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Analysis of Curved Box Girder Bridges by Finite Strip Method
Analyse de ponts courbes en caisson avec la méthode Finite-strip

Analyse von gebogenen Kastentriger-Briicken mittels der Finite-Strip-Methode

M. S. CHEUNG Y. K. CHEUNG
Ph. D., Postdoctoral Fellow, Dept. of Civil Ph. D., MICE, M. I. Struct. E. Professor
Engineering University of Calgary, Cal- of Civil Engineering, University of Cal-
gary, Alberta, Canada gary
Introduction

The finite strip method has been applied successfully to the analysis of
right box girder bridges [1], and to curved bridge decks [2]. In this paper, the
method is extended to deal with curved box-girder bridges of constant width
and supported along radial lines. In the past, a number of papers have been
published in which the writers treated the curved box girders as curved beams
of prismatic thin-walled closed cross-section (for example [3], [4]). Such an
assumption is obviously unsuitable for many of the wider box girder sections
commonly used in bridge design practice, in which a fair amount of transverse
bending occurs in the flanges. The longitudinal stress in the top and bottom
flanges of such wider sections are also far from being uniform.

The finite strip method used in the present analysis incorporates all the
bending and membrane actions, and since the displacement functions employed
in formulating the strip stiffness matrices are compatible functions, it is
expected that the results should converge to the correct solution with
increasingly finer mesh divisions.

The standard finite element method using a shell element can be used to
analyse multi-spanned curved box girder bridges with internal diaphragms
and skewed supports, and is therefore extremely powerful and versatile.
However, in a paper by Sisopiva et al. [5], it was pointed out that more
research is needed to develop elements which permit the use smaller number
of equations and to reduce computing time and programming effort, before
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the method can be widely accepted by bridge designers. In the same paper,
it was also pointed out that the finite strip method provides a solution which
can be conveniently used in practical design for simply-supported constant
width curved box girder bridges, because it requires relatively short computer
time and smaller computer storage.

A further advantage of the finite strip method which should be mentioned
here is that the amount of data input is reduced drastically as a result of the
strip idealization.

Basic Assumptions and General Philosophy

The basic assumptions used in the present analysis are as follows:

1. The webs and flanges are made up of isotropic or cylindrical orthotropic
materials.

2. The box girder is bounded by concentric circular arcs and by two radial
planes at the supports.

3. The girder is supported at each radial edge by a diaphragm which is infinitely
stiff in its own plane but infinitely flexible out of plane.

In the finite strip method, the bridge is divided into a number of strips
supported at their radial ends. A displacement function of the form f(r)® (6)
or f(2)® (0) is chosen for the strip, in which f(r) or f(z) is a polynomial with
undetermined displacement parameters for the sides ¢ and j (see Figs. 1b and
1c) and @ (0) is a Fourier series which satisfies automatically the support
conditions. The external loads are also resolved into the same Fourier series
for the corresponding displacement components. It can be easily proved that
the series will in fact uncouple, so that a term by term analysis can be con-
ducted and then all the results are summed together. In the subsequent deriva-
tions it will be assumed that we are dealing with one term (say the mth) of
the series.

The adoption of a continuous function from one radial support to the other
eliminates the need for subdividing the bridge in the f#-direction, as in the
standard finite element method and consequently the analysis of a curved
box girder bridge is very little different from that of a plane frame.

Development of Stiffness Matrices

The general formulation of the stiffness matrix in the finite strip method
can be found in references [1] and [2] and shall not be repeated here. In the
text which follows, only the displacement functions and some of the important
matrices will be given.
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Fig. 1b. A Conical Web Strip. Fig. 1c. A Flange Strip.

A. Top and Bottom Flanges

The top and bottom flanges of the box girder are flat plates which are curved
in plan, and therefore the membrane and bending actions are uncoupled and
can be treated separately. In the following paragraphs we shall discuss firstly
the in-plane and then the bending aspects of the strip, and finally combine
the two together.

