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Eccentrically Loaded Single Angle Columns
Colonnes composées de corniéres chargées excentriquement

Awussermattig belastete Stahlstiitzen aus einzelnen Winkelprofilen

TSUTOMU USAMI THEODORE V. GALAMBOS
Lecturer of Civil Engrg., University of M. ASCE, Prof. of Civil Engrg., Washing-
Gifu, Gifu, Japan; formerly Research ton Univ., St. Louis, Mo., U.S.A.
Assistant, Washington Univ., St. Louis,
Mo., U.S.A.
Introduction

A design method for single angle compression members used as web mem-
bers in long span steel joists has been reported in reference [6]1) based on a
series of column tests of steel angles. This paper is to provide the theoretical
basis to the test results. The single angle compression members are treated
as end-restrained columns with biaxially eccentric load, and a method of
numerical analysis for determining the elastic-plastic behavior of such columns
is presented. The analysis allows for the effects of residual stresses and initial
deflections of columns. A comprehensive review has been reported by CHEN
and SANTATHADOPORN [2] on literatures dealing with inelastic behavior of
biaxially loaded columns, but it seems that no work has previously been made
on the subject reported in this paper. Recently TRAHAIR [9] published a general
method of elastic analysis of restrained columns loaded eccentrically with
respect to both principal axes of the end cross sections, and compared its
solutions with the test results of single angle columns [8]. Trahair’s method of
analysis is extended in this paper to allow for the inelastic effects of columns.

Shown in Fig. 1 is a typical joint of a long span steel joist where single
angle members are used as its web members. The restraining member repre-
sents a gusset plate or a web plate of chord member (structural Tee, for
example). Such a single angle compression member is idealized as shown in

1) Numericals in parentheses refer to corresponding items in the Appendix IV; Refe-
rences.
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Fig. 2. Idealized Single Angle Column.

Fig. 3. End Cross Section of Angle Column.

Figs. 2 and 3 for the purpose of subsequent analysis. The column is loaded by
an axial thrust P with eccentricities e, and e,. The axes x and y are centroidal
axes of the angle (its centroid is denoted by C), and are, respectively, parallel
to the connected leg and the outstanding leg of the angle. The axis z is the
centroidal longitudinal axis of the column. The end restraints, which are
provided by the rotational stiffnesses of the restraining member in its plane
and out of its plane, are, respectively, replaced by the equivalent rotational
springs of stiffnesses R, and E,.

Assumptions and Conditions

The following assumptions are made in the subsequent analysis:

1. A second order analysis is performed, i.e., equilibrium is formulated on the
deformed column.

2. The column is prismatic and of a thin-walled angle cross-section (Fig. 2).

3. The stress-strain diagram of the member is elastic-perfectly plastic (Fig. 4).
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Yielding is initiated by normal stress only.

The axial thrust P, acting at the column ends with the eccentricities e,
and e, as shown in Figs. 2 and 3, retains its original direction throughout
the loading history.
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of the Column Material. Rotational Springs.

6.

10.

The column ends are prevented both from translating horizontally and
from twisting, and the end rotations are restrained by the rotational springs
in such positions and directions as shown in Figs. 2 and 3.

. The end moment versus end rotation characteristics of the rotational springs

about the x and y axes are, respectively, assumed to be as shown in Figs.
5a and 5b. The end moments M,, and M,, about the x and y axes are,
respectively, related to the corresponding end rotations 6,, and 6,, about
these axes by
Mo.z:RavOO;w (la‘)
M,,=R,b,,, (1b)

in which the stiffnesses K, and R, are, respectively, given by the secant
moduli of the M,,—6,, and M,, —6,, relations.

The warping strains due to non-uniform torsion are ignored [5].

The center of twist of the cross-section of the column is coincident with
the shear center regardless of the elastic and inelastic range of the column.
St. Venant torsional rigidity retains its original elastic value in the inelastic
range. The validity of assumption 10 is discussed in reference [10].

The following specific conditions are furthermore allowed for in the analysis:

. Cooling residual stresses.
. Initial displacements symmetrical with respect to the column center.
. Axial stresses locked in the column due to initial displacements of the

column.
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The cooling residual stress, oy are assumed to be uniform along the whole
length of the column for each fiber and must satisfy the following conditions:

A 4 4 '

Initial displacements are assumed to exist in the x and y directions, being,
respectively, denoted by u; and v;, and they are assumed to be zero at the
column ends. No initial twist is considered. Axial stresses o; due to the initial
displacements are induced in the column when the end slopes of the initial
displacements are not zero as well as when the column ends are not allowed
to rotate freely due to the end restraints. Since no restraint to vertical move-
ment is assumed, o; will not produce a longitudinal resultant force and thus

ga,dA =0. (3a)

The stresses o;, however, produce bending moments abcut the x and y axes

which are expressed by
M, =foyydA, (3b)
A

Mly:_.fo'ldi‘ | (30)
A

These bending moments are stored in the rotational springs as initial restraining
moments, and are also locked in the column itself. Finally it is assumed that
the algebraic sum of o, and o; does not exceed the yield stress of the material
anywhere in the column.

Mathematical Formulation

Internal Axial Force and Moments

Let Fig. 6 show an angle member of unit length loaded by axial force P*
acting at the centroid and by three components of moments, M¥, M* and
M. These forces will produce axial strains and shear strains in the member.
Because the warping strains due to non-uniform torsion are ignored and
because the contribution of torsional shear stresses to yielding is also neglected,
the response of the element to the moment M} may be treated separately.
Accordingly, an axial strain ¢* of a point in the member may be written as

* =~ —PratdFy+ 4+ (4)
in which € denotes the axial compressive strain at the centroid, @} curvature
in the z-z plane, @* curvature in the y-z plane and £ the modulus of elasticity.
When the applied force and moments change a small amount the axial strain
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Fig. 6. Angle Member Subjected
to Axial Force and Moments.

will also undergo a certain change which is expressed by
8€=—8€c—8(pxx+8¢>yy, (5)

where b€, d¢,, 3P, and 6P, denote increments of €*, ¥, PF and P}, respec-
tively. The axial strain * and its increment 3¢ may be resolved into the
elastic strain component, which is related to the corresponding stress by
Hook’s law, and the plastic strain component:

sk

e* = %+e*p, (6a)
o de
b€=*E+8€p, (6b)

in which the quantities with superscript p indicate the plastic strain compo-
nents, and o* and 6o denote the axial stresses corresponding to €* and de,
respectively. The plastic strain component 8e? is expressed by

0e? = 0, when |€*+3€|§ey,
deP = (e*+8€)—epsgn(e*+08e), when |e*|Zep and |e*+8e|2 ey,
8€? =8¢, Wwhen |e*|Zey and |e¥*+8¢|2ey,

3e? =0, when |e*|=|e*+5¢,

(7)

in which e, denotes the yield strain of the material and sgn denotes the
signum function (i.e., sgnx=1 for x>0, sgnx= —1 for x <0 and sgn x=0 for
x=0). The plastic strain component e*? is expressed by a sum of the plastic
strains & € up to the loading stage P*, M} and M}, that is

€¥P = > 5eP, (8)

in which > denotes a summation of 8P till the applied force and moments
reach P*, M} and M}. From Eqs. (4), (5) and (6), the total axial stress o of
a point in the member after the change of the applied force and moments is
obtained as
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oc=0%+00=KE(—¢,—D,+P,y)+op+0;— E(e*P +3¢P), (9)

where ¢, = ¢¥+8¢,, P, =D} +8P, and @, =DP¥+5P,, and they represent
the corresponding quantities after the change of the applied force and moments.
The axial stress o produces the following cross-sectional forces:

P=—fodd, M,=[oydd, M,=—[ocxdd.
A A A

Substituting Eq. (9) into the above equations, and considering Egs. (2)
and (3) and the fact that the x and y axes are centroidal axes, these forces
become equal to:

P =E[Ade+T7, » (10a)

M.vc: E[_Ia:y@m+lw¢y_rx]+M1x: (IOb)
Mz/=E[Iy(pz—lxy¢y+ry]_MIY’ (100)
in which
I, =[y%*dA, I, =[x?dA, I, =fzxydd,
A A A
I' =I'*+5T, I'* =[e*rdA4, 3I' =[8ePdA,
A A

(11)
I,=T;+3T,,  Tj=[c?zdd, 3T, =[sewdd,

[,=T%+8T,,  I'*=[e*rydd, 8I,=[serydd.
A A

Owing to assumptions 4, 8 and 10, the moment M, is independent of the
axial stress o and is given by
M,=GK,¢, (10d)

where the prime indicates differentiation with respect to the z-coordinate.
This is the same expression as the elastic St. Venant’s torsion.

Eaxternal Axial Force and Moments

Fig. 7 shows the coordinate systems used in the following derivations. The
x-y-z coordinate system is the same as defined in Fig. 2, and is fixed in space.
The centroidal axes of the initially displaced cross-sections are denoted by the
x" and y’ axes. The 2’ and y’ axes are, respectively, parallel to the connected
leg and the outstanding leg of the angle column. The initial deflections u; and
vy are measured as shown in the figures. The £, » and { axes are used to denote
the displaced «’, ¥’ and z axes. The ¢ and 7 axes are centroidal axes and are
parallel to the connected leg and the outstanding leg of the angle, respectively.
The { axis is tangent to the displaced centroidal longitudinal axis of the column.
The displacements and angle of twist of the shear center S due to loading are
denoted by u, v and ¢; v and v are the displacements in the z’ and ¥’ direc-
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Fig. 7. Coordinate Systems and Sign Convention
for External Force and Moments.

tions, and ¢ is the angle of twist about the z-axis. Because of the symmetrical
nature of the column dimensions and of loading, the deformed configuration
of the column is symmetrical with respect to the column center. The end
restraining moments, which are induced by virtue of the rotational springs,
are also alike at both ends. Each of the restraining moments is made up of
two components: one is due to loading and the other is due to the fact that
the end slopes of the initially deformed column are not usually zero. These
latter restraining moments are already defined as M, and M;, in Egs. (3a)
and (3Db), respectively. The restraining moments about the z and y axes due
to load are denoted by M,, and M, oy> respectively, which are expressed in
terms of the corresponding stiffness of spring and end slope at the location
of the rotational springs (see Fig. 3) as follows:

T ’ b ’
M()x:_Ra:(UO-?zﬁf’O): (12a)

M,, = R,u, (12b)

where the subscript 0 refers to the column end and b, denotes the length of
the connected leg. Similar relations are obtained for the initial restraining
moments M;, and M;, as follows:

MIw::_RxU}O (133’)
My, = Ruj, (13D)

Yy
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Equivalent eccentricities are defined by the following equations:

_ M, M R,(,, ., by,

ey:ey_ PI:IZ_ };]$=ey+———P (Uo+vlo——22—¢o), (143;)
M M, R

ey = €, t-p! + 5t = e, + Fugtuz), (14b)

where €, and €, are the equivalent eccentricities corresponding to ¢, and e,
respectively. By using the equivalent eccentricities in place of the real eccen-
tricities of the axial thrust P, the column may be analyzed as if both ends
were flexurally pinned and as if the axial thrust P were applied to the column
with the eccentricities &, and g,. The expressions for the external axial force
and moments of the “replaced’’ column in the presence of initial displacements
have been derived by CuLvER [3], and they are equal to:

P =P, (15a)
MY = P{(v+v,)—5,— 2.) b}, (15b)
MP = — P{(w+uy) —eac+ Yo—€,) ¢}, . (15¢)
MY = P(yo—8,) (W +up) = P(g—2,) (' +o) - K¢',  (15d)

where P9, M9, M and M represent external axial force and external
moments about the ¢, y and { axes, respectively, and z, and y, are coordinates
of the shear center in the z-y coordinate system. The quantity K is defined by

K = Joll@—w)*+(y—yo?}d4, (16)

where o is given in Fig. 9. Substituting the expressions for o into Eq. (16) and
using Eqgs. (10b) and (10¢) with the approximation

M,~—-Pe, and M, ~Pe,

the following expression for K is obtained:

K *(PT§+EA)+ER+KTI, (17)
where Tg = 7‘%+{(éx_ J‘éﬁ/) _ %/( MIGD)}BU
; (18a)
M 1 M
+{(é, + 22| — “’(é - “’)}Bx,
Y P -Iy
r3 =ad+yi+ I”Z I”, (18b)
. [y (@2 +y?)d4 .
18.70 —1 Iiy/Ia:Iy{ Iw ~ 2 —ZxOI }’ (18€)
1 Jx(x2+y2)dA J
B { —2z,—2y —ﬂ!} (18d)
Y 1_‘[2y/IxI Iy 0 0 Iy
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Kp=[op@®+y?dA, (18e)
A
K, =Af01{(x—x0)2+(y—-y0)2}dA, , (181)
A =4*%+841, ; (18¢g)
A*z_lmzlyp*_(ﬁ /31/ +‘)x0)F*
(18h)
- (B +2y0)1**+1e*p (@ +y?)d4,
I, +1
sa=—"tetlusp (,8 ,ey +2x0)3r
(181)

._(By_ﬁw—llﬁyi’+2y0)8fy+£8€p(xz+y2)dA.

Equilibrium Equations
Since small deformations are assumed, the curvatures in the ¢-( plane,
®,, and in the 7-{ plane, @, , are expressed by
Dy =D, ~=u" (19a)
(Dn___@yg—v . (19Db)

Equating Eqgs. (10a)—(10c) to Eqgs. (15a)—(15¢), respectively and using Egs.
(17) and (19) yield the following equilibrium equations:

P = EA(ec—l—-]:—), (20a)

A
Elv+EIl  uw+Pv—-P(xy—e,)p=Pée,—Pv,+M;,, —EI,, (20b)
Elvw+EIl,v"+Pu+P(y,—¢,)$=Pe,—Pu;—~M;,—EI',. (20c)

The fourth equilibrium equation may be obtained by equating Eq. (10d) to
Eq. (15d) and by differentiating both sides once with respect to z, that is.

P(xg—2,)v" — P (yo—28,)u" +(GKyp+ Kp+ K, —Pr?)

” 20d
BA" — P (wy—2,)v) + P lyo—2,) ul. (20d)

In deriving Eq. (20d), an approximation

d I3 14

S (BA$)=EA44

was used. The boundary conditions for the differential Eqs. (20b)—(20d) are
Uy = Vg = g = UL = VL = Ppp =0, (21)

where L/2 refers to the column center.
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Method of Numerical Analysis

Modification of Equilibrium Equations
Eqs. (20b)—(20d) can be rewritten as
EI,(w—vg)+EI,, (u—uy)+Pv—P(xy—e,)¢ = E(Txo—Fx)—PvI, (22a)
El,(w—ug)+EIl, v —vg)+Pu+P(y,—e,)é = Ey,—T,)—Pu;, (22b)
P (@y—2,) (v" =) = P (yo—8,) (v —ug) + (GKp+ K+ K; = P13) ("~ 1) =
E{A¢" —(A¢")o} — P (wy— ;) (v —v10) + P (4o —&,) us — 7o) - (22c)

These equations are identically satisfied at the column ends. Introducing new
notations, K, and R,, defined by

R. EI
R = z_ z 23a
*=1_E L (23a)
R, EI
and R, = L B — 23b
""1-R, L (23b)

and considering Eqs. (13) and (14), the equilibrium Egs. (20b)—(20d) at the
column ends become

= = = B by ,,
(1= ) BLof+(1— ) B Lyug - B, 272 (v~ 34 =

L
(1= R,) Pe,—(1—R,) E T, e
E~ ” D ” D EI ’
(1—R)EI,uj+(1—R)E I, vj—R,—2u;=
(1—R,)Pe,—(1—R,)ET,,, | (24D)
P (v—2,) vy — P (yo—&,)ug + (G Kyp+Kp+K;— Pr2)d; = (240)

E(/195”)0—P(xo"'éx)”}’o'*"P(?/o_éy)u}’o:

where L denotes the length of the column. These equations give additional
boundary conditions for solving Eqs. (22). For numerical analysis it is con-
venient to express Eqgs. (22) and (24) in non-dimensional form. This may be
done by using the notations

{Ua V: UI7VIJX0>Y0aExaE—y>Ex7 Ey} =

1 (25a)
;;{u’v?ul’vlﬂxo’yO:é;p>éy,ew>ey}a
2 7 EI,

m B 1
B B

_ GK,+Kp+K; 5

P
Z P P = (25b)

z 2
U

The resulting equations are shown in Appendix I.
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Determination of Cross-Sectional Properties

In order to determine a number of cross-sectional properties defined in the
foregoing sections, an angle section was divided into many small elements of
area as shown in Fig. 8; the outstanding leg including the corner area is equally

(1,.”"* —(1,1)
/—OUTSTANDING
LEG
- c
—(QZOI) (|"|)
U T
T
T
(Rl.nz)“f( 4 ? i i
(2,.n,) (I.n,)
(l.nl) 22 =
y

Fig. 8. Column Cross Section Showing Grid Networks.

divided into a total of [, columns and %, rows and the connected leg /, columns
and n, rows. When determining the cross-sectional properties, it is assumed
that the strains and coordinates of an element are represented by those at its
centroid.

Fimte Integral Representation

The differential Eqs. (34) under the boundary conditions (35) are solved
numerically by the finite integral method [1]. The finite integral method is a
numerical technique similar to the finite difference method except that
numerical integrations are utilized instead of numerical differentiations. Let
the half-length of the column be divided into m equal intervals and let the
pivotal points + be named 0, 1, ..., m from the column end. In the present
analysis, the quantities V;", U; and ¢; at each pivotal point ¢ are selected as
" unknown quantities, which makes a total of 3 (m + 1) unknowns. By integrating
V" to obtain V;" and V,, and by determining the integration constants from
Eqgs. (35a), one can obtain

1H 1/2 1H 1H 1/2 )
Vi =[VydZ—[V/dZ, V,=[ [V/dZdZ—iH[V/dZdZ,  (26)
0 0 0 0 0

in which H denotes the non-dimensional interval length, which is equal to
1/2m. Identical relations as Eqs. (26) are obtained for Uj, U; and U,; and
for ¢;, ¢ and ¢,. BROWN and TrRAHAIR [1] have given the following numerical
integration formulas:
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H iH

{(F'} = IN{F"} for £ =/ dZ, G=0,...,m), (27)
H?2 ‘ iH iH

(F} =g (NUNWFY) for Fo=[ [F/dZdZ,  (i=0....m), (28)

where {F"}, {F'} and {F} are, respectively, vectors of which components are
E", F' and F; and the matrix [N] is a square matrix of size (m + 1) which is
given in Appendix II. Applying these formulas to Eqs. (26), the relations
between {V'} and {V"} and between {V} and {V"} are obtained, in which {V},
{V'} and {V"} are vectors of which components are, respectively, V;, V;" and
V. (¢=0,1, ... m). By using these relations, the equilibrium Eqs. (34b)—(34d)
and the corresponding boundary conditions (35b)—(35d) may be reduced to
the following 3 (m+1) simultaneously equations with respect to V", U; and
;s (2=0,1,...m):
[A1{x} + P[BI{x} = {D}+ P{E}, (29)

where {x} is a vector whose components are 3 (m+ 1) unknown quantities V",
U7 and ¢; (¢t=0,...,m) and [4] and [B] are square matrices of size 3 (m + 1).
The quantities related to the inelastic effects of the column, such as I',, I,
and /1, are assembled in the vector {D}. The vector { £} represents the quantities
with end moments due to eccentrical loading and with initial deflections.

Computational Procedure

The set of simultaneous equations (29) cannot be solved directly because
the vector {D} is an unknown function of {x}. Furthermore the equivalent
eccentricities ¢, and e, in Egs. (22) or E—’gc and E_y in Eqgs. (34) are functions of
end slope and the stiffness, B, or R,, of the rotational spring may vary due
to the yielding of the spring, and so the matrices [A], [B] and {£} are also
unknown functions of {x}. However, to avoid a time consuming trial and
correction procedure involved in determining the matrices, the equivalent
eccentricities and the rotational stiffness are assumed to be constant during
each increment of {x} so that those matrices [4], [B] and {Z} are specified by
‘the previously determined {y}. By assuming this, Eqgs. (29) can be directly
solved in the elastic range of the column except for the first step of loading,
where the values of ¢, and €, are still unknown. In the computational procedure
the values of e, and e, were temporarily substituted for the values of €, and
e, , respectively, during the first step of loading, and after the solution {x} and
consequently €, and €, were obtained from Egs. (29) and (14) the computations
was again performed at the same load with the previously determined value
of ¢, and €,. The computational procedure after the column has entered the
inelastic range is outlined below. In the statements, quantities with the super-
script * represent the corresponding converged quantities from the previous
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calculation and quantities with the prefix 8 represent the corresponding
increments from the previously converged values. These notations are con-
sistent with those previously used. '

1. Determine matrices [A*], [B*], {D*} and {£*} from {x*}.
2. Assume trial values of {8 x} and {8¢,}, and determine trial values of {y} and
{e.}. The quantities {8 ¢,} and {e,} are determined at each pivotal point, and

so they are, respectively, vectors of size (m +1).
3. Determine {8 D} and consequently {D} from {D}={D*}+{3 D}.

4. Determine {13} = {7?} from Kq. (34a) and average the values P to obtain

P,. The quantity P is determined at each pivotal point, and so {P} is a
vector of size (m+1). The quantity P, is used as a control value for non-
dimensional axial thrust.

5. Determine the corrections of the assumed values of {8 x} and {5¢;} from
Eqgs. (29) and (34a) by the Newton-Raphson method [10].

6. Check if the corrections of {3 x} and {8 ¢} satisfy the following rule of con-
vergence:

A

!8(89)\ ",

q

where ¢ denotes a value from {y} and {¢.}, 3 (6¢) denotes the corresponding
correction determined in computational step 5, and u represents the tolerance
tatio of convergence. The value of p in this analysis is 0.003 for the conver-
gence tests of {V"} and {e.}, and is 0.005 for those of {U"} and {¢"}. If above
rule is not satisfied, add the corrections to the corresponding trial values
of {8 x} and {d €.} to obtain the corrected values of {3 x} and {5 ¢.} and repeat
the procedure 2 through 6 with the corrected values of {§x} and {S¢,} as
the new trial values.
7. Repeat steps 1 through 6 until the desired displacement is obtained.

Numerical Studies

In the subsequent articles, the results of numerical analysis for single-angle
test columns, the details of which are reported elsewhere [6], [8], [10], are
described. The tests were performed on equal and unequal leg steel angle
columns (2in. x 2in. X 1/4in. and 3in.x 2in. X 1/4in. angles) whose ends were
welded to web plates of structural Tee stubs (ST 611 7.5 of 8 in. long) to pro-
vide end restrains, such as shown in Fig. 1. The columns were loaded eccentri-
cally through the webs of the Tee stubs with three different end bearing con-
ditions (a), (b) and (c). In end condition (a), the axial load was directly applied
on the flange surfaces of the end Tee stubs, and in end conditions (b) and (c)
knife edge ends were used with the loading lines placed on the middle plane
of the webs of the end Tee stubs and on the y axis, respectively.
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In applying the theoretical analysis to the single-angle test columns, it is
necessary to evaluate the end restraint parameters R, and Ey. For the purpose,
the idealized column end assemblies shown in Fig. 9 are utilized in the case
of end condition (a). These assemblies are assumed to be cantilever beams
with cross-sections as indicated on the far right sides of Fig. 9. It is also assumed

ﬂ Iax
| SEITTIVVTIV IV I
1.5" ~ £y =1.5"
1 1 . \ ‘
B *2.25 -— ,
4.5 B, U’——I'
] ’\) 0xX ) 8
=!8
0.425'——0_1/_ Box
Mox
ACTUAL MODEL
————— NEUTRAL
(a) SPRING Ry RIS

i
—[E t,u,-s.-rs'x ==
: N/

J Uo, Tay

(LS Moy Ooy

ACTUAL MODEL

(b) SPRING Ry

Fig. 9. Models for Determining the End Spring Stiffnesses.

that the moment-versus-rotation characteristics of these assemblies are
uncoupled, and that the maximum value of the moment M, is equal to the
fully plastic moment M ,, of the Tee stem alone about its weak principal axis.
Thus the moment-versus-rotation characteristics of the assemblies can be
determined as

1

0x __ - -
MOx _ 1 Hp .
Boz - LJEI  +1lg/E Iy 6,,’ when GOxZBp (30D)
and Moy _ EI‘“’, (30¢)
BOy lA+lB

where the lengths [, and I are defined in Fig. 9, I ,, and I, are, respectively,
the moments of inertia of the Tee stem alone about the weak and strong
principal axes, I is the moment of inertia of the Tee stem with the angle



ECCENTRICALLY LOADED SINGLE ANGLE COLUMNS 167

about the centroidal axis shown in Fig. 9a, and 6, is the end rotation of the
assembly (a) at My, =M, namely

l l
6, =M ( 4y ! ) 31
r=M\gr T EL, (31)
From Eqgs. (1), (23) and (30), the end restraint parameters Ex and R_y are
given by
— 1

sz 1 la I\ I’ when O§00$—_<=010’ (B28,)
Hrm+ 1) T

_ 1

R, = L G L when 6,26, (32b)
e+ BT o

— 1

and R, = ] la+ls I’ (5%0)

+ T L

The quantity 0,, is equivalent to the absolute value of the end slope of the
column at the location of the springs (see Fig. 3), that is

’ ’ b2 ’

b0 = ”0""’310‘??{’0

In the case of end condition (b) the knife edges are placed parallel with
the plane of the Tee stems so that the value of R, is equal to zero and Ey is
given by the same expression as Eq. (32¢). In end condition (¢) the knife edges
are perpendicular to the plane of the Tee stems, and so the value of Ey is
zero and Rx is given by the same expressions as Eqgs. (32a) and (32b).

The computational procedure described previously was programmed in the
FORTRAN IV language for an electronic digital computer. The IBM 360/50
computer located at the Sever Institute of Technology of Washington Uni-
versity was utilized for the numerical studies.

Comparison with Trahair’s Elastic Solutions

Before the computer program was utilized for the elastic-plastic analysis
of angle columns, sufficient runs were made to study elastic column behaviour
and to compare the results with elastic solutions determined by TRAHAIR [8],
[9]. Three problems shown in Table 1 are selected as the examples for the
comparison. The angle columns for the three problems correspond to two of
the test columns, and columns 2 and 3 in Table 1 show the corresponding test
column numbers and end conditions. The cross-section of the angle is 2in. x
2in. X1/ in. and the material is ASTM A 242 steel. The numbers of grids used for
the cross-section were I, = 3,7, = 24,1, = 21 and n, = 3, and the number of divisions
of the column length, m, was 6 throughout the problems. The values of the
end restraint parameter R, were determined from a simple model shown
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Table 1. Data for Problems 101-103 (Elastic Analysis)

Test Column Properties?!) End Restraint
(Ref. 6) Parameters
Problem
Number ind Lenath. T I
n ength, L, o =
Number Condition in inches r, By By
(1) (2) (3) (4) (5) (6) (7)
101 A-2-8 b 34.9 89.5 0 0.9999
102 A-2-8 b 34.9 89.5 0 1.0
103 A-1-8 a 33.9 86.8 | 0.757 0.9999

1) 2-in. X 2-in. X 1/4-in. angle of ASTM A 242 steel
E = 29.4 x 10% ksi, ey =—0.41 in., e, = 0.804 in.

before, while the value of Ey, 0.9999, is the value used by Trahair for an
approximate fixed end condition along the x axis. In problem 102, the real
fixed end condition Ry =1 was used for comparison. Neither initial deflections
nor residual stresses were considered in the elastic problems.

The computed load versus mid-height deflection curves of problems 101
and 102 are presented in Fig. 10. The column dimensions in both problems
are identical except for the assumed value of R—y. When E, is equal to 1.0, the
equivalent eccentricity e, defined by Eq. (14b) cannot be used because the
value of R, becomes infinite. In such case the value of ¢, was automatically
set to zero in the computer program because eccentricity of load does not
make any sense in the direction of the fixed end and it is always equivalent
to zero. Trahair’s solutions given in reference [8] were converted into the
deformations wu,,, v, and ¢, and they are plotted in the same figure at

25

20
LOAD
P
(kips) |5
P
10+
. - PROBLEM 101
Ls2 L2 ... PROBLEM 102
. o Vv ‘
A U TRAHAIR (8)
o g
o] I | 1 ' : . L X

u,v {inch) — 0 -0.1 -02 -03 -04 -0.5 -0.6
0 002 0.04 006 — @ (radian)

Fig. 10. Comparison of Elastic Solutions. Problems 101 and 102.
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ordinates corresponding to 5, 10, 15, 20 and 22 kips. The agreement between
the results of problem 101 and the Trahais’s solutions is quite reasonable,
whereas the results of problem 102 are very much different from the others
in the torsional deformation ¢; . The reason may be well explained when the
difference of the equivalent eccentricity €, between the two problems is eval-
uated. Fig. 12a shows the variations of the values of ¢, and 72 in problem 101.
The quantity 72 is defined in Eq. (18a), and it is a function of the equivalent
eccentricities ¢, and €,. The equivalent eccentricity e, is, in this case, always
equal to the real eccentricity e, because the rotational stiffness B, (or R) is
zero. The quantity €, and 72 are undetermined at loads less than 5 kips because
the first loading step was 5 kips. Now, from Eq. (20d) with K ,=K;=A=v] =
u; =0, the following relation may be obtained:

¢)__ —P(xﬂ_éx)v+P(yO_éy)u
= GK,—Pr? !

(33)

because of the boundary conditions 21. This is one of the equilibrium equations
which the solutions u, v and ¢ must satisfy. Since the deflection u, is very
small compared with the deflection v, (see Fig. 10), the second term of the
numerator of Eq. (33) may be neglected when the value of ¢, is evaluated.
The magnitude of the denominator of Eq. (33) will not be very much different
between problems 101 and 102 because the value of G K ; is very large compared
with that of P2 within the value of P under consideration. Thus the difference
between the magnitudes of ¢, for the two problems will be dependent on the
difference between the values of the first term of the numerator of Eq. (33)
and, therefore, on the difference between the values of the quantity (x,—€,)
because the deflections v, , are almost identical in both problems (see Fig. 10).
The value of &, is identically zero in problem 102, and so xy—&,=x,=0.46 n.
in problem 102. On the other hand, in problem 101, the value of &, varies
with P as shown in Fig. 12a. Take P =15 kips, for instance, the value of €,/e,
is about 1.4 and the value of ¢, is —0.41in., and so x,—€,=0.46 —1.4x(—0.41)
=1.03 in. in problem 101. Therefore the value of ¢, in problem 101 will be
1.03/0.46 = 2.5 times greater than that in problem 102 at load P =15 kips. The
conclusion quite agrees with the results shown in Fig. 10. Thus it has been
confirmed that the difference of the results of ¢;, between the two problems
is mainly due to the difference of the values of ¢,. In a real column it would
be impossible to realize a perfectly fixed end condition (i.e., B,=1), and so
the results of problem 101 will be more realistic than those of problem 102.
The computed load versus mid-height deflection curves for problem 103
are compared with Trahair’s solutions in Fig. 11, and the corresponding load
versus ¢,, ¢, and r2 curves are presented in Fig. 12b. As the axial thrust P
becomes large, the deformations v;, and ¢, determined by Trahair become
slightly different from those obtained in the present numerical analysis. This
may be due to the difference of the assumed value of E,, the numerical value
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Fig. 11. Compa.risdn of Elastic Solutions. Problem 103.
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Fig. 12. Load Versus ez, ¢y and 7,2 Curves.

of which is not given in Trahair’s paper. The ratio ¢,/e, is, in this case, less
than 1.0 as shown in Fig. 12b and so the equivalent eccentricity €, is smaller
in magnitude than the real eccentricity.
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Effects of Restdual Stresses and Initial Deflections

Two columns were selected to examine the effects of residual stresses and
initial deflections on the elastic-plastic behaviour of the columns. Those
columns are equivalent to test columns A-2-8 and A-1-8, which were, respec-
tively, tested under end conditions (b) and (a). Seven problems shown in
Table 2 were run to analyze those columns under various combinations of
presence of residual stresses and initial deflections. Problems 201 through 204
are for test column A-2-8, and Problems 205 through 207 for test column
A-1-8. The values of R, and Ey for each column were determined as mentioned
before. The number of divisions of the column length, m, was 6, and the

Table 2. Effects of Residual Stresses and Initial Deflections

‘ Computed First .
. o Maximum Load,
Prob- | Resid- | Initial Yielding Load, Puyax, in kips Test Column Pro-
lem ual Deflec- in kips perties?)
Number| Stress tion (Ref. 6)
' Angle Spring |Computed| Test
(1) (2) (3) (4) (5) (6) (7) (8)
201 None None 16.0 — 18.2
1 .t A2
202 Yes None 12.8 — 17.4 Co_umn ”Numb_ A-2-8
16.9 L=34.9", L|r,=89.5,
203 None Yes 13.6 — 16.2 7 B —0.9982
204 | Yes | Yes 11.0 — 15.4 z=0, By=0.998%)
205 None | None 27.0 24.7 28.91 Column Numb.: A-1-8
206 Yes None | 22.0 23.0 28.89 29.0 | L=33.9" L|r,=86.8,
207 Yes Yes 23.0 23.0 27.90 R;=0.757, R,=0.9982)

1) 2-in. X 2-in. X 1/4-in. angle of ASTM A 242 steel,
E =29.4x10% ksi, oy = 50.9 ksi, e, =—0.41 in., ey = 0.804 in.
2) Elastic Value.

B0y

)
|

o (b

Nl

1
© A0
2R
o, (b, 1)

Fig. 13. Assumed Residual Stress Pattern.
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numbers of grids for the cross-section were same as for the previous elastic
analysis. The residual stress pattern of an angle cross-section was assumed to
be as shown in Flg 13. The four non-dimensional parameters o, «,, 8; and B,
are sufficient to specify the whole pattern owing to the self-equilibrating con-
ditions of residual stresses given by Eqgs. (2). Since residual stresses were not
measured, the assumed pattern was taken from the literature [7]. The values
of a;, oy, B; and B, used in the present numerical studies are, respectively,
0.575, 0.575, —0.3 and —0.3. As for the initial deflections of the columns, it is
assumed that the angle column has an initial deflection only in the direction
of the outstanding leg before testing and that the deflected shape is expressed
by a parabolic curve with a maximum center deflection, §,, equal to the
standard mill tolerance for camber given in ASTM Specification A 6, that is

L
% = 5407

where L denotes the length of the column in inches. When such an angle
column is tested under end condition (a), the original deflected shape will
change, an additional deflection is induced in the plane of the Tee stems and
axial stresses due to bending will be produced in the angle because the bending
axis of the original deflection is not a principal axis of the angle-section and
because the flangles of the end Tees are fixed. Therefore the column will have
initial stresses o; as well as initial deflections u; and v;. However, in the case
of end conditions (b) and (c) tests, the additional deflections and stresses are
all released at the start of testing because the knife edge ends were used in
those tests. Consequently the initial deflected shape of the test column at the
start of testing is the same as that before testing.

Fig. 14 shows the computed load versus mid-height deformations v, and

20
MAXIMUM LOAD

<, BY TEST . eI
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P
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0 ] | | ] 1

v (inch)—0 =0.l -02 -03
o] 00i 0.02 0.03 0.04 005~— @ (radian)

Fig. 14. Effects of Residual Stresses and Initial Deflections. Problems 201-204.
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$,,2 curves of problems 201 through 204, and Table 2 presents a summary of
the computed first yielding loads and maximum loads together with the
observed maximum load in the experiment of the A-2-8 column. The first
yielding load of problem 202 is lower than that of problem 203, but the former
has more inelastic reserve strength than the latter case. The effect of residual
stresses on the maximum loads is relatively insignificant, and the presence of
residual stresses (problems 202 and 204) reduces the maximum loads by 4 per-
cent. On the other hand, the reduction of the maximum loads by initial deflec-
tions (problems 203 and 204) is about 10 percent, which is relatively significant.
It is noteworthy that the presence of initial deflections considerably affects
the torsional deformations. The experimental maximum load lies between the
computed maximum load of problem 202, where only the effect of residual
stresses is considered, and of problem 203, where only the effect of initial
deflections is taken into account. This seems to be quite reasonable because
the severest situation was assumed for the initial deflections.

The load versus mid-height deflection curves of problems 205 through 207
are presented in Fig. 15, and the computed first yielding and maximum loads
are summarized in Table 2 together with the experimental maximum load of
column A-1-8. The computed first yielding loads are shown for both column
and the end spring about the xz-axis. Since an elastic-perfectly plastic moment-
versus-rotation curve was assumed for the end spring, the first yielding load
of the end spring implies the load at which a plastic hinge forms in the spring.
Those first yielding loads of the end spring were always below the corresponding
computed maximum loads. The effects of residual stresses and initial deflec-
tions are both quite insignificant. The strength of this type of column seems
to be greatly influenced by the yield stress level of the end spring instead of
the residual stresses and initial deflections. The experimental maximum load

—MAXIMUM LOAD BY TEST

30 e —————
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P sgl /
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Fig. 15. Effects of Residual Stresses and Initial Deflections. Problems 205-207.
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is almost equal to the predicted maximum loads of problems 205 and 206 and
is slightly higher than the prediction of problem 207.

It will be concluded from the above discussion that the presence of the
assumed initial deflections has a relatively marked effect on the maximum
strength of the column under end condition (b). However, since initial deflec-
tions were not measured in the test program, their effect will not be considered
in the subsequent numerical studies and only the effect of residual stresses
will be taken into consideration.

LOAD

(kips)

THEORETICAL

&t EXPERIMENTAL

o 1 l 1 L | 1 l
u,v {inch)— 0O -0l -0.2 -03 -04 -05

0 0.02 0.04 006 =—— & (radian)

Fig. 16. Experimental and Theoretical Load-Deflection Curves. Column A-1-8.
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o 1 1 ] | | ]
u,vlinchh—0 -01 -02 -03 -0.4 -05 -06
(0] 0.02 004— ¢ (radian)

Fig. 17. Experimental and Theoretical Load-Deflection Curves. Column A-2-8.
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Comparison with Test Results

A total of 18 problems listed in Table 3 were analyzed to make comparison
with the test results. The number of divisions of the column length and the
numbers of grids used for partitioning the cross-section were both the same
as those in the previous elastic-plastic problems except for the unequal leg
angle columns with the long leg outstanding (marked LLO in Table 3), where
n, was increased to 36. The computed load versus midheight deformation
curves for column numbers A-1-8 and A-2-8 are, respectively, compared with
the corresponding test results in Figs. 16 and 17. The computed results are
generally in adequate agreement with the test results, especially in view of
the fact that the end conditions and the load eccentricities of the test columns
are somewhat uncertain and that initial deflections and initial twists of the
test columns are neglected in the theoretical calculations. The computed
maximum loads Py, x of 18 columns are tabulated in Table 3, together with
the non-dimensional values of Py x, Py x/Py, where P, is the squash
load of the angle section. The calculated and measured values of maximum
loads differ by a maximum of 10.6 percent (column A-1-1) and the mean value
of the ratios is 0.997.

In order to compare the predictions with the test results of other columns
than the 18 columns shown above, the maximum strength curves were deter-
mined from the calculated maximum loads. Figs. 18 and 19 illustrate those
maximum strength curves against the non-dimensional slenderness ratio A, for
end conditions (a) and (b), respectively. There are three theoretical curve for
the equal-leg angle of A 242 steel and the other two curves represent the
theoretical curves for the unequal leg angle with the long leg out and with the
short leg out, respectively. The non-dimensional slenderness ratio

A, = Loy

ry ml K
was used to represent the slenderness because the test columns with end con-
ditions (a) and (b) tended to deflect mainly in the directions of the outstanding
leg. Using the slenderness ratio A, is convenient for plotting test results of
columns with different material properties. All the experimental maximum
loads for end conditions (a) and (b) are, respectively plotted in Figs. 18 and 19.
Fig. 19 also contains the plots of Foehl’s test results [4]. He tested seven single-
angle columns of various cross-sections under an end condition very similar
to end condition (b). He also used structural Tee stubs (ST 6115.9 of ASTM
A 36 steel) at the column ends, and axial load was applied through steel
cylinders, which were welded to the outside face of the flange of the structural
Tees in the direction of the Tee stems, to the test column ends. Since the stem
thickness of the Tee stubs is slightly different from that in the present tests
(i.e., 0.350in. whereas 0.4281n. in the tests of this paper), the value of eccen-
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Fig. 18. Comparison of Theoretical and Experimental Maximum Loads, End Condition (a).
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Fig. 19. Comparison of Theoretical and Experimental Maximum Loads, End Condition (b).

tricity e, is also slightly different even if the cross-sectional dimensions are
same. No adjustment was, however, made when Foehl’s test results were
plotted in Fig. 19. Although some scatter of the test results is observed espe-
cially in end condition (a), the correlation between theory and test is reasonably
good in both end conditions. Foehl’s test results of 3in.x 2in.X 1/4in. angle
columns (marked a for LLO and m for SLO in Fig. 19) excellently agree with
the corresponding maximum strength curves. In end condition (a) the maximum
strength curves have marked difference depending on the shape and the
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attitude of angle, while in end condition (b) the difference becomes very small
and the maximum strength curve for 2in. X 2in. X 1/4in. angle of A 242 steel
may be used for the predictions of the other shapes of angle with reasonable
accuracy.

Conclusions

A numerical procedure has been presented for determining the elastic-
plastic behaviour of single-angle columns. These single-angle columns are
treated as non-sway end-restrained columns loaded eccentircally. The end
restraints are represented by two rotational springs, one is an elastic-perfectly
spring and the other is an elastic spring, at both column ends. The effects of
residual stresses and initial deflections are allowed for in the procedure.
Numerical results in the elastic range are compared with results based on the
solution of TrRaHAIR [8]. The results from the proposed numerical procedure
are generally in good agreement with Trahair’s results. Two selected single-
angle columns equivalent to test columns with end conditions (a) and (b)
reported in [6], [8], [10] were solved to examine the effects of residual stresses,
initial deflections and their combination on the elastic-plastic behaviour of
those columns. It was found that the effects of residual stresses are quite
insignificant in both columns, but that the presence of the assumed initial
deflection, which is considered to be the severest situation for the columns,
has a relatively marked effect on the maximum strength of the column with
end condition (b). A total of 18 single-angle columns were solved to make
comparisons with the test results described in reference [6], [8], [10]. The
computed load-versus-deformation curves are generally in adequate agreement
with the test results. The computed and measured values of the column
strengths differ by a maximum of 10.6 percent, and the average value of the
ratios of the computed column strengths to the measured column strengths is
0.996. Maximum strength curves plotted against the non-dimensional slender-
ness ratio A,, were developed for end conditions (a) and (b) columns in order
to make further comparisons with other test results. It is demonstrated that
the predictions from the maximum strength curves compare well with the
experimental maximum loads of the columns having a wide-range of slender-
ness ratios.
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Appendix I. Nondimensional Form of the Equilibrium Equations and Boundary

Conditions

Equilibrium Equations

— KA r
P = 2 (ec—i—z), ) (34a)
o v+ (U Ug) 4w PV P (X~ B, § =
L2 ; % (34Db)
o Tea=T) =72 PV,
(U= Ug)+ PV =V 4w PU g2 P (=B 4 =
e gy ! (340)
roly(ry()—"r’y) ?y
D m ” ” D 7 ” ” P —«7’3 ” ”
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x 0
E ” " D Enl ” v D I ” ” (34d)
EP_{AQS —(A¢")o} — P (Xo—E,) (V7' = Vi) + P (Y, — E,) (U; — Ujy).
Boundary Conditions
Uy=Vy = =U1’/2 = Ve = ‘%”{/2 =0, (35a)
(I_Ex) V0”+(1_Ew) IIwy U(,), _Ew(VO,_% (;) =
12 7 oot ~ (35b)
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53 'nl r 1 D Rl ” ‘Pz D 7”3 "
P(Xo=E)V§~P5-E,) Uy + (35 - P 1) 41 -

P r3
E ” D m " ) mn "
o— P (Xo—E,)Vip+P(Yy—E,) Uj,.

i (35d)
;(z)?x( ¢")

It should be noted that primes in these equations are differentiation with
respect to Z instead of z.

Appendix II. Matrix [IV]

The expression for matrix [N] is shown for m =6, that is for 6 divisions of
half of the column length.

[0 0 0 0 0 o0 0]
5 8 -1 0 0 0 0
4 16 4 0 0 0 0
[N]=|4 16 9 8 -1 0 0
4 16 8 16 4 0 0
4 16 8 16 9 8 -1
4 16 8 16 8 16 4

Appendix III. Notation

t 4

The following symbols are used in this paper.

A Area of cross-section.

[4] A matrix.

[B] A matrix.

C Centroid of a cross-section.

{D} A vector.

E Modulus of elasticity.

{E} A vector.

E . E, Nondimensional eccentricity of load in the x and y direction.
E, E, Nondimensional equivalent eccentricity of load in the x and

y direction.

€rs €y Eccentricity of load in the x and y direction.

€y, Equivalent eccentricity in the z and y direction.

F Function of Z.

G Shear modulus.

H Nondimensional interval length.

1,,,1,4,,Iz Moments of inertia defined in Fig. 9.

1,1, Moment of inertia about the z and y axis.

1,, Product of inertia with respect to the x and y axes.
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St. Venant’s torsion constant.

Cross-sectional constants defined by Eqgs. (17), (18e) and (18f),
respectively.

Effective column length.

Number of partitions of cross-section defined in Fig. 8.

Length defined in Fig. 9.

Initial moment about the z and y axis.

End moment about the x and y axis.

End moment about the x and y axis due to loading.

Fully plastic moment of the web of end Tee stub.

Moment about the z, y and z axis.

External moment about the &, » and { axis.

Number of intervals.

Square matrices.

Number of partitions of cross-section defined in Fig. 8.

Axial load.

Experimental maximum load, maximum strength of a column.
Constants defined by Eq. (25b). '

Axial load corresponding to yield stress level.

P|P,.
A vector of which component represents P at each pivotal point.
Average value of components of {P}.

External axial force in the { direction.

Superscript specifying plastic strain component.

Component of vector.

Rotational stiffness of end spring about the x and y axis.

End restraint parameters defined by Eqgs. (23).

Cross-sectional constants defined by Eqs. (18b) and (18a).
Radius of gyration of angle section about the z and weak
principal axis.

Shear center.

Signum function.

Thickness of an angle leg.

Nondimensional deflection of the shear center in the x direction.
Nondimensional initial deflection of the shear center in the «
direction.

Deflection U at pivotal point . ;

Deflection of the shear center in the x direction.

Initial deflection of the shear center in the x direction.
Nondimensional deflection of the shear center in te y direction.
Nondimensional initial deflection of the shear center in the y
direction.

Deflection V at pivotal point <.
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Deflection of the shear center in the y direction.
Initial deflection of the shear center in the y direction.
Nondimensional coordinate of the shear center.
Coordinate of any point on a cross-section.

Coordinate of the shear center.

Coordinate of a point in an initially deformed position.
Nondimensional coordinate of the shear center.
Coordinate of any point on a cross-section.

Coordinate of the shear center.

Coordinate of a point in an initially deformed position.
Nondimensional centroidal longitudinal axis.
Centroidal longitudinal axis.

Residual stress parameters defined in Fig. 13.
Residual stress parameters defined in Fig. 13.
Cross-sectional constants defined by Eqs. (18c) and (18d),
respectively.

Cross-sectional constants defined by Egs. (11).

Prefix specifying increment.

Maximum initial deflection.

Normal strain in the z direction.

Compressive normal strain on the centroid.

Yield strain.

A vector of which component represents ¢, at each pivotal point.
Centroidal longitudinal axis of a deformed member.
Coordinate of a point in a deformed cross-section.
End slope of a column about the x and y axis.

End rotation of end Tee web corresponding to M ,.
Cross-sectional constant defined by Eq. (18g).
Nondimensional slenderness ratio about the z axis.
Tolerance ratio in convergence tests.

Coordinate of a point in a deformed cross-section.
Summadtion.

Normal stress in the z direction.

Initial stress.

Residual stress.

Static yield stress level.

Curvature in the z-x plane.

Curvature in the z-y plane.

Angle of twist.

Angle of twist at a pivotal point <.

A vector.
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Summary

A numerical procedure for determining the elastic-plastic behaviour of
single-angle columns loaded eccentrically is presented. The analysis allows for
the effects of biaxial bending, twisting and end restraints. Residual stresses
and initial deflections of the columns are accounted for in the procedure. The
numerical results are compared with test results of single angle columns, and
good agreement is generally observed.

Résumé

On présente un procédé numérique pour la détermination du comportement
élastique-plastique des colonnes en corniéres chargées excentriquement. L’ana-
lyse comprend I'influence de la flexion biaxiale, les déformations torsionnelles
et le serrage des extrémités des colonnes. Le procédé comprend également
P’effet des tensions résiduelles et des courbures initiales. Les résultats numé-
riques comparés avec les résultats expérimentaux ont démontré une bonne
concordance.
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Zusammenfassung

Es wird ein numerisches Verfahren fiir die Berechnung des elastisch-plasti-
schen Bereiches und der Traglast von aussermittig belasteten Stahlstiitzen
aus einzelnen Winkelprofilen vorgelegt. Die Berechnung beriicksichtigt den
Einfluss der zweiachsigen Biegung, die Torsionsverdrillung und die Einspan-
nung der Stabenden sowie die Eigenspannungen und die Vorkriimmungen der
Stabachse. Die Resultate der Berechnung werden mit Versuchsergebnissen
verglichen, wobei eine allgemein gute Ubereinstimmung von Theorie und Ver-
such beobachtet wurde.
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