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Eccentrically Loaded Single Angle Columns

Colonnes composees de cornieres chargees excentriquement

Aussermittig belastete Stahlstützen aus einzelnen Winkelprofilen

TSUTOMU USAMI THEODORE V. GALAMBOS
Lecturer of Civil Engrg., University of M. ASCE, Prof. of Civil Engrg., Washing-
Gifu, Gifu, Japan; formerly Research ton Univ., St. Louis, Mo., U.S.A.
Assistant, Washington Univ., St. Louis,

Mo., U.S.A.

Introduction

A design method for single angle compression members used as web members

in long span steel joists has been reported in reference [6]1) based on a
series of column tests of steel angles. This paper is to provide the theoretical
basis to the test results. The single angle compression members are treated
as end-restrained columns with biaxially eccentric load, and a method of
numerical analysis for determining the elastic-plastic behavior of such columns
is presented. The analysis allows for the effects of residual stresses and initial
deflections of columns. A comprehensive review has been reported by Chen
and Santathadoporn [2] on literatures dealing with inelastic behavior of
biaxially loaded columns, but it seems that no work has previously been made
on the subject reported in this paper. Recently Trahair [9] published a general
method of elastic analysis of restrained columns loaded eccentrically with
respect to both prineipal axes of the end cross sections, and compared its
Solutions with the test results of single angle columns [8]. Trahair's method of
analysis is extended in this paper to allow for the inelastic effects of columns.

Shown in Fig. 1 is a typical Joint of a long span steel joist where single
angle members are used as its web members. The restraining member represents

a gusset plate or a web plate of chord member (structural Tee, for
example). Such a single angle compression member is idealized as show^n in

l) Numericals in parentheses refer to corresponding items in the Appendix IV; Refe-
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Fig. 2. Idealized Single Angle Column.

Fig. 3. End Cross Section of Angle Column.

Figs. 2 and 3 for the purpose of subsequent analysis. The column is loaded by
an axial thrust P with eccentricities ex and ey. The axes x and y are centroidal

axes of the angle (its centroid is denoted by C), and are, respectively, parallel

to the connected leg and the outstanding leg of the angle. The axis z is the

centroidal longitudinal axis of the column. The end restraints, which are

provided by the rotational stiffnesses of the restraining member in its plane

and out of its plane, are, respectively, replaced by the equivalent rotational

Springs of stiffnesses Ry and Rx.

Assumptions and Conditions

The following assumptions are made in the subsequent analysis:

1. A second order analysis is performed, i.e., equilibrium is formulated on the

deformed column.
2. The column is prismatic and of a thin-walled angle cross-section (Fig. 2).

3. The stress-strain diagram of the member is elastic-perfectly plastic (Fig. 4).
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4. Yielding is initiated by normal stress only.
5. The axial thrust P, acting at the column ends with the eccentricities ex

and Cy as shown in Figs. 2 and 3, retains its original direction throughout
the loading history.

R_STRESS
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Fig. 4. Assumed Stress-Strain Diagram
of the Column Material.

Fig. 5. Characteristics of the
Rotational Springs.

The column ends are prevented both from translating horizontally and
from twisting, and the end rotations are restrained by the rotational Springs
in such positions and directions as shown in Figs. 2 and 3.

The end moment versus end rotation characteristics of the rotational Springs
about the x and y axes are, respectively, assumed to be as shown in Figs.
5a and 5b. The end moments M0x and M0y about the x and y axes are,
respectively, related to the corresponding end rotations d0x and d0y about
these axes by

(la)
(lb)^Oy -RyQoyy

in which the stiffnesses Rx and Ry are, respectively, given by the secant
moduli of the Mn ¦60x&ndM0y- -0n?, relations.

10.

l0x u0x C*,±X^A -^^Oy u0y
The warping strains due to non-uniform torsion are ignored [5].
The center of twist of the cross-section of the column is coincident with
the shear center regardless of the elastic and inelastic ränge of the column.
St. Venant torsional rigidity retains its original elastic value in the inelastic
ränge. The validity of assumption 10 is discussed in reference [10].

The following specific conditions are furthermore allowed for in the analysis:

1. Cooling residual stresses.
2. Initial displacements symmetrical with respect to the column center.
3. Axial stresses locked in the column due to initial displacements of the

column.
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The cooling residual stress, aR are assumed to be uniform along the whole

length of the column for each fiber and must satisfy the following conditions:

$oBdA =$aRydA =$aRxdA =0. (2)
A A A

Initial displacements are assumed to exist in the x and y directions, being,
respectively, denoted by uz and vz, and they are assumed to be zero at the
column ends. No initial twist is considered. Axial stresses ct7 due to the initial
displacements are induced in the column when the end slopes of the initial
displacements are not zero as well as when the column ends are not allowed
to rotate freely due to the end restraints. Since no restraint to vertical movement

is assumed, crz will not produce a longitudinal resultant force and thus

$<jIdA 0. (3a)
A

The stresses az, however, produce bending moments abcut the x and y axes
which are expressed by

MIX=ScriydA, (3b)
A

MIy -jvjxdA. (3c)
A

These bending moments are stored in the rotational Springs as initial restraining
moments, and are also locked in the column itself. Finally it is assumed that
the algebraic sum of aR and az does not exceed the yield stress of the material

anywhere in the column.

Mathematical Formulation

Internal Axial Force and Moments

Let Fig. 6 show an angle member of unit length loaded by axial force P*
acting at the centroid and by three components of moments, M*, M* and
M*. These forces will produce axial strains and shear strains in the member.
Because the warping strains due to non-uniform torsion are ignored and
because the contribution of torsional shear stresses to yielding is also neglected,
the response of the element to the moment Mf may be treated separately.
Accordingly, an axial strain e* of a point in the member may be written as

e* _€*_0*a; + <p*y +^ + ^ (4)

in which c* denotes the axial compressive strain at the centroid, &* curvature
in the x-z plane, d>* curvature in the y-z plane and E the modulus of elasticity.
When the applied force and moments change a small amount the axial strain
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will also undergo a certain change which is expressed by
8e -8ec-80xx + 8&yy, (5)

where Se, Sec, 8@x and 8<Py denote increments of e*, e*, <P* and <P*, respectively.