1. In-plane Stiffness Matrix

Displacement functions:

-

in which R="""i and b=
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Strain displacement relationship:

f ou
©r or
1ov w . .
460 b= < ;8—0+7 r Z[Pm]{spm}ﬂ (2)
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where {3,,,} is equal to {u;,,, v, Ujn > Vi)’ -
Property matrix:

K, K O
[Dp] = Kl KO 0 s (3)
0 0 K,
in which K, = £t , Ki=wK,, Ky= Byt and K,p= G, yt.
-V, 1—v,vy

The strain matrix [F,] and stiffness matrix [S,,] are given in Appendix
Ia and IDb respectively. Note that the integration with respect to dr is to be
performed numerically.

2. Bending Stiffness Matrix
Displacement function:
3 1 R3
— _ _ R2 4 R3 . — Ry s
wm—[(l 4JR +4R)wzm+b(R R2+ 4)¢:m

3 e 1 pg R R? . mm6
+(ZR —ZR)wjm*‘b(”I‘—?)ﬁbjm sin ———.

(4)

Strain displacement relationship:

B _ew ]
Xr 37‘2
1/{1c%w ow
oot =1 =zt ar) | = (Baliomd )
g 2w 1 ow
h X""Jm | r\ero6 r 06 |,

where {8} is equal to {w;,, , ¥, Wip s Yjm T
Property matrix:
[ D, D, 0
[Db]j D, Dy 0 (6)
0 0 D,
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N B, o
in which D =iy DT -y
3
D,y =80 and D, —vyD, =, D,.

12

The strain matrix [B,,] and stiffness matrix [S,,,] are listed in Appendix
ITa and IIb respectively. There the integration with respect to dr is also to
be performed numerically.

3. Combined Stiffness Matrix

For ease of operation in the overall analysis the two stiffness matrices are
combined into a shell stiffness matrix in the following manner:

0 [Sbm]ii 0 [Sbm]ij
[Sn] = ; (7)
[Spm]ji 0 [Spm]jj 0
0 [Sbm]ji 0 [Sbm].’i]'_

in which the subscripts ¢ and j refer to the two sides of a strip.

B. Curved Interior and Exterior Webs of Box Girder

Each web is in general a part of a conical frustum (Fig. 1b), but becomes
a cylindrical panel when it is in a vertical position. For such a curved surface
the membrane and bending actions cannot be uncoupled, and a 8 X 8 stiffness
matrix has to be formed directly.

Displacement functions:

Uy, = :(1 —g) Ui, T+ (;) ujm:l MW 6’

(I T
o = ( 32 2z3) ( 22 dz) b

322 223 23 22 . mm0
+ 3?‘:1?)”7“2{2‘*7)% S

(8)
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Strain displacement relationship:

ou

GZ “5‘2“

1 0v wcosd+usin
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1 ®w cos¢ dv sing dw
X o0 2 20 r 0z

1 ?w sind cw cos¢ dv sindgcos
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where {3,,} is equal to {u,,,, Vi, Wins i » Uim » Vim > Wim s BimyT -
Property matrix:

(K, K, 0 0 0 0 |
K, Ky 0 0 0 0
0 0 K,0 0 0
= < d 10
(D] 0 0 o0 D, D, 0 [’ (10)
0 0 0 D, Dy 0
(0 0 0 0 0 D,
) _ Et Eyi
in W’hlch KZ = ]___,-lz)zV0, K2=V8KZ’ Kze= ngtg K0= ]__—vzvg’
BB B _ Get? Ept3
D, = 12(1—v,vp)’ Dy=vgDsy Dig=—15— Dy= 12(1—v,vp)’

The strain matrix [7),] and stiffness [S,,] are listed in Appendix I1Ta and
ITIIb respectively. Note that the terms 7;; used in Appendix II1b refer to the
corresponding coefficients of the matrix [7],].

Transformation and Assembly

The procedure for transforming the stiffness matrix of a strip into a common
set of coordinates and subsequently the assembly of the transformed matrix
into the overall matrix of the structure are identical to the methods used for
a plane frame, and therefore will not be discussed here. Readers who are
interested should refer to any textbook on matrix analysis of structures or to
reference [1].
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Numerical Examples

The first example involves the analysis of a nearly straight box girder,
using the curved strip program, and then comparing the results with those
due to a straight box girder program [1], which has been well tested.

The length of the straight box girder is taken as unity, while the curved
box girder has a radius of 1000 units and a subtended angle of 0.001 radian.
A unit load is applied on the top slab at the centre of the girder.

The comparison of two sets of results for the central section is given in
Table 1. Since nearly identical results have been produced by the two different
programs, it can be concluded that the curved strip program is correct, and
that it can be used successfully for analysing straight box girder bridges by
using very large radius in conjunction with a very small subtended angle.

Table 1. Comparison of Results Obtained by Straight Strip Program and Curved Strip Program

. : . 1 2 3
<l I'l % [Ploos
. .
(o
Straight | Curved | Straight | Curved | Straight | Curved
Strip Strip Strip Strip Strip Strip
0.4 I
w 27.511 27.561 168.421 165.561 27.511 27.573
oz ~11.051 | -10.910 -5.917 ~5.780 | -11.051 | -10.904
oy -24.118 | —24.158 -9.451 -9.493 | —24.118 | —24.128
M, -0.105 -0.103 0.214 0.209 -0.105 -0.103
M, —0.031 -0.030 0.161 0.157 -0.031 -0.030

The second example involves the analysis of a multi-celled, curved box
girder bridge (Fig. 2a) under unit central point load at three different radial
positions, i.e., outer web, middle web and inner web. The numbering of nodal
lines and strips can be found in Fig. 2b, in which a very narrow band matrix
will result from such a scheme. A total of 20 non-zero terms of the series has
been used for the analysis. The distribution of membrane forces and bending
moments for the central section of the bridge are given in Fig. 3a to Fig. 3ec.
As a matter of interest, a straight bridge with the same cross-section and span
length equal to the circumferential span of the curved bridge at the middle
web is analysed for a central point load, and the results are given in brackets
inside the same figure.
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Fig. 2b. Numbering of Nodal Lines and Strips for Bridge in Example 2.
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Conclusions

It has been demonstrated that the finite strip method can be used success-
fully for the analysis of curved as well as straight box girder bridges. The
method is simple but versatile, and requires minimal computer storage and
execution time.

Nomenclature
2b width of the flange strip.
d width of the conical strip.
E. Ey K, orthotropic material properties.
Ves Vg5 Gr0> Gz@
y, 8 polar coordinates for the curved bridge.
¢ thickness of the strip.
U, v, W, P displacement parameters of a strip.
o subtended angle of curved bridge.
¢ angle of inclination between conical segment and vertical axis.

Appendix Ia

Strain Matrix of Flange Strip for In-Plane Actions

1 1
—%S 0 %S 0
1 R -1 R 1{R —1(R
1 R 1 1 R 1{R 1 1{R
2o | —ggo—i-2)0 | F(3)me | zo—(3)

(lcm = ﬂ, S =sink,0, C= coskmﬁ).
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Summary

The analysis of curved box girder bridges by the Finit Strip Method is
presented in this paper. Furthermore it has been demonstrated that the
computer programme can also be used for analysing straight box girder
bridges by making the radius very large and the subtended angle very small.
The displacement functions for the strips are given in the text while the strain
and stiffness matrices are given in the Appendices.

Résumé

Dans ce travail on traite ’analyse de ponts courbes & I'aide de la méthode
Finite-strip. On a en outre démontré que le programme de la machine élec-
tronique peut aussi étre utilisé pour ’analyse des ponts droits en caisson, en
choisissant un rayon, si possible trés grand, et I’angle compris tres petit. Dans
le texte on donne aussi les commentaires sur les fonctions de déplacement des
couvre-joints, tandisque les matrices des tensions et de rigidité des couvre-
joints sont traitées & 'appendice.

Zusammenfassung

In der vorstehenden Arbeit wird die Analyse gebogener Briicken mittels
der Finite-Strip-Methode behandelt. Ausserdem wurde nachgewiesen, dass
das Computerprogramm auch zur Analyse von geraden Briicken mit Kasten-
tragern beniitzt werden kann, indem man den Radius méglichst gross und den
gegeniiberliegenden Winkel moglichst klein wahlt. Im Text werden die Ver-
schiebungsfunktionen fiir die Laschen erliutert, wihrend die Matrizen fiir
Spannungen und Steifigkeit der Laschen im Anhang behandelt werden.
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