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A 514 Steel Beam-Columns
Colonnes en acier A514

A 514 Stahl-Stiitzen

C. K. YU L. TALL

Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University,
Bethlehem, Pennsylvania

1. Introduction

The term beam-column denotes a member which is subject simultaneously
to axial thrust and bending. The bending moment in the member may be
caused by externally applied end moments, eccentricity of longitudinal forces,
initial out-of-straightness of axially loaded columns, or transverse forces in
addition to axial forces and end moments. The types of beam-columns which
are subject to constant axial force and varying end moments are investigated
in this study. The beam-columns studied are assumed to be laterally supported,
that is, they fail in the bending plane without twisting.

The determination of the ultimate strength of a beam-column is a problem
in which inelastic action must be considered. Extensive research has been
carried out in the study of the behavior of laterally supported wide-flange
shapes under combined moment and axial force, including the effect of residual
stresses [1], [2], [3], [4], [5]. The methods and solutions previously developed
are applicable only to materials which have an elastic-perfectly-plastic stress-
strain relationship and are restricted to residual stress patterns resulting from
cooling after hot rolling of A 36 steel shapes.

Both rolled heat-treated and welded built-up USS T-1 steel shapes are
considered in this study. To be exact, A 514 steel does not cover hot-rolled
and heat-treated steel shapes. However, hot-rolled and heat-treated T-1 steel
shapes have tensile and chemical requirements similar to those of A 514 steel,
and therefore, for simplicity, rolled heat-treated T-1 steel shapes are classified
here as A 514 steel shapes. The ultimate strength, the load-deformation
behavior and the local buckling phenomenon of the beam-columns are investi-
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gated. The discussion includes strain reversal and unloading effects. The
theoretical analysis is compared with full scale experiments, and the com-
parison indicates a good correlation.

The purpose of this report is to investigate the strength of both welded
and rolled beam-columns made of A 514 steel, and to present a solution to the
overall load-deformation characteristics of ‘“‘non-linear’’ material including
the consideration of strain reversal and unloading.

Stress-Strain Relationship

The stress-strain curve for A 514 steel can be described by the following
three Eqgs. [6]:
7 - f, when o=2x0.8, (1)
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in which o is stress, ¢, is the yield stress determined by the 0.29%, offset method
[7], € is strain, and ¢, is the yield strain (= o,/¢). Fig. 1 shows the complete
stress-strain curve for A 514 steel. By comparing this to that for mild steel,
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Fig. 1. Typical Stress-Strain Curve for A 514 Steel.

it is seen that A 514 steel has a lower proportional limit stress and that strain
hardening occurs immediately after the ending of the transition range, con-
tinues until the tensile strength is reached, and then starts to unload. This
representative stress-strain curve for A 514 steel was determined by averaging
the results of 58 standard ASTM tension specimen tests. The average values
of yield stress, modulus of elasticity and strain hardening modulus are 112 ksi,



A 514 STEEL BEAM-COLUMNS 187

28,900 ksi and 144 ksi, respectively. (The modulus of elasticity given here is
the average value measured directly from the autographically recorded stress-
strain curves.) D | ‘ ‘

Residual Stress

Fig. 2 shows the idealized patterns of residual stress distribution in heat-
treated rolled W F shapes and welded H-shapes with flame-cut plates; all of
A 514 steel. These idealized patterns are approximation of the results obtained
from an extensive investigation on the residual stresses in A 514 steel shapes
and plates [8], [9], [10]. For rolles shapes, previous investigation [10] indicates

Rolled

Welded

| l~006a, o O'y—-'l L

- Tension

+ Compression

Fig. 2. Idealized Average Residual Stress Distribution in A 514 Steel Shapes.

that the magnitude and pattern of residual stresses essentially are independent
of the yield stress of the steel if steel is not heat-treated after rolling. Heat-
treatment apparently reduces the residual stress magnitudes as, for example,
in rolled A 514 steel shapes. Furthermore, because of the high yield stress of
the steel, the residual stress magnitude in rolled A 514 steel, if compared on a
nondimensionalized basis with respect to its yield stress, is much smaller than
that for structural carbon steels. Thus, the effect of residual stress could be
less for rolled A514 steel beam-columns than for those of A 36 steel. For
welded H-shapes, the flame-cutting of the component plates creates tensile
residual stress at the cut edges; this pattern of residual stress distribution is
completely different from that in rolled shapes. Therefore, a separate and
different analysis for both rolled and welded shapes of A 514 steel is needed.
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Assumptions

The assumptions made in the theoretical analysis are as follows:

. The members are perfectly straight.

