— V'Fp+fq(z)"=0. (36)
Denoting a=UT'FU, (37)
b=—-eK'le?, (38)
c=—eK1Q,+V'Fp. (39)

Eq. (36) may be written in the form
fq(z)"—(a+b)q(z) =c. (40)
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Solution of the System of Differential Equations

The solution of KEq. (40) is involved with an eigenvalue problem of the
matrix

S=f"(a+b). (41)

The eigenvalues r of the matrix S are the roots of the m degree characteristic
equation.

det (f~1)det (rf—a—b) = 0. (42)

Matrices f, @ and b are real and symmetric and fis positive definite, thus the
eigenvalues of matrix S are real.

Denoting with
r; = A2 (43)

7

the eigenvector 4, defined by an arbitrary constant for each eigenvalue r;, is
determined by solving the homogeneous system of algebraic equations

Xf—(a+b)=0. (44)

It is to be mentioned that between two distinet eigenvectors 4; and A,
orthogonality relation is satisfied, i.e.

AT (a+b)A; = ATfA; =0, for i%j (45)
and for i=j N2 ATfA, = AT (a+b) A,. (46)

The vector ¢ (z) may be expressed with aid of the eigenvectors in the
following form

q() = 3 A (2 (47)
or in matrix form q(z) =AY (z), (48)
()
in which w =20 (49)
b () |
A = (A4,,4,,..4). (50)

Substituting Eq. (47) into Eq. (40) results
SFR A ()" —(a+b) Y A (2) = c. (51)

Premultiplying Eq. (51) with Af and considering Eq. (45) results
AL fA;p;(2)" — AT (a+b) Ay (2) = Af c. (52)
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Substituting Eq. (46) into Eq. (52) results

P (2)" =M ; (2) = @;¢, (53)
. . AT
in which 0; = ATfA, (54)

The general solution of Eq. (563) for A; real, is [4]:
Ji(2) = o ()b N2+ 5 4, (0) sh 2@ fesh ) c—8)dE  (55a)
i i 0
and for A; imaginary:

B3 (2) = 1 (0) cos\,z 434y (0) sin 2 4@y [esin ), (:—£) dE,  (55D)
) i 0

in which ¢ is a dummy variable.
The solution which satisfies the boundary conditions

$;(0) =0, (56)
p (H) =0, (57)

for A; real, is given f)y

sh), zfcch)\ Hog)de+ fcsh)\,-(z—f)df (58a)

—1
¢¢(z)=sz X Q;

and for A, imaginary by

—1 . H 1 z .
P; (z) = ngsm)\izgccos)\i (H+§)d§+)\—i9i0fcsm)\i (z—&)dE. (58D)

Knowing the functions i;(z) the shear forces in the continuous lamella

system ‘“9°” are determined with Eq. (48) and in the connecting beam at story &

having ordinate Z,,.
Zy+ h/ z

B = I g, ( (59)
Zx—h|
The displacement vector may be calculated by three successive integrations
of Eq. (33). The three vectors of the integration constants are determined
from the boundary conditions

D@©) =0, (60)
D) =0, (61)
D(H) = 0. (62)

The shear forces and torque in shear wall 4, are

_ Qai (2) -
Q;(2) =1Qy; (2) | = — K; D, ( W"'Z e q(z Z e q,(2). (63)
Qo (2)
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In Eq. (63) the sum on [ refers to connecting beams joining the shear wall
from left and » that from right.
The bending moments and bimoments in shear wall ¢+ are given by

M;(z) = M, (2); = —K;D,;(2)". (64)

B; (?)

The normal forces in the shear walls ¢ are given by
H H
N;(2)=2]q;(r)dz+ [ p;dz. (65)
7 2 z

In Eq. (65) the sum on j refers to lamella systems connected to shear wall <.

The above presented method may be generalized for structures having step
wise variations in shear wall stiffness and/or stiffness or span of connecting
beams.

The general solution given by Eq. (53) depends on two constants ¢, (0) and
¥, (0)".

Let us assume a structure with a sudden change in the geometric charac-
teristics of shear walls and/or connecting beam at level Z=d. For analysis
purposes the structure may be seen as divided in two zones each one with
constant geometric characteristics. The lower zone from level Z=0 to Z=d
will be denoted with I and the one from Z=d to Z=H with II. For each
zone the solution for g (z) may be written in the form

q:(z) = A;P;(2), (66)
qr(2) = AP (2). (67)

Each of these solutions depends on the corresponding arbitrary constants i (0)
and ¢ (0)’. They are determined from the following boundary conditions:

At level Z =0 with zero shear forces in the lamella system
q:(0) = 0. (68)
At level Z =d with equal shear forces in the lamella systems of zone I and 11
q;(d) = gy (d). (69)

At level Z=d with equal variations in shear forces in the lamella systems of
zone [ and I/
q:(d)" = qz; (d)". (70)

At level Z=H with variations in shear forces in the lamella system equal to

Zero
q;(H)=0. (71)
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These boundary conditions will result in a system of 4m linear algebraic
equations. Since the condition ¢q;(0)=0 is reduced to ¥;(0)=0 the system
may be reduced to 3m equations. Generally for a structure with g changes
in characteristics a system of (2¢g+ 1) m equations will be obtained.

