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Theorie non-lineaire de la resistance postcritique des grandes poutres
en caisson raidies

Nichtlineare Theorie der überkritischen Festigkeit grosser ausgesteifter
Kastenträger

Non-Linear Theory of Postbuckling Resistance of Large Stiffened Box Girders

R. MAQUOI CH. MASSONNET

Charge de Recherches du Fonds National Pröfesseur ä l'Universite de Liege
de la Recherche Scientifique

1. Introduction

Les accidents qui ont frappe, en l'espace d'un an, trois grands ponts en
acier en caisson (pont sur le Danube ä Vienne: 6 novembre 1969 [1], [2], [3],
pont de Milford Haven: 2 juin 1970 [4], pont sur la Yarra a Melbourne: 15

octobre 1970 [5]) joints au resultat etonnant obtenu par le pröfesseur P. Dubas
dans son essai d'une poutre en caisson raidie par des raidisseurs theoriquement
strictement rigides [6] nous ont amenes, dans notre Contribution ä la
discussion preparee du Colloque de Londres de l'A.I.P.C. (25 et 26 mars 1971)
a avancer la these que, dans le cas du pont de Vienne, au moins, la ruine etait
imputable ä l'application abusive, au cas des caissons, des tres bas coefficients
de securite, 1,35 et 1,25, utilises dans le dimensionnement des poutres ä äme
pleine ä l'aide de la theorie lineaire du voilement.

Cette these semble avoir ete confirmee plus recemment (juin 1971) par la
nouvelle parue dans la presse, que le Secretaire d'Etat britannique pour
l'Environnement avait, sur l'avis d'une Commission Technique presidee par
le Dr. Merrison, de l'Universite de Bristol, decide de restreindre le trafic en
fermant une voie de circulation dans chaque sens sur 42 ponts metalliques en
caisson. Tous ces ponts seront soumis ä une inspection minutieuse en vue de
deceler d'eventuels signes avant-coureurs de dommages serieux. En outre,
aucun des 61 ponts en caisson actuellement en construction ne sera ouvert au
trafic avant d'avoir ete rendu conforme aux regles provisoires edictees par la
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Commission Technique. Des mesures analogues pourraient etre prises pour
l'Ecosse et le Pays de Galles.

II nous parait done qu'il est extremement urgent de developper, pour les

grandes poutres en caisson raidies, une doctrine de la resistance ä la ruine qui
soit parallele ä la doctrine etablie pour les grandes poutres ä äme pleine, par
Basler et Thürlimann, y compris les extensions et perfectionnements qu'elle
a recus au Colloque de Londres.

A premiere vue, il parait extremement etonnant que le probleme examine
n'ait pas dejä recu une Solution dans la litterature technique, puisqu'il interesse,

non seulement les construeteurs metalliques, mais encore les architectes navals
et les construeteurs de l'aeronautique.

A vrai dire, de telles Solutions ont ete proposees, mais nous ne les considerons

pas comme satisfaisantes.
La totalite des publications connues de nous ([7] ä [12]) qui etudient la

resistance ultime de panneaux de töle raidis longitudinalement, adoptent le

point de vue suivant:
Pour les dimensions habituellement adoptees, la töle voile d'abord entre

les raidisseurs. La repartition des contraintes se modine comme representee
ä la fig. 7. On remplace alors les bandes de töle reelle de largeur b' par des

bandes de töle fictive de largeur effective b'e definie par la relation

qui transmettent le meme effort de compression d'intensite moyenne \ö'\. La
töle etant supposee beaueoup plus large que longue (a<^b), tous les raidisseurs
se comportent ä peu pres de la meme maniere et la resistance ultime du pan-
neau est simplement egale ä n fois la resistance ultime d'une des colonnes
formee d'un raidisseur et de deux bandes adjacentes de töle de largeur b'e\2

chaeune.
Dans son memoire de 1965 sur la resistance ultime ä la flexion longitudinale

des coques de navires, Caldwell [7] declare: «Cependant, une methode generale

de calcul satisfaisante (des panneaux raidis), applicable ä toutes les

proportions de plaque et de raidisseurs et tenant compte des effets possibles du
cisaillement et de la pression transversale, manque encore. Pour cette raison,
un programme d'essais de compression sur panneaux raidis va etre entrepris
au Royal Naval College de Greenwich (oü l'auteur est pröfesseur).»

En supposant que l'elancement reduit

TT E (1.2)

des raidisseurs est inferieur ä 0,6 (ce qui, pour l'acier A37, correspond ä un
elancement inferieur ä 56) Faulkner, dans sa discussion du memoire de

Caldwell [7], admet que la contrainte de ruine dans les raidisseurs est

pratiquement egale ä la limite elastique.
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II definit le rendement pp d'un panneau comprime comme etant le rapport
de l'effort de compression reel ä la ruine ä l'effort plastique maximum ReQ.
On a done par definition, dans le cas particulier envisage,

_ \d'\b't + ReQr _ Re(b'et+Qr) _ b'^b't „vp*~ Re(b't+Qj- Re(b't+Qr) ~
x

flr ' * }

^b't
en appelant Qr l'aire de la section droite d'un raidisseur.

Faulkner declare avoir analyse l'ensemble des essais sur panneaux raidis
longitudinalement executes aux Etats-Unis par Vasta, Frankland [8] et plus
tard par les chercheurs du David Taylor Model Basin [9]. Une expression de

la largeur effective qui correspond raisonnablement ä cet ensemble de resultats

experimentaux est

h' 9 / P 1 7?

(1.4)

et a'max est la contrainte longitudinale membranaire maximum dans le sous-

panneau, atteinte au droit des raidisseurs bordant celui-ci.
Cette formule est legerement plus optimiste que celle proposee par G.

Winter [10], ä savoir

K 2 / Rt 1 Re

b' ' B ' Wmax\ B* 1 ' 1

1 ^max I

S\1 E

/
_ 1,9 / Re 0,9 Re

i — DM/ | T>2 I ' I
* V±,L>/

Si, ä la ruine, o'max est egal ä la limite elastique, la formule (1.4) donne

2 1

[«. B _>• (1"

Rempla9ant j~ par sa valeur (1.7) dans (1.3), Faulkner obtient la relation

Pp={b Bivt, (i.8)
1+7t

qui lui permet de tracer l'abaque de la fig. 1.

Cet abaque n'est malheureusement valable que pour des raidisseurs de

tres faible elancement, ce qui n'est pas le cas normalement rencontre dans
les ponts metalliques en caisson.

Un autre ensemble de recherches interessantes ont ete realisees au Japon
en 1959 par des specialistes de la construction navale. Yoshiki et Collab. [12],
[13] obtiennent un aecord satisfaisant entre la contrainte moyenne de ruine
experimentale des plaques raidies essayees par eux et la contrainte de flam-
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bement de l'ensemble forme par un raidisseur et deux bandes adjacentes de

töle de largeur ~ chacune, determinee par la theorie d'ENGESSER-SHANLEY

A2 ' (1.9)

Si le raidisseur est de forme dissymetrique et ä section ouverte ä parois minces,
la contrainte critique doit s'evaluer par la theorie du flambement par flexion
et torsion.

Pour tenir compte de la courbure initiale du raidisseur, il faut remplacer
sa contrainte critique par sa contrainte moyenne de ruine 6rraid. Cette
contrainte est pratiquement atteinte quand la fibre la plus comprimee du
raidisseur atteint la limite elastique, ce qui, d'apres une formule classique de

Resistance des Materiaux, s'ecrit:

Pe

(1.10)

oü P est l'effort de compression ä la ruine, /0 la fleche initiale du raidisseur,
Q la section formee du raidisseur et d'une largeur de töle egale ä b'e determinee

par une formule valable de largeur effective (cf. § 9), i le rayon d'inertie de

cette section, et Pe tt2 E I\a2 la charge critique de flambement eulerien
elastique pour le flambement hors du plan du panneau. On deduit de (1.10).

\Graid\ /1 .19 | 7?
1

\ i2 i aHaid\) e (1.11)

formule qui permet de determiner arraid par tätonnements, mais sans difficulte.
Le rendement global du panneau raidi vaut, dans ces conditions,

Pp
\o™id\Q

Be{b't+Qry
(1.12)
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2. Position du probleme

Le probleme de 1'evaluation de la resistance ä la ruine d'un caisson forme
de quatre parois minces en acier soumis ä flexion pure, est d'une difficulte
considerable parce qu'il est influence ä la fois:

a) par la non-linearite geometrique (effets des grandes deformations);
b) par la non-linearite materielle, due ä l'entree en plasticite de certaines

portions de la poutre;
c) par 1'interaction entre les quatre parois composant ce caisson;
d) par la presence d'un grand nombre de raidisseurs longitudinaux.

En ce qui concerne le point a), nous croyons qu'il est suffisamment bien
etabli par nous-memes [14] et par d'autres [15] que la prise en compte de la
non-linearite geometrique est absolument indispensable, pour pouvoir nous
dispenser de recommencer cette demonstration ici.

En ce qui concerne le point b), la prise en compte simultanee des grandes
deformations et des deformations plastiques, quoique theoriquement possible
[16], complique ä tel point les calculs que, meme avec un ordinateur tres
puissant, ils deviennent extremement pesants. D'autre part, la theorie de la
plasticite, si eile s'applique couramment aux charpentes, n'est generalement
pas consideree comme adequate pour les ponts. C'est pourquoi, dans la
presente etude, nous adoptons le point de vue de Wolmir (17) et de Skaloud
[18], [19] selon lesquels la ruine d'une plaque membrane comprimee est atteinte
quand la contrainte moyenne de membrane le long des bords lateraux non charges
atteint la limite elastique Re determinee en compression simple.

Le Pröfesseur Dubas a montre au Colloque de Londres [5] que, dans son
premier essai, cette hypothese etait du cote de la securite et etait erronee de

6,5%. Nous pourrons done, si nous le voulons, ameliorer la valeur de la charge
de ruine determinee par notre theorie en la multipliant par 1,065.

En ce qui concerne le point c), ci-dessus, on peut constater que 1'interaction
entre la table comprimee et le restant du caisson, c'est-ä-dire les deux ämes
et la table tendue, est beaueoup plus faible que l'interaction entre l'äme
d'une poutre ä äme pleine et son cadre raidisseur forme des deux semelles et
des deux raidisseurs transversaux adjacents.

D'autre part, la flexibilite des ämes dans leur plan est teile qu'on peut tres
raisonnablement adopter pour les bords non charges de la table comprimee
des conditions d'appui simple (w d2w/dy2 0) (fig. 2).

En ce qui concerne les conditions aux limites relatives aux contraintes de

membrane, un caisson constitue de plaques parfaitement rectilignes et sollicite
en flexion pue obeirait ä la theorie de Navier et l'ön aurait, le long des bords
non charges, Ny Nxy 0.

Si l'on tient compte d'une faible courbure initiale inevitable de la table
comprimee, les conditions ci-dessus (iV^ iV^ 0) doivent rester raisonnable-
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ment correctes en regime faiblement postcritique. Or, nous verrons par les

exemples numeriques discutes ä la fin du present memoire que le coefficient
de postcriticite n öjvcr ne depasse pas 1,5 pour les caissons habituellement
mis en oeuvre.

Dans le sens longitudinal, la table comprimee presente une serie de bosses

alternativement vers le haut et vers le bas, separees par des lignes nodales
transversales rectilignes (fig. 2); nous pouvons done limiter nos investigations
au panneau rectangulaire de dimensions a, b, correspondant ä l'une de ces
bosses et delimite par les deux lignes nodales adjacentes AB, CD (fig. 2).

Bien sur, le voilement de la table comprimee entraine le voilement con-
comitant des deux ämes; mais l'effet de ce voilement sur la valeur du module
de flexion W ä la ruine est faible, parce que de toutes fagons le module de
flexion des ämes Wäme ne represente qu'environ 10 pour cent du module de

flexion global, de sorte qu'une diminution de 20 pour cent de ce module Wäme

n'entrainerait qu'une erreur de 2 pour cent sur la resistance globale ä la
flexion du caisson.

En ce qui concerne le point d) ci-dessus, il faut noter que les grandes poutres
en caisson modernes comportent generalement une dizaine de raidisseurs
longitudinaux. Dans ces conditions, il n'est plus mathematiquement possible
d 'analyser 1 'action individuelle de ces raidisseurs, comme Skaloud et Novotny
l'ont fait dans le cas d'un ou deux raidisseurs longitudinaux [18], [20]. II faut,
au contraire, «tartiner» les rigidites de ces raidisseurs, ä 1'instar de ce qui a

ete fait avec succes dans la methode Guyon-Massonnet de calcul des ponts
ä poutres multiples [21].

On est amene ainsi ä adopter, comme equations, fondamentales, celles d'une
plaque membrane orthotrope. Les equations de ces plaques sont dues ä

Rostovtsev [31] dans le cas d'une plaque ä materiau orthotrope, ä Soper
[32] dans le cas d'une plaque ä deux cours de raidisseurs perpendiculaires.
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Elles ont ete obtenues ä partir de la theorie classique de Huber [22], [23], en
completant les expressions des deformations ex, ey et yxy par les memes termes
non-lineaires que von Karman a employes pour etendre aux plaques mem-
branes isotropes la theorie classique de Lagrange.

Cependant, les equations fondamentales, en question (cf. par. 3) ne valent
en principe que si c'est le materiau qui est lui-meme orthotrope. Or, en realite,
on a affaire ici ä une orthotropie de structure, due ä des raidisseurs fixes d'un
seul cote de la töle.

Pflüger a etabli [24] le modele mathematique de telles plaques en regime
lineaire et l'un de nous a montre en 1959 [25]:

a) que l'excentricite en question avait une influence considerable sur la rigi¬
dite torsionnelle apparente;

b) qu'il n'etait pas possible de ramener le modele de Pflüger ä celui de
Huber.

Ces considerations nous ont amenes ä generaliser la theorie de Pflüger
en y introduisant les composantes non lineaires de ex, ey et yxy. Cependant,
nous nous sommes apercus que, face ä un deploiement mathematique enorme,
cette Solution raffinee n'apportait que des corrections de l'ordre de 5 pour cent.

C'est pourquoi, nous avons decide de reporter la theorie correspondante en
annexe et d'axer nos efforts sur la theorie la plus simple qui tienne compte de

facon decente des caracteristiques essentielles du probleme.
Les equations fondamentales etant