. The effect of shear is insignificant and can be neglected.

3. The thrust is applied first and then kept constant as the end moments
increase or decrease.

4. The members are bent with respect to strong axis and weak axis buckling

and lateral-torsional buckling is effectively prevented.

DO b

2. Moment - Curvature - Thrust Relationship

Basic Concepts

A prerequisite to performing ultimate strength analyses of beam-columns
is a knowledge of the relationship existing between the bending moment and
the axial force acting on the cross-section, and the resulting curvature.
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The basic equations are
fodd = P (4)
A
and [oydd = M,. (5)
A4

As shown in Fig. 3, y is the distance of a finite element area dA from the
bending axis and o is the stress in this element. P is the applied thrust and M,
the internal moment. The stress at each element is a function of strain, €, and
therefore the stress-strain relationship must be defined first. Generally, the
monotonic stress-strain relationship can be described well by the data obtained
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from a tension specimen test, and recorded or represented by a mathematical
equation as

o= f(e) (6)

However, if the stress-strain relationships are history-dependent, or if the
strain reverses, Eq. (6) is invalid. In this study, the incremental stress-strain
relationship is shown in Fig. 4, and defined as

o= f(e) for e =¢€*,

x_9 €*—e *
oc=0%—-2f 3 for —e<Le=ZLe*, (7)
o= —f(e|) for e< —e€*,

in which o* and e* are the largest compressive stress and strain to which the
material of any element has been subjected. (The sign convention used here
is plus for compression, and minus for tension.)
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Curve Stress

The total strain at any point in a loaded beam-column is composed of a
residual strain, e,, a constant strain over the entire cross-section due to the
presence of thrust, ¢,, and the strain due to curvature, €4 That is

€ =€ tetey. (8)
Here €4 = Yy, (9)

where ¢ is the curvature at the section under consideration. When the stress-
strain relationship is known, it is obvious that if P is specified, and by assuming
a value for the curvature ¢, the corresponding M, can be determined by satis-
fying both Eqs. (4) and (5). If the thrust is applied first on the member and
held constant through the whole loading process, a moment-curvature relation-
ship can be established.
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The numerical procedure for the determination of the moment-thrust-
curvature curve is a trial- and error process [11]. For a given residual stress
distribution, e, is known; and for the given curvature ¢, ¢4 is known. By
assuming an ¢, value for the whole cross-section, the total strain, and therefore
the stress at each element area is determined. The summation of total internal
forces must be equal to the given P, otherwise e, must be revised until Eq. (4)
is satisfied. Then, the corresponding M, can be evaluated by means of Eq. (5).
By increasing the value of ¢ and repeating the calculation, a complete moment-
curvature relationship can be determined for a specified thrust, P.

In this study, the stress-strain relationship of the material and residual
stress distribution is programmed in subroutine subprogram forms. Both the
material properties and the strain reversal effect are included.

Stravn Reversal Effect

Strain reversal is defined here as the unloading stress-strain relationship
which is different from the monotonic stress-strain relationship, as shown in
Fig. 4. (Usually, it is convenient to assume that strain reversal will be defined
by the monotonic curve.)