The axial strain e* and its increment Se may be resolved into the
elastic strain component, which is related to the corresponding stress by
Hook's law, and the plastic strain component:

E + € *£>

Se=~ + Se^,

(6a)

(6b)

in which the quantities with superscript p indicate the plastic strain components,

and er* and Scr denote the axial stresses corresponding to e* and Se,

respectively. The plastic strain component 8ep is expressed by

Se^ 0, when |e* + Se|^eF,
§€p (€* + Se)-eFsgn(e* + Se),
S ep S e, when | e * | ^ eY and |

§€p 0, when |e*| ^ |e* + Se|,

when |e*|^ej
e*+Se|^eF,

and I e * + S e I ^ e F>
(7)

in which er denotes the yield strain of the material and sgn denotes the
Signum function (i.e., sgn#=l for x>0, sgnx= -1 for x<0 and sgn x 0 for
x 0). The plastic strain component e*p is expressed by a sum of the plastic
strains 8ep up to the loading stage P*, M* and Mf, that is

e*^ 2Sep3 (8)

in which 2 denotes a summation of S ep tili the applied force and moments
reach P*, Mf and Mf. From Eqs. (4), (5) and (6), the total axial stress o- of
a point in the member after the change of the applied force and moments is
obtained as
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o a* + 8cj E(-ec-&x + &yy) + aR + aI-E(e*P + 8ep), (9)

where ec ef + 8€c,<Px &* + 8<Px and <Py =<Pf + 8<Py, and they represent
the corresponding quantities after the change of the applied force and moments.
The axial stress a produces the following cross-sectional forces:

P -\odA, Mx $vydA, M -\oxdA.
A A A

Substituting Eq. (9) into the above equations, and considering Eqs. (2)
and (3) and the fact that the x and y axes are centroidal axes, these forces
become equal to:

P =E[Aec + r], (10a)

M, E[-lxy0x + lx0y-rx]+MIx, (lOb)

My E[Iy0x-Ixy0y + ry]-MIY, (10c)

in which

Ix=$y2dA, !y =\x2dA, I =$xydA,
A A A

r =r*+sr, r*=$e*pdA, sr =$8epdA,
A A

ry rf+8ry, rf =$e*pxdA, 8ry=$8epxdA,
A A

rx r*+srx, r*=$e*pydA, hrx ^^ydA.

(ii)

Owing to assumptions 4, 8 and 10, the moment Mz is independent of the
axial stress a and is given by

Mz GKq<f>', (lOd)

where the prime indicates differentiation with respect to the z-coordinate.
This is the same expression as the elastic St. Venant's torsion.

External Axial Force and Moments

Fig. 7 shows the coordinate Systems used in the following derivations. The

x-y-z coordinate system is the same as defined in Fig. 2, and is fixed in space.
The centroidal axes of the initially displaced cross-sections are denoted by the
x' and y' axes. The x' and y' axes are, respectively, parallel to the connected
leg and the outstanding leg of the angle column. The initial deflections uz and
vT are measured as shown in the figures. The £, rj and £ axes are used to denote
the displaced x', y' and z axes. The £ and rj axes are centroidal axes and are
parallel to the connected leg and the outstanding leg of the angle, respectively.
The £ axis is tangent to the displaced centroidal longitudinal axis of the column.
The displacements and angle of twist of the shear center S due to loading are
denoted by u, v and </>; u and v are the displacements in the x' and y' direc-
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tions, and <f> is the angle of twist about the 2-axis. Because of the symmetrical
nature of the column dimensions and of loading, the deformed configuration
of the column is symmetrical with respect to the column center. The end

restraining moments, which are induced by virtue of the rotational Springs,
are also alike at both ends. Each of the restraining moments is made up of
two components: one is due to loading and the other is due to the fact that
the end slopes of the initially deformed column are not usually zero. These
latter restraining moments are already defined as Mlx and MIy in Eqs. (3a)
and (3b), respectively. The restraining moments about the x and y axes due
to load are denoted by M0x and M0y, respectively, which are expressed in
terms of the corresponding stiffness of spring and end slope at the location
of the rotational Springs (see Fig. 3) as follows:

¦M0y Myu0,

(12a)

(12b)

where the subscript 0 refers to the column end and 62 denotes the length of
the connected leg. Similar relations are obtained for the initial restraining
moments MIx and MIy as follows:

MIy= Byu'I0

(13a)

(13b)
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Equivalent eccentricities are defined by the following equations:

<e„ + ^(t;_ + t;_„~^&), (14a)^y Vy p p

where ex and ey are the equivalent eccentricities corresponding to ex and ey,
respectively. By using the equivalent eccentricities in place of the real
eccentricities of the axial thrust P, the column may be analyzed as if both ends

were flexurally pinned and as if the axial thrust P were applied to the column
with the eccentricities ex and ey. The expressions for the external axial force
and moments of the ''replaced" column in the presence of initial displacements
have been derived by Culver [3], and they are equal to:

Pf P, (15a)

Mf P{(v + vI)-ey-(x0-ex)cf>}, (15b)

Mf -P{(u + uI)-ex + (y0-ey)<t>},
_

(15c)

Mf P(y0-ey)(uf + u'I)~P(xQ^ex)(vf + vfI)-K<l>f, (löd)

where P(e), Mf, Mf and Mf represent external axial force and external
moments about the £, rj and £ axes, respectively, and x0 and y0 are coordinates
of the shear center in the x-y coordinate system. The quantity K is defined by

K=$o{(x-x0)*+(y-y0Y}dA, (16)
A

where o is given in Fig. 9. Substituting the expressions for a into Eq. (16) and

using Eqs. (10b) and (10c) with the approximation

Mx ^-Pey and My ^Pex
the following expression for K is obtained:

K ~(Prl+EA) + KR + KI, (17)

where rf .§ + {(ex-^) - ^(ey + ^j}ßy
(18a)

rl =x2 + y2 +^^, (18b)

Ay(x2 + y2)dA
& l _ n IT T\ 1 2yo-2xo~fM\^

±xyl x±y\ ±x xx)

1 jx(x2 + y2)dA
ßy i _ n it T \ T 2xo-2yo~fM\^

A ±xy\±x±y\ ±y xy

(18c)

(18d)
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KR $oR{x* + yz)dA, (18e)
A

Kj $oI{{x-x0Y + (y-y0)*}dA, (18f)
A

A A* + 8A, (18g)

A* =_I*+Lr*-(ßx-ßvlj2+2z0}r*

-(ßv-ßxLai + 2y0)lr*+}e*P(x* + y*)dA,

SA -I^8r-(ßx-ßv^ + 2x0)jSrx

-{ßy-ßxlf + 2y^hry+y>e*(x* + y*)dA.