Conclusions

On the basis of the present method a general program may be prepared
for lateral load analysis of multistory structures with arbitrary lay out of
stiffening elements and sudden changes in characteristics including the effect
of exterior vertical loads. The influence of normal strains in shear walls and
columns are included.

List of Symbols and Notations

Upper bar magnitudes in particular system of axes

) index for shear wall

/] index for connecting beam or lamella system

A cross section area

A; eigenvector belonging to eigenvalue A;

B bimoment

D (z) displacement vector

E modulus of elasticity

F flexibility matrix to normal strains

G shear modulus

Jei»dyisJy; moment of inertia in X respective Y direction and sectorial
moment of inertia

K stiffness matrix

L clear span of connecting beam

M 3% 1 vector consisting bending moment in X and Y direction
and bimoment with respect to the origin of the system axes

N normal force

B, shear force in connecting beam at story level k

R rotation matrix :

T translation matrix

Q 3 X 1 vector consisting shear forces in X and Y direction and
torsion moment with respect to origin of the system axes

Uuv vector defined in the text

X, Y, Z coordinates

N
®

.matrices defined in the text
ordinate of characteristic change level

SRS
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vectors defined in the text

flexibility matrix of lamella system

number of changes in characteristics of stiffening elements
story height

number of lamella systems

number of shear walls

vertical load vector

shear force function in lamella system

function defined in the text

Y, 2 particular system of axes for connecting beams

B
D

[\
~

angle between main axis X and system axes X
vector defined in the text
S, gap at cut end due to bending and shear of connecting beams,
respectively strains in shear walls and bending and warping of
the shear walls
eigenvalue
torsion angle
sectorial coordinate

References

. DESPEYROUX, J.: Shear Walls with » Rows of Openings. Symposium on Tall Buildings,

Univ. of Southampton, April 1966, Pergamon Press, 1967.

. CroucH, R., King, I. P. and WiLsox, E. L.: Structural Analysis of Multistory Buildings.

Journal of the Structural Division, ASCE, Vol. 9, ST 3, Proc. Paper 3925, June
1964, pp. 19-34.

. GLUucg, J.: Lateral Load Analysis of Asymmetric Multistory Structures. Journal of

the Structural Division, ASCE, Vol. 96, No. ST 2, Proc. Paper 7089, February 1970,
pp. 317-333.
MIKUSINSKY, J.: Operational Calculus. Pergamon Press, 1958.

. WEAVER, W. and NELsonN, M. F.: Three-Dimensional Analysis of Tier Buildings.

Journal of the Structural Division, ASCE, Vol. 92, No. ST 6, Proc. Paper 5019,
December 1966, pp. 385-404.

. WiNOKUR, A. and GLUCK, J.: Lateral Loads in Asymmetric Multistory Structures.

Journal of the Structural Division, ASCE, Vol. 94, No. ST 3, Proc. Paper 5842, March
1968, pp. 645—656.

Summary

A method for three dimensional analysis of multistorey structures based
the continuum approach is presented. There are no restrictions referring
types of stiffening elements and layout in floor plane. The number of

stiffening elements which may be included in analysis is practically not limited.
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The loads may be vertical and lateral at arbitrary locations. Elastic working
of thin-walled members is included in analysis, as well as axial deformations
in vertical elements.

Résumé

On présente une méthode pour 1’analyse tridimensionnelle des structures
& plusieurs étages, basée sur 1’approchement du continuum. Il n’existe pas
de restrictions quant aux types des éléments raidisseurs et du layout dans le
plan de ’étage. Le nombre des éléments raidisseurs qui peuvent étre compris
dans I’analyse n’est pratiquement pas limité. Les charges peuvent agir verti-
calement ou latéralement & des endroits arbitraires. Le travail élastique de
membres & parois minces est compris dans I’analyse, aussi bien que les défor-
mations axiales dans les éléments verticaux.

Zusammenfassung

Es wird eine Methode zur dreidimensionalen Analyse mehrstockiger Bauten
auf Grund der Kontinuum-Niherung vorgelegt. Es bestehen keine Einschrén-
kungen hinsichtlich der Typen der Versteifungselemente und des Entwurfes
in der Stockwerksebene. Die Zahl der Versteifungselemente, die in die Analyse
einbezogen werden koénnen, ist praktisch nicht begrenzt. Die Lasten konnen
vertikal und seitlich an beliebigen Stellen wirken. Das elastische Arbeiten
diinnwandiger Glieder ist in der Analyse inbegriffen, ebenso axiale Deforma-
tionen in Vertikalelementen.
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