In Fig. 5a, the progress of applied strain on a section for a given constant
thrust is shown. There are basically two modes by which the strain reversal
can influence the M-¢-P curves. First, as shown in Fig. 5b, if the (¢, —¢,,) line
runs across the strain reversal zone (where ¢, is the strain at the proportional
limit and e, is the compressive residual strain at a point), or ¢, the initial
applied strain due to a given constant thrust, is larger than the smallest value
of (e, —¢,,), the strain reversal will affect the resulting M-¢-P curves. The
region affected by strain reversal is shown as thé shaded area in Fig. 5b. The
second mode is when the curvature is very large, then the tensile strain near
the convex side can be larger than that at the proportional limit, as shown in
Fig. 5¢. Then at further loading, reversed tensile strain influences the M-¢-P
curves. A combination of these two modes of strain reversal is also possible,
if the applied thrust is high and the curvature is large. However, it was found
that only at extremely large curvature, will tensile strain reversal be effective.

From this observation, if the thrust ratio, P/F, (P, is the axial force
corresponding to yield stress level), is less than (o, —o,,.)/o,, then the reversed
strain does not affect the results since it is still within the elastic range, except
when the curvature ratio (¢/¢,.) is very large. However, when the applied
thrust ratio is larger than (¢, —o0,)/0,, pronounced differences could occur if
the strain-reversal effect is neglected. To demonstrate the effect of strain
reversal, a set of curves is presented in Fig. 6. The section is a welded A 514
steel H-shape built-up from flame-cut plates. The M-¢-P curves were plotted
for P|P, varying from 0.5 to 0.9. It is clear that for P/P, less than 0.7 (pro-
portional limit ¢,/c, is 0.8 and maximum compressive residual stress o,./o, =
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Fig. 6. Moment-Curvature-Thrust Relationship.

0.1), the case in which strain reversal is considered yields results in curves
which are identical with the corresponding one in which the stress-strain
relationship is assumed to follow the monotonic stress-strain curve only.
-However, for P/F, equal to 0.8 and 0.9, significant differences are shown for
the two cases. Therefore, the influence of strain reversal is pronounced and
should be taken into account if the section exhibits a combination of com-
pressive residual stresses and thrust which cause yielding immediately after
thrust is applied.

Effects of Residual Stresses and Mechanical Properties

In addition to the consideration of the effect of strain reversal, the pattern
of distribution and magnitude of residual stress also change the shape of the
M-¢-P curve. Fig. 7 presents three types of residual stress distributions which
represent the idealized residual stresses in (A) rolled low-carbon steel section,
(B) rolled heat-treated A 514 steel section and (C) welded built-up A 514 steel
shapes with flame-cut plates. If the mechanical properties are assumed to be
elastic-perfectly plastic, the curves for the three types of residual stress distri-
bution are curves (1), (2) and (4) in Fig. 7. It is noticed that there are significant
differences among them in the elastic-plastic range. Generally speaking, the
M-¢-P curve for the rolled structural-carbon steel section, which has the
largest compressive residual stress ratio (o,/o,) among the three, exhibits a
smoother knee whereas the rolled heat-treated A 514 steel shapes, for which
the compressive residual stress ratio is the smallest and thus residual stress
effect the least, show a sharper knee.

Aside from the effect of residual stresses, the mechanical properties also
play an important role in the M-¢-P curve; in Fig. 7, curves (2) and (3) are
the M-¢-P curves for sections with identical residual stress distribution but
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Fig. 7. Comparison of Moment-Curvature-Thrust Curves.

different mechanical properties; one is of elastic perfectly-plastic type and the
other is representative of A 514 steel. For material with a non-linear type of
stress-strain curve, such as that of A 514 steel, the M-¢-P curve is lower in
the knee portion than that for which an elastic perfectly-plastic stress-strain
curve is assumed. However, for curvature greater than that at the end of the
knee, curve (3) is above curve (2), due to the strain-hardening property of the
A 514 steel. Curves (4) and (5) are also presented in Fig. 7 for welding-type
residual stresses and a similar behavior is observed.