(18h)

(18i)

Equilibrium Equations

Since small deformations are assumed, the curvatures in the £-£ plane,
&g, and in the rj-£ plane, d^, are expressed by

<P^®xg±u", (19a)

(t>r]<^0y^--v". (19b)

Equating Eqs. (10a)-(10c) to Eqs. (15a)-(15c), respectively and using Eqs.
(17) and (19) yield the following equilibrium equations:

P=EA(ec +^, (20a)

EIxv" + EIxyu" + Pv-P(x0-ex)</> Pey-PvI + MIx-Erx, (20b)

E Iyu" + EIxyv" + Pu + P (y0-eu)4> Pex-PUl-MIy-E Ty. (20c)

The fourth equilibrium equation may be obtained by equating Eq. (lOd) to
Eq. (15d) and by differentiating both sides once with respect to z, that is.

P(Xo-ex)v"-P(y0~ey)u" + (GKT + KR + KI-Prl)<f>"
EA<f>"-P(x0-ex)v'i+P(y0-ey)u'j.

In deriving Eq. (20d), an approximation

±(EAV)^EA4>*

was used. The boundary conditions for the differential Eqs. (20b)-(20d) are

uo vo <f>o um v'm <f>m °> (21)

where L/2 refers to the column center.
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Method of Numerical Analysis

Modification of Equilibrium Equations

Eqs. (20b)-(20d) can be rewritten as

EIx(v"-v'') + EIxv(u"-u;) + Pv-P(x0-ex)<f> E(rx0-rx)-PvI, (22a)

EIy(u"-u"0) + EIxv(v"-vZ) + Pu + P(y0-ey)<f> E(ry0-ry)-PuIt (22b)

P(x0-ex)(v"-v;)-P(yo-ey)(u"-u;) + (GKT + KB + KI-Prl)(<l>''-^)
E{A<t>''-(Af)0}-P(x0-ex)(v'i--v"IO) + P(y0-ty)ui-<o)- (22c)

These equations are identically satisfied at the column ends. Introducing new
notations, Rx and By, defined by

iL -i-^ (23a)
1-jBx L

and Bu -i. ^ (23b)V

1-Py L

and considering Eqs. (13) and (14), the equilibrium Eqs. (20b)-(20d) at the
column ends become

(l-Rx)EIxv^+(l-Rx)EIxyu;-Rx^

(l-Rx)Pey-(l-Rx)Erx0,

(\-Ry)EIyul+(l-Ry)EIxyvl-Ry^u^
(l-Ry)Pex-(l-Ry)Ery0,

E (Af )0 - P (*0 - *x) VI0 + P(y*- *y) <0 >

(24a)

(24b)

(24c)

where L denotes the length of the column. These equations give additional
boundary conditions for solving Eqs. (22). For numerical analysis it is
convenient to express Eqs. (22) and (24) in non-dimensional form. This may be

done by using the notations

{U, V, UI,VI,X0,Y0,Ex,Ey,Ex,Ey}
1

(25 a)

'o
\u, v, Uj,Vj,XQ,yQ,ex,ey,ex, ey),

z=^, P„ —P~. ^r —£_-» *l Z72 > F—p~y (25b)L' * U- ' v U- ' z rl ' Pa

The resulting equations are shown in Appendix I.
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Determination of Cross-Sectional Properties

163

In order to determine a number of cross-sectional properties defined in the
foregoing sections, an angle section was divided into many small elements of
area as shown in Fig. 8; the outstanding leg including the corner area is equally

(i,.l)—=: =— C1.1>

(Vifcl-L

-OUTSTANDING

LEG

Cl.n,)
U2.n2)

-<A2.I) (l.l)
t

(l.n2)

iy

Fig. 8. Column Cross Section Showing Grid Networks.

divided into a total of lx columns and nx rows and the connected leg l2 columns
and n2 rows. When determining the cross-sectional properties, it is assumed
that the strains and coordinates of an element are represented by those at its
centroid.

Finite Integral Representation

The differential Eqs. (34) under the boundary conditions (35) are solved
numerically by the finite integral method [1]. The finite integral method is a
numerical technique similar to the finite difference method except that
numerical integrations are utilized instead of numerical differentiations. Let
the half-length of the column be divided into m equal intervals and let the
pivotal points i be named 0, 1, m from the column end. In the present
analysis, the quantities V/, U![ and <j>l at each pivotal point i are selected as
unknown quantities, which makes a total of 3 (m +1) unknowns. By integrating
V/ to obtain V/ and Vi, and by determining the integration constants from
Eqs. (35a), one can obtain

iH 1/2

vj=Wdz-ivt"dz,
0 0

iHiH 1/2

^=J jV/dZdZ-iHjV/dZdZ,
0 0 0

(26)

in which H denotes the non-dimensional interval length, which is equal to
1/2 m. Identical relations as Eqs. (26) are obtained for U^, U^ and Ui and
for $[, (f>) and <f)i. Brown and Trahair [1] have given the following numerical
integration formulas:
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{F'} -|[iV]{F") for Ft' =jHF{dZ, (i 0,...,m), (27)

T/2 iH iH
W TU^^^'} for *<•=//^" <*Z rfZ > (t 0, m), (28)

144 0 0

where {P"}5 {F'} and {P} are, respectively, vectors of which components are

F/, F/ and Fi and the matrix [N] is a square matrix of size (m+1) which is

given in Appendix II. Applying these formulas to Eqs. (26), the relations
between {V} and {V"} and between {V} and {V"} are obtained, in which {V},
{V} and {V"} are vectors of which components are, respectively, Vi, VJ and
V/ (i 0,1, m). By using these relations, the equilibrium Eqs. (34b)-(34d)
and the corresponding boundary conditions (35b)-(35d) may be reduced to
the following 3 (m + 1) simultaneously equations with respect to V{, JJ\ and
cf>'!(i 0,l,...m):

[Ä] {*} + P [B] {x} {D} + P{E}, (29)

where {#} is a vector whose components are 3 (m+ 1) unknown quantities V{,
VI and <f>'l (i 0, m) and [A] and [B] are square matrices of size 3 (m + 1).
The quantities related to the inelastic effects of the column, such as rx, Py
and A, are assembled in the vector {D}. The vector {E} represents the quantities
with end moments due to eccentrical loading and with initial deflections.

Computational Procedure

The set of simultaneous equations (29) cannot be solved directly because

the vector {D} is an unknown function of {x}. Furthermore the equivalent
eccentricities ex and ey in Eqs. (22) or Ex and Ey in Eqs. (34) are funetions of
end slope and the stiffness, Rx or Rx, of the rotational spring may vary due
to the yielding of the spring, and so the matrices [A], [B] and {E} are also
unknown funetions of {x}. However, to avoid a time consuming trial and
correction procedure involved in determining the matrices, the equivalent
eccentricities and the rotational stiffness are assumed to be constant during
each increment of {x} so that those matrices [A], [B] and {E} are specified by
the previously determined {x}- By assuming this, Eqs. (29) can be directly
solved in the elastic ränge of the column except for the first step of loading,
where the values of ex and ey are still unknown. In the computational procedure
the values of ex and ey were temporarily substituted for the values of ex and

ey, respectively, during the first step of loading, and after the Solution {x} and
consequently ex and ey were obtained from Eqs. (29) and (14) the computations
was again performed at the same load with the previously determined value
of ex and ey. The computational procedure after the column has entered the
inelastic ränge is outlined below. In the statements, quantities with the superscript

* represent the corresponding converged quantities from the previous
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calculation and quantities with the prefix § represent the corresponding
increments from the previously converged values. These notations are
consistent with those previously used.

1. Determine matrices [A*], [P*], {D*} and {P*} from {x*}.
2. Assume trial values of {8%} and {Sec}, and determine trial values of {y} and

{ec}. The quantities {S ec} and {ec} are determined at each pivotal point, and
so they are, respectively, vectors of size (m+1).

3. Determine {8D} and consequently {D} from {D} {D*} + {8D}.
4. Determine {P} \-p-\ from Eq. (34a) and average the values P to obtain

Pc. The quantity P is determined at each pivotal point, and so {P} is a
vector of size (m+1). The quantity Pc is used as a control value for
nondimensional axial thrust.

5. Determine the corrections of the assumed values of {8^} and {SeJ from
Eqs. (29) and (34a) by the Newton-Raphson method [10].

6. Check if the corrections of {S^} and {8ec} satisfy the following rule of
convergence :

8(8?)

where q denotes a value from {x} and {ec}, S (8q) denotes the corresponding
correction determined in computational step 5, and /x represents the tolerance
tatio of convergence. The value of p, in this analysis is 0.003 for the convergence

tests of {V"} and {ec}, and is 0.005 for those of {U") and {</>"}. If above
rule is not satisfied, add the corrections to the corresponding trial values
of {8 x\ and {8 ej to obtain the corrected values of {8 y} and {8 ec} and repeat
the procedure 2 through 6 with the corrected values of {8 x} and {8 ec} as
the new trial values.

7. Repeat steps 1 through 6 until the desired displacement is obtained.

Numerical Studies

In the subsequent articles, the results of numerical analysis for single-angle
test columns, the details of which are reported elsewhere [6], [8], [10], are
described. The tests were performed on equal and unequal leg steel angle
columns (2 in. X 2 in. X 1/4 in. and 3 in. X 2 in. X 1/4 in. angles) whose ends were
welded to web plates of structural Tee stubs (ST 611 7.5 of 8 in. long) to
provide end restrains, such as shown in Fig. 1. The columns were loaded eccentrically

through the webs of the Tee stubs with three different end bearing
conditions (a), (b) and (c). In end condition (a), the axial load was directly applied
on the flange surfaces of the end Tee stubs, and in end conditions (b) and (c)
knife edge ends were used with the loading lines placed on the middle plane
of the webs of the end Tee stubs and on the y axis, respectively.
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In applying the theoretical analysis to the single-angle test columns, it is

necessary to evaluate the end restraint parameters Rx and Ry. For the purpose,
the idealized column end assemblies shown in Fig. 9 are utilized in the case
of end condition (a). These assemblies are assumed to be cantilever beams
with cross-sections as indicated on the far right sides of Fig. 9. It is also assumed

1.5*

4.5"

0.428?-

¦1.5*

JtB -2.25"

Um0
ACTUAL MOOEL

(o) SPRING Rx

lAX

_ k^fM0

ÖOK

-NEUTRAL

AXIS

8"

jM-J?B«3.75" I
\ M0y

e«C7©y

ACTUAL MODEL

(b) SPRING Rv

**

Fig. 9. Models for Determining the End Spring Stiffnesses.

that the moment-versus-rotation characteristics of these assemblies are
uncoupled, and that the maximum value of the moment M0x is equal to the

fully plastic moment Mp, of the Tee stem alone about its weak prineipal axis.
Thus the moment-versus-rotation characteristics of the assemblies can be

determined as

Ox

Oox

Ox
8,Ox

iAIEiAx+iBiEiy
i ep

and M,Oy EIAy
e,Oy Ia + Ib'

when O^0Ox<:6p, (30a)

when 6Ox^0p (30b)

(30c)

where the lengths lA and lB are defined in Fig. 9, IAx and IAy are, respectively,
the moments of inertia of the Tee stem alone about the weak and strong
prineipal axes, IB is the moment of inertia of the Tee stem with the angle
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about the centroidal axis shown in Fig. 9 a, and 6p is the end rotation of the
assembly (a) at M0x Mp, namely

From Eqs. (1), (23) and (30), the end restraint parameters Bx and By are
given by

S* /*/ Ib\Iz'
When ° - d°* ö» ' (32 a)

1+\T7x + 7zf7

** ,/,_ \B\I*e0x> whenö.^0, (32b)
1 +

and Ry ^ü7T7J£-
<32c>

The quantity 60x is equivalent to the absolute value of the end slope of the
column at the location of the Springs (see Fig. 3), that is

b9
8ox K+^io-y^o

In the case of end condition (b) the knife edges are placed parallel with
the plane of the Tee stems so that the value of Rx is equal to zero and Ry is
given by the same expression as Eq. (32c). In end condition (c) the knife edges
are perpendicular to the plane of the Tee stems, and so the value of Ry is
zero and Rx is given by the same expressions as Eqs. (32a) and (32b).

The computational procedure described previously was programmed in the
FORTRAN IV language for an electronic digital Computer. The IBM 360/50
Computer located at the Sever Institute of Technology of Washington
University was utilized for the numerical studies.

Comparison with Trahair 's Elastic Solutions

Before the Computer program was utilized for the elastic-plastic analysis
of angle columns, sufficient runs were made to study elastic column behaviour
and to compare the results with elastic Solutions determined by Trahair [8],
[9]. Three problems shown in Table 1 are selected as the examples for the
comparison. The angle columns for the three problems correspond to two of
the test columns, and columns 2 and 3 in Table 1 show the corresponding test
column numbers and end conditions. The cross-section of the angle is 2 in. x
2 in. X 1/4in. and the material is ASTM A 242 steel. The numbers ofgrids used for
the cross-section were lx 3, n± 24, l2 21 and w2 3, and the number ofdivisions
of the column length, m, was 6 throughout the problems. The values of the
end restraint parameter Rx were determined from a simple model shown
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Table 1. Data for Problems 101-103 (Elastic Analysis)

Problem
Number

(1)

Test Column Properties1)
(Ref. 6)

End Restraint
Parameters

Number

(2)

End
Condition

(3)

Length, L,
in inches

(4)

L
rz

(5) (6)

Ry

(7)

101
102
103

A-2-8
A-2-8
A-l-8

b

b

a

34.9
34.9
33.9

89.5
89.5
86.8

0
0
0.757

0.9999
1.0
0.9999

*) 2-in. x 2-in. X 1/4-in. angle of ASTM A 242 steel
E 29.4 x IO3 ksi, ex -0.41 in., ey 0.804 in.

before, while the value of Ry, 0.9999, is the value used by Trahair for an
approximate fixed end condition along the x axis. In problem 102, the real
fixed end condition Ry=l was used for comparison. Neither initial deflections
nor residual stresses were considered in the elastic problems.

The computed load versus mid-height deflection curves of problems 101

and 102 are presented in Fig. 10. The column dimensions in both problems
are identical except for the assumed value of Ry. When Ry is equal to 1.0, the
equivalent eccentricity ex defined by Eq. (14b) cannot be used because the
value of Ry becomes infinite. In such case the value of ex was automatically
set to zero in the Computer program because eccentricity of load does not
make any sense in the direction of the fixed end and it is always equivalent
to zero. Trahair's Solutions given in reference [8] were converted into the
deformations uLt2, vL/2 and <j>Lj2, and they are plotted in the same figure at

25

20
LOAD

(kips) 15 u < K._/.,y.._._\

0^

I 0
PROBLEM 101

PROBLEM 102L/2L/Z L/2

O V

A U TRAHAIR (8)
D 0

u ,v (Inch) —- 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6

0 0.02 0.04 0.06 0 (radian)

Fig. 10. Comparison of Elastic Solutions. Problems 101 and 102.
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ordinates corresponding to 5, 10, 15, 20 and 22 kips. The agreement between
the results of problem 101 and the Trahais's Solutions is quite reasonable,
whereas the results of problem 102 are very much different from the others
in the torsional deformation (f>Lj2. The reason may be well explained when the
difference of the equivalent eccentricity ex between the two problems is
evaluated. Fig. 12 a shows the variations of the values of ex and r2 in problem 101.

The quantity r2 is defined in Eq. (18 a), and it is a function of the equivalent
eccentricities ex and ey. The equivalent eccentricity ey is, in this case, always
equal to the real eccentricity ey because the rotational stiffness Ry (or Ry) is

zero. The quantity ex and r2 are undetermined at loads less than 5 kips because
the first loading step was 5 kips. Now, from Eq. (20d) with KR Kz A=Vj
u'j =0, the following relation may be obtained:

-P(x0-ex)v + P(y0-ey)u* GKT-Pr2s ' (33)

because of the boundary conditions 21. This is one of the equilibrium equations
which the Solutions u, v and </> must satisfy. Since the deflection uLl2 is very
small compared with the deflection vLj2 (see Fig. 10), the second term of the
numerator of Eq. (33) may be neglected when the value of <f>L!2 is evaluated.
The magnitude of the denominator of Eq. (33) will not be very much different
between problems 101 and 102 because the value of GKT is very large compared
with that of P r2 within the value of P under consideration. Thus the difference
between the magnitudes of (f>Ll2 for the two problems will be dependent on the
difference between the values of the first term of the numerator of Eq. (33)
and, therefore, on the difference between the values of the quantity (x0 — ex)

because the deflections vLl2 are almost identical in both problems (see Fig. 10).
The value of ex is identically zero in problem 102, and so x0 — ex x0 0.46 in.
in problem 102. On the other hand, in problem 101, the value of ex varies
with P as shown in Fig. 12a. Take P= 15 kips, for instance, the value of ejex
is about 1.4 and the value of ex is —0.41 in., and so x0 — ex 0.46 — 1.4x( — 0.41)

1.03 in. in problem 101. Therefore the value of <f>L/2 in problem 101 will be

1.03/0.46 2.5 times greater than that in problem 102 at load P= 15 kips. The
conclusion quite agrees with the results shown in Fig. 10. Thus it has been
confirmed that the difference of the results of <f)Ll2 between the two problems
is mainly due to the difference of the values of ex. In a real column it would
be impossible to realize a perfectly fixed end condition (i.e., Rx=l), and so

the results of problem 101 will be more realistic than those of problem 102.

The computed load versus mid-height deflection curves for problem 103

are compared with Trahair's Solutions in Fig. 11, and the corresponding load
versus ex, ey and r2 curves are presented in Fig. 12b. As the axial thrust P
becomes large, the deformations vLi2 and <£i/2 determined by Trahair become

slightly different from those obtained in the present numerical analysis. This

may be due to the difference of the assumed value of Rx, the numerical value
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Fig. 11. Comparison of Elastic Solutions. Problem 103.

-0.3

25

20
LOAD

P 15
(kips)

10

5

0
1.0 l.l 1.2 1.3 1.4 1.5 1.6 1.7 1.8 — ex/ex

05 0.6 0.7 0.8 0.9 1.0 l.l — r\ (inch2)

(a) PROBLEM 101

LOAO

(kips)

25 r
20

5 -

ey/e
e*/ex

o o.i 0.2 03 0.4 Oö — ey/ey, ex/ex

rf (inch*)-—0.9 1.0 1.1 1.2 1.3

(b) PROBLEM 103

Fig. 12. Load Versus ex, ey and rs2 Curves.

of which is not given in Trahair's paper. The ratio ex\ex is, in this case, less

than 1.0 as shown in Fig. 12 b and so the equivalent eccentricity ex is smaller
in magnitude than the real eccentricity.
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Effects of Residual Stresses and Initial Deflections

Two columns were selected to examine the effects of residual stresses and
initial deflections on the elastic-plastic behaviour of the columns. Those
columns are equivalent to test columns A-2-8 and A-l-8, which were, respectively,

tested under end conditions (b) and (a). Seven problems shown in
Table 2 were run to analyze those columns under various combinations of
presence of residual stresses and initial deflections. Problems 201 through 204

are for test column A-2-8, and Problems 205 through 207 for test column
A-l-8. The values of Rx and Ry for each column were determined as mentioned
before. The number of divisions of the column length, m, was 6, and the

Table 2. Effects of Residual Stresses and Initial Deflections

Problem

Number

(1)

Residual

Stress

(2)

Initial
Deflection

(3)

Computed First
Yielding Load,

in kips

Maximum Load,
Pmax, in kips Test Column Pro¬

perties1)
(Ref. 6)

(8)

Angle

(4)

Spring

(5)

Computed

(6)

Test

(7)

201
202
203
204

None
Yes
None
Yes

None
None
Yes
Yes

16.0
12.8
13.6
11.0

—

18.2
17.4
16.2
15.4

16.9
Column Numb.: A-2-8
£ 34.9", L/rz $9.5,
Rx 0, ^ 0.9982)

205
206
207

None
Yes
Yes

None
None
Yes

27.0
22.0
23.0

24.7
23.0
23.0

28.91
28.89
27.90

29.0
Column Numb.: A-l-8
£-33.9", L/rz 86.8,

^ 0.757,^ 0.9982)

x) 2-in. x 2-in. x 1/4-in. angle of ASTM A 242 steel,
E 29.4 x IO3 ksi, aY 50.9 ksi, ex —0.41 in., ey

2) Elastic Value.
: 0.804 in.

ot,{b,-t)

W

ß-r.

(ybirt)

Fig. 13. Assumed Residual Stress Pattern.
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numbers of grids for the cross-section were same as for the previous elastic
analysis. The residual stress pattern of an angle cross-section was assumed to
be as shown in Fig. 13. The four non-dimensional parameters a1? a2, ß± and ß2

are sufficient to specify the whole pattern owing to the self-equilibrating
conditions of residual stresses given by Eqs. (2). Since residual stresses were not
measured, the assumed pattern was taken from the literature [7]. The values
of oc1, oc2, ßx and ß2 used in the present numerical studies are, respectively,
0.575, 0.575, —0.3 and —0.3. As for the initial deflections of the columns, it is
assumed that the angle column has an initial deflection only in the direction
of the outstanding leg before testing and that the deflected shape is expressed
by a parabolic curve with a maximum center deflection, 80, equal to the
Standard mill tolerance for camber given in ASTM Specification A 6, that is

Ö°~240'

where L denotes the length of the column in inches. When such an angle
column is tested under end condition (a), the original deflected shape will
change, an additional deflection is induced in the plane of the Tee stems and
axial stresses due to bending will be produced in the angle because the bending
axis of the original deflection is not a prineipal axis of the angle-section and
because the flangles of the end Tees are fixed. Therefore the column will have
initial stresses uj as well as initial deflections ut and vz. However, in the case
of end conditions (b) and (c) tests, the additional deflections and stresses are
all released at the start of testing because the knife edge ends were used in
those tests. Consequently the initial deflected shape of the test column at the
start of testing is the same as that before testing.

Fig. 14 shows the computed load versus mid-height deformations vLj2 and

20

I 5
LOAD

P

(kips)
I 0

MAXIMUM LOAD\ BY TEST

.^ //
s

^0C

L/2 L/2

PROBLEM NUMBER

2 0 1

2 0 2

2 0 3
2 0 4

V (i n c h —- 0 -0.1 -02 -0.3 -0.4 -0.5
0 0.01 0.02 0.03 0.04 0.05-— 0 (radian)

Fig. 14. Effects of Residual Stresses and Initial Deflections. Problems 201-204.
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<f>Ll2 curves of problems 201 through 204, and Table 2 presents a summary of
the computed first yielding loads and maximum loads together with the
observed maximum load in the experiment of the A-2-8 column. The first
yielding load of problem 202 is lower than that of problem 203, but the former
has more inelastic reserve strength than the latter case. The effect of residual
stresses on the maximum loads is relatively insignificant, and the presence of
residual stresses (problems 202 and 204) reduces the maximum loads by 4
percent. On the other hand, the reduction of the maximum loads by initial deflections

(problems 203 and 204) is about 10 percent, which is relatively significant.
It is noteworthy that the presence of initial deflections considerably affects
the torsional deformations. The experimental maximum load lies between the
computed maximum load of problem 202, where only the effect of residual
stresses is considered, and of problem 203, where only the effect of initial
deflections is taken into account. This seems to be quite reasonable because
the severest Situation was assumed for the initial deflections.

The load versus mid-height deflection curves of problems 205 through 207

are presented in Fig. 15, and the computed first yielding and maximum loads
are summarized in Table 2 together with the experimental maximum load of
column A-l-8. The computed first yielding loads are shown for both column
and the end spring about the x-axis. Since an elastic-perfectly plastic moment-
versus-rotation curve was assumed for the end spring, the first yielding load
of the end spring implies the load at which a plastic hinge forms in the spring.
Those first yielding loads of the end spring were always below the corresponding
computed maximum loads. The effects of residual stresses and initial deflections

are both quite insignificant. The strength of this type of column seems
to be greatly influenced by the yield stress level of the end spring instead of
the residual stresses and initial deflections. The experimental maximum load

MAXIMUM LOAD BY TEST\" IVIMÄIMUM LUAU DT

30 mm
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20
(kips)

I 0
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L/2

v (inch)
0.01 0.02

-0.1
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2 0 7

-0.2 -0.3 -0.4 -0.5
0 0.01 0.02 0.03 0.04 0.05 - 0 (radian)

Fig. 15. Effects of Residual Stresses and Initial Deflections. Problems 205-207.



174 T. USAMI - TH. V. GALAMBOS

is almost equal to the predicted maximum loads of problems 205 and 206 and
is slightly higher than the prediction of problem 207.

It will be concluded from the above discussion that the presence of the
assumed initial deflections has a relatively marked effect on the maximum
strength of the column under end condition (b). However, since initial deflections

were not measured in the test program, their effect will not be considered
in the subsequent numerical studies and only the effect of residual stresses

will be taken into consideration.

30

LOAD

20-
(kips)

ysmitnmn.

I 0
THEORETICAL

L/2 L/2 o-o-o
EXPERIMENTAL

d-d—a

u,v (inch)
0.02 0.04

-03 0.4 -05
0.06

-0.1 -0.2
- 0 (radian)

Fig. 16. Experimental and Theoretical Load-Deflection Curves. Column A-l-8.
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Fig. 17. Experimental and Theoretical Load-Deflection Curves. Column A-2-8.
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Comparison with Test Results

A total of 18 problems listed in Table 3 were analyzed to make comparison
with the test results. The number of divisions of the column length and the
numbers of grids used for partitioning the cross-section were both the same

as those in the previous elastic-plastic problems except for the unequal leg

angle columns with the long leg outstanding (marked LLO in Table 3), where

nx was increased to 36. The computed load versus midheight deformation

curves for column numbers A-l-8 and A-2-8 are, respectively, compared with
the corresponding test results in Figs. 16 and 17. The computed results are

generally in adequate agreement with the test results, especially in view of
the fact that the end conditions and the load eccentricities of the test columns

are somewhat uncertain and that initial deflections and initial twists of the
test columns are neglected in the theoretical calculations. The computed
maximum loads PMAX of 18 columns are tabulated in Table 3, together with
the non-dimensional values of PMax> PmaxI^y > where PY is the squash
load of the angle section. The calculated and measured values of maximum
loads differ by a maximum of 10.6 percent (column A-l-1) and the mean value
of the ratios is 0.997.

In order to compare the predictions with the test results of other columns
than the 18 columns shown above, the maximum strength curves were
determined from the calculated maximum loads. Figs. 18 and 19 illustrate those

maximum strength curves against the non-dimensional slenderness ratio A^. for
end conditions (a) and (b), respectively. There are three theoretical curve for
the equal-leg angle of A242 steel and the other two curves represent the
theoretical curves for the unequal leg angle with the long leg out and with the
short leg out, respectively. The non-dimensional slenderness ratio

TX * ' E

was used to represent the slenderness because the test columns with end
conditions (a) and (b) tended to deflect mainly in the directions of the outstanding
leg. Using the slenderness ratio Xx is convenient for plotting test results of
columns with different material properties. All the experimental maximum
loads for end conditions (a) and (b) are, respectively plotted in Figs. 18 and 19.

Fig. 19 also contains the plots of Foehl's test results [4]. He tested seven singleangle

columns of various cross-sections under an end condition very similar
to end condition (b). He also used structural Tee stubs (ST 6115.9 of ASTM
A36 steel) at the column ends, and axial load was applied through steel

cylinders, which were welded to the outside face of the flange of the structural
Tees in the direction of the Tee stems, to the test column ends. Since the stem
thickness of the Tee stubs is slightly different from that in the present tests

(i.e., 0.350in. whereas 0.428in. in the tests of this paper), the value of eccen-
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Fig. 19. Comparison of Theoretical and Experimental Maximum Loads, End Condition (b).

tricity ey is also slightly different even if the cross-sectional dimensions are
same. No adjustment was, however, made when Foehl's test results were
plotted in Fig. 19. Although some scatter of the test results is observed
especially in end condition (a), the correlation between theory and test is reasonably
good in both end conditions. Foehl's test results of 3 in. X 2 in. X 1/4in. angle
columns (marked for LLO and ¦ for SLO in Fig. 19) excellently agree with
the corresponding maximum strength curves. In end condition (a) the maximum
strength curves have marked difference depending on the shape and the
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attitude of angle, while in end condition (b) the difference becomes very small
and the maximum strength curve for 2 in. X 2 in. x 1/4 in. angle of A242 steel

may be used for the predictions of the other shapes of angle with reasonable

accuracy.

Conclusions

A numerical procedure has been presented for determining the elastic-
plastic behaviour of single-angle columns. These single-angle columns are
treated as non-sway end-restrained columns loaded eccentircally. The end
restraints are represented by two rotational Springs, one is an elastic-perfectly
spring and the other is an elastic spring, at both column ends. The effects of
residual stresses and initial deflections are allowed for in the procedure.
Numerical results in the elastic ränge are compared with results based on the
Solution of Trahair [8]. The results from the proposed numerical procedure
are generally in good agreement with Trahair's results. Two selected single-
angle columns equivalent to test columns with end conditions (a) and (b)
reported in [6], [8], [10] were solved to examine the effects of residual stresses,
initial deflections and their combination on the elastic-plastic behaviour of
those columns. It was found that the effects of residual stresses are quite
insignificant in both columns, but that the presence of the assumed initial
deflection, which is considered to be the severest Situation for the columns,
has a relatively marked effect on the maximum strength of the column with
end condition (b). A total of 18 single-angle columns were solved to make
comparisons with the test results described in reference [6], [8], [10], The
computed load-versus-deformation curves are generally in adequate agreement
with the test results. The computed and measured values of the column
strengths differ by a maximum of 10.6 percent, and the average value of the
ratios of the computed column strengths to the measured column strengths is
0.996. Maximum strength curves plotted against the non-dimensional slenderness

ratio A^., were developed for end conditions (a) and (b) columns in order
to make further comparisons with other test results. It is demonstrated that
the predictions from the maximum strength curves compare well with the
experimental maximum loads of the columns having a wide-ränge of slenderness

ratios.
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Appendix I. Nondimensional Form of the Equilibrium Equations and Boundary
Conditions

Equilibrium Equations

v" -v'0' +If^(U" -#„*) +tt* PV -^P(X0-SX)4>
L2

*
_ (34b)

(r^-rj-^PVj,r0*x

(f/»_f/»)+J^(F»_Fo»)+772^p?7 + 772^p(7o_jBj/)^
ly ry ry

J^(rv0-rv)-n*£put,
(34c)

V

P{X0-Ex)(V'-V0')-P(T0-Su)(U'-U'0) + (^—P^)(4>'-4>ö)

E - - - __
(34d)

riP,0X x
{A<j>"-(A</>"),}-P(X0-Ex) (V{- V/0) + P(Y0-EV)(Ui - U*I9)

Boundary Conditions

U0 V0 <f>0= U[l2 Vy2 ym 0, (35 a)

(l-BJVJ + il-BjIj&UZ-BJvj-lfrti)
7,2 _ _ (35b)

-z-r(l-Rx)rx()+nH\-Bx)PEy,'0 Lx

(1-By) U'0 + (1 - Rv)If- V0" - By U0

-
"

(P\ - - (35C)

(l-By)ry0 + ^l^-)(l-By)PEx,
L2
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W+( P-±p r2
#>

r2 p1 n -*¦ nr
(A«Ho-P(*o-E*) Vio + P(Y0-Ey) Ui0.

(35d)

It should be noted that primes in these equations are differentiation with
respect to Z instead of z.

Appendix II. Matrix [iV]

The expression for matrix [N] is shown for m 6, that is for 6 divisions of
half of the column length.

[N]

0 0 0 0 0 0 0
5 8 -1 0 0 0 0
4 16 4 0 0 0 0

4 16 9 8 -1 0 0

4 16 8 16 4 0 0

4 16 8 16 9 8 -1
4 16 8 16 8 16 4

Appendix III. Notation

The

A
\A\
[B]
C

{D}
E
{E}
^_x'^v
EX'EV

ex> ey

ex'ey
F
0
H
*Ax > J-A

-*x' ¦'¦y
-* -TII

following symbols are used in this paper.

Area of cross-section.
A matrix.
A matrix.
Centroid of a cross-section.
A vector.
Modulus of elasticity.
A vector.
Nondimensional eccentricity of load in the x and y direction.
Nondimensional equivalent eccentricity of load in the x and

y direction.
Eccentricity of load in the x and y direction.
Equivalent eccentricity in the x and y direction.
Function of Z.
Shear modulus.
Nondimensional interval length.

y, IB Moments of inertia defined in Fig. 9.

Moment of inertia about the x and y axis.
Product of inertia with respect to the x and y axes.
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KT St. Venant's torsion constant.

K,KR,Kj Cross-sectional constants defined by Eqs. (17), (18e) and (18f),
respectively.

L Effective column length.
ll912 Number of partitions of cross-section defined in Fig. 8.

lA, lB Length defined in Fig. 9.

MIx, MIy Initial moment about the x and y axis.

MQx,M0y End moment about the x and y axis.

M0x, M0y End moment about the x and y axis due to loading.
Mp Fully plastic moment of the web of end Tee stub.

Mx,My,Mz Moment about the x, y and z axis.
M{*\ M{*\ M^ External moment about the f, rj and £ axis.
m Number of intervals.
[N] Square matrices.

nx,n2 Number of partitions of cross-section defined in Fig. 8.

P Axial load.
PMAX Experimental maximum load, maximum strength of a column.
Px,Py,Pz Constants defined by Eq. (25b).
PY Axial load corresponding to yield stress level.

P_ P/Px-
{P} A vector of which component represents P at each pivotal point.
Pc Average value of components of {P}.
P^e) External axial force in the £ direction.
p Superscript specifying plastic strain component.
q Component of vector.
Rx, Ry Rotational stiffness of end spring about the x and y axis.
Rx, Ry End restraint parameters defined by Eqs. (23).

r0,rs Cross-sectional constants defined by Eqs. (18b) and (18a).

rx,rz Radius of gyration of angle section about the x and weak
prineipal axis.

S Shear center.

sgn Signum function.
t Thickness of an angle leg.
U Nondimensional deflection of the shear center in the x direction.
Uj Nondimensional initial deflection of the shear center in the x

direction.
Ui Deflection U at pivotal point i.
u Deflection of the shear center in the x direction.
Uj Initial deflection of the shear center in the x direction.
V Nondimensional deflection of the shear center in te y direction.
Vj Nondimensional initial deflection of the shear center in the y

direction.
Vi Deflection V at pivotal point i.
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v Deflection of the shear center in the y direction.
Vj Initial deflection of the shear center in the y direction.
X0 Nondimensional coordinate of the shear center.
x Coordinate of any point on a cross-section.

x0 Coordinate of the shear center.
x' Coordinate of a point in an initially deformed position.
Y0 Nondimensional coordinate of the shear center.

y Coordinate of any point on a cross-section.

y0 Coordinate of the shear center.
y' Coordinate of a point in an initially deformed position.
Z Nondimensional centroidal longitudinal axis.
z Centroidal longitudinal axis.

a1?a2 Residual stress parameters defined in Fig. 13.

ßx,ß2 Residual stress parameters defined in Fig. 13.

ßx>ßy Cross-sectional constants defined by Eqs. (18c) and (18d),
respectively.

P,Px,Py Cross-sectional constants defined by Eqs. (11).
S Prefix specifying increment.
80 Maximum initial deflection.
e, e* Normal strain in the z direction.
6C,€* Compressive normal strain on the centroid.
eF Yield strain.
{ec} A vector of which component represents ec at each pivotaFpoint.
£ Centroidal longitudinal axis of a deformed member.

rj Coordinate of a point in a deformed cross-section.
Qox> @oy End slope of a column about the x and y axis.
6p End rotation of end Tee web corresponding to Mp.
A Cross-sectional constant defined by Eq. (18g).
A^. Nondimensional slenderness ratio about the x axis.

fl Tolerance ratio in convergence tests.

| Coordinate of a point in a deformed cross-section.

2 Summation.
a, a* Normal stress in the z direction.

oj Initial stress.

gr Residual stress.

oY Static yield stress level.

0X,0* Curvature in the z-x plane.
0^,0* Curvature in the z-y plane.
cf> Angle of twist.
<j)i Angle of twist at a pivotal point i.
{x} A vector.
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Summary

A numerical procedure for determining the elastic-plastic behaviour of
single-angle columns loaded eccentrically is presented. The analysis allows for
the effects of biaxial bending, twisting and end restraints. Residual stresses
and initial deflections of the columns are accounted for in the procedure. The
numerical results are compared with test results of single angle columns, and
good agreement is generally observed.

Resume

On presente un procede numerique pour la determination du comportement
elastique-plastique des colonnes en cornieres chargees excentriquement. L'analyse

comprend l'influence de la flexion biaxiale, les deformations torsionnelles
et le serrage des extremites des colonnes. Le procede comprend egalement
l'effet des tensions residuelles et des courbures initiales. Les resultats numeriques

compares avec les resultats experimentaux ont demontre une bonne
concordance.
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Zusammenfassung

Es wird ein numerisches Verfahren für die Berechnung des elastisch-plastischen

Bereiches und der Traglast von aussermittig belasteten Stahlstützen
aus einzelnen Winkelprofilen vorgelegt. Die Berechnung berücksichtigt den
Einfluss der zweiachsigen Biegung, die Torsionsverdrillung und die Einspan-
nung der Stabenden sowie die Eigenspannungen und die Vorkrümmungen der
Stabachse. Die Resultate der Berechnung werden mit Versuchsergebnissen
verglichen, wobei eine allgemein gute Übereinstimmung von Theorie und
Versuch beobachtet wurde.
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