For most practical beam-columns, the internal moments for a large portion
of the member are within the knee range of the M-¢-P curve during the
loading process. Therefore, the shape of the knee has a pronounced influence
on the load-deformation relationship and the ultimate strength of the beam-
columns. This leads to the emphasis on the basic assumptions of the residual
stress distribution as well as of the shape of the stress-strain curve and of the
strain-reversal phenomenon in the case when thrust is applied first and yielding
occurs before the application of moment. The assumption that thrust is applied
before the moment approximates the actual behavior of multi-story frames
in which most of the axial forces in the columns are due to the dead load, and
moments to the live load.

3. Load-Deflection Relationship

In the general practice for the design of planar structures it is often sufficient
to know the ultimate strength of a beam-column. However, in plastic design,
especially for multi-story buildings, it is necessary to determine the maximum
moment of a joint of a subassemblage [12]. Therefore, not only the ultimate
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moment capacity but also the complete load-deformation curve of each indi-
vidual beam-column must be known. The most practical and useful way of
presenting the load-deflection relationship of a beam-column is the end moment
vs. end rotation curve.

There are generally two types of numerical integration for the determina-
tion of load vs. deformation curves of a beam column. One of the two methods
is Newmark’s numerical integration procedure [13]. The merit of Newmark’s
method is that it can be applied to any kind of end conditions and the inter-
ative process converges reasonably fast. However, Newmark’s numerical inte-- .
gration diverges if the assumed end moment is larger than the ultimate load,
and the descending branch of the M-0 curve becomes very difficult to obtain.
The other numerical method is the so-called “‘stepwise’’ integration procedure
[14]. This method has been used extensively in the development of column
deflection curves (CDC’s). However, during the construction of these CDC’s
it was assumed that reversed internal moments would still follow the mono-
tonically increased M-¢-P curve. Therefore, end moment vs. end rotation
(M-6) curves obtained from these CDC’s do not include the unloading effect.
If this unloading effect is to be considered, then at each integration station of
the beam-column the present moment must be compared with its history to
determine the corresponding curvature. Consequently, if a series of CDC’s
are to be developed in the same manner, the location of the segment (which
corresponds to a particular beam-column) of a CDC must be known beforehand

M — P
4 P Fig. 8. Loading Conditions
for Beam-Columns.
Case "2" Case "3"

so that the history of CDC’s can be made identical to that of the beam-column
in question. This is impossible for most cases except for a few particular end-
loading conditions as shown in Fig. 8; (1) equal end moments (single curvature),
where the mid-height of the beam-column is always at the peaks of the CDC'’s,
or (2) equal end moments (double curvature) and (3) one end pinned (zero end
moment) where for case (2) the mid-height and for case (3) the zero moment
end are always at one end of the CDC’s. Therefore, integration of CDC’s for
case (1) can always be initiated at the quarter points, where the slopes are
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zero, and for cases (2) and (3), at the zero deflection point, and then the loading
effect can be considered. Of course, this negates the advantage of using CDC’s,
that is, that they are assumed to be history independent and hence may be
used for beam-columns of any end conditions and length.

Numerical Procedure

The unloading behavior of beam-columns can be included in the 3-8 curve,

if the following numerical integration procedure is employed.

w
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Fig. 9. Numerical Procedure for Calculating Load-Deflection Relationship.

. Subdivide the length of the member which is under a constant thrust into »

integration stations as shown in Fig. 9a. The distance between any two
adjacent stations on the deflected member is A (= L/(n — 1)) (approximately
equal to the arc length within the segment).

Assume that the segment in each sublength is a circular arc.

. Assume an end rotation and an end moment at station 1.

Determine the curvature ¢, at station 1 from the M-P-¢ curve. (If present
M, is less than the previous maximum M,, the unloading M-P-¢ curve is

to apply.)

. As shown in Fig. 9b, deflection at station 2, v,=ASin (6, —1/2¢é,2), and the

slope at station 2, 0,=0; — ¢, A.
And the moment at station 2 is My=M,+ P v, — M- My

7 Cos (6; —1/2 4, A).

. Determine ¢, from the M-P-¢ curve, and continue the integration in the

same manner as from step (4) to (6). That is,
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¢ = ASin (6, —1/2¢; 10+,
0, =0,_1—di1A,

V.

— i=1
M )'S Cos (0,4~ 1/2404 ).

M,=M, ,+Pv,—
8. If the assumed M, and 6, are correct, then at the nth station, v, should be
zero, or equal to a given value if sidesway of the beam-column is allowed.
Otherwise M, must be decreased or increased if v, is smaller than or larger
than the given end deflection, and steps (3) to (7) repeated until »,, is within
a certain allowable error.
9. Increase 6, and increase or decrease M, a certain amount and repeat the
whole process from step (1) to step (8) until the complete M-6 as needed
is obtained.

The numerical integration procedure suggested above is essentially the same
as that used in the development of CDC’s. The point of difference is the fact
that the integration is carried out on the deflected shape of the member for
fixed stations. Thus the history of every station can be recorded, and the
unloading effect can be taken into account.

Unloading Effect

The M- curve for the equal end moments (single curvature) case is con-
sidered here. For this particular situation, the slope at the mid-height point
is always zero and the internal moment at this point always increases during
the whole loading history. Numerical integration can be simplified by starting
at the mid-height point and working toward the end with only one half of the
member [15]. The example given here is for the M-0 curves of A514 steel;
residual stresses of both the rolled and welded type are considered.

The actual moment-curvature relationship for an A 36 steel beam under
reversed loading has been presented by Porov [16]. It was observed that
when the moment is reversed, the initial unloading portion for a moment
curvature hysteresis loop is approximately linear [16]. In the present study,
elastic unloading of moment is postulated. The M-P-¢ relationship is there-
fore represented by the following equations (see Fig. 10).

For b =*, ¢ =f(M,;,P),
¢ < ¢*, ¢=¢*—(M¥—-M,)|E]I.

Where ¢* and M } are the largest curvature and internal moment, respectively,
to which the column has been subject to any station.

The M-6 curves for A 514 steel beams-columns with slenderness ratios
ranging from 20 to 40 are presented in Figs. 11 and 12. It is apparent that
there is little difference between the M-0 curves including the unloading effect
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Fig. 11. End-Moment vs. End Rotation Curves.

and excluding it. The reasons for this are that the portions of the member
that do unload are the less highly loaded regions, for example when L/r =20,
the moments at the unloading region are around 0.8 M., which is approxi-
mately on the start of the knee of the M-P-¢ curve where the elastic unloading
effect is not pronounced, and also most of the deformation of the column
continues to come from the regions under monotonic loading. From Figs. 10
and 11, it can also be seen that the unloading effect is more pronounced for

low slenderness ratio columns whose ultimate strength is generally higher
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Fig. 12. End-Moment vs. End Rotation Curves.

than that of higher slenderness ratio columns. Also, on the descending portion
of the M-8 curves, the larger the end rotation, the greater the difference
between the loading and unloading curves.

Effects of Residual Stresses and Mechanical Properties

The effect of mechanical properties and residual stresses, as well as the
unloading behavior, on the M-0 curves are important. In Fig. 13, the M-0
curves for columns with L/r=40 are presented. The axial force is constant,
0.55 P,. The two patterns of residual stress shown in Fig. 2 are considered,
that is, those for rolled shapes, and those for welded shapes with flame-cut
plates. ,

It is seen that both the shape of the stress-strain curve and residual stress
distribution can influence the M-0 curve. If the mechanical properties are kept
the same, the difference can be approximately 109, in ultimate load if the
patterns of residual stress are different. If nondimensional residual stresses
are held constant, differences in the mechanical properties (stress-strain curve)
can introduce a difference of up to 109, of the ultimate load. Therefore, accuracy
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Fig. 13. Comparison of End-Moment and End-Rotation Curves.

of representation of both the stress-strain relationship of the material and the
residual stress distribution in the section are needed in order to provide a
good prediction of the strength of beam-columns.

Interaction Curves for A 514 Steel Beam-Columns

The interaction curves between P/F, and M/M, for equal end moment
conditions (symmetrical bending) are shown in Fig. 14 for A 514 steel beam-
columns with slenderness ratios equal to 20, 40, and 60. Beam-columns of
rolled heat-treated shapes show higher ultimate strength than those of welded
built-up shapes. This can be understood as the consequence of the smaller
effect of residual stresses on the M-P-¢ curves for rolled shapes than that for
welded shapes.

—— Rolled Heat-Treated 8 W 40
—-— Welided lIH 7! With Flame-Cut Plotes} ASE Shes)

-——— Extrapolation Solution From A36 Steel Shapes
0.8 P

M

Fig. 14. Interaction Curves for
A 514 Steel Beam-Columns.
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The results obtained for A 514 steel beam-columns from direct interaction
may be compared with the solutions extrapolating from the results obtained
previously for A 36 steel beam-columns [12].

For beam-columns made of steel other than A 36. the slenderness ratio
must be adjusted according to the following formula [12]:

(7 = ), V2
T equivalent Ty oy 36

The extrapolation solution sill be exact if the residual stress to yield strain
ratio and the residual stress patterns are the same as those of rolled A 36 steel
shapes, and if the stress-strain curve is elastic-perfectly plastic. For A 514 steel
beam-columns these two conditions cannot be satisfied, and thus, yield only
an approximate solution. The interaction curve determined from this extra-
polation procedure is presented in Fig. 14 for the case L/r,=20. It is shown
that the extrapolation solution is lower than the corresponding ‘“‘exact solu-
tion’’.

4. Experimental Investigation

An experimental investigation of the behavior of beam-columns made of
A 514 high strength constructional alloy steel has been carried out. The pro-
gram consisted of tests of two full-scale beam-columns, one a rolled 8 WF 40
shape and the other a welded 11 H71 shape (flame-cut plates). The members
were tested in an “‘as-delivered’’ condition; no attempt was made to eliminate
rolling or welding residual stresses by annealing. The magnitude and distribu-
tion of the residual stresses were determined by the method of ‘“‘sectioning’’
[17], and it was found that they were close to the results of previous measure-
ments [8], [9], [10] and hence the idealized residual stress distributions as
shown in Fig. 2 were used for the theoretical predictions. The beam-columns
were tested under equal end moment (single curvature) conditions.

Test Procedure

The procedure for testing beam-columns has been described in detail pre-
viously [4], [18] and only a brief outline is given here. _

The general set-up of the beam-column specimen is shown in Fig. 15a. The
horizontal moment arms are rigidly welded to the end of the column. The
sizes of the beams are comparatively larger than that of the column so that
the beam sections remain in the elastic range during the whole loading process.
Pinned-end fixtures were utilized to ensure that there are no end moments
other than those imposed by the moment arms, applied at the column ends.
In Fig. 15a it can be seen that the axial force in the column is made up of
the direct force applied by the testing machine, P and the jack force, F. To
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Fig. 15. Detail of the Beam-Column Specimen.

simulate the situation existing in the lower stories of a multi-story frame and
to be in accord with the assumptions for the theoretical analysis, the tests were
performed with the axial load held constant. Thus at each increment of load
or deformation, the direct force, P, was adjusted so that the total force in the
column remained at 0.55 F,, where P, is the yield load of the column.

The direct axial force, P, was first applied to the column; the beam-to-
column joints were rotated by applying the jack force to the ends of the
moment arms. The column was therefore forced into a symmetrical curvature
mode of deformation. In order to preclude any deformation out of the plane
perpendicular to the strong axis, the column was braced at the third points
by two sets of lateral braces. The lateral braces used were designed for the
laboratory testing of large structures permitted to sway [19]. In the early
stages of loading, that is, in the elastic range, approximately equal increments
of moment were applied to the column. In the inelastic range, comparatively
larger deformations occur for the same amount of moment increment, there-
fore, end rotations instead of moment are used as a basis for loading in order
to obtain a complete load-deformation curve with approximately evenly
distributed test points.
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At each increment of load or end rotation. the end rotations were measured
by level bars (see Fig. 15b). The mid-height deflection, in the bending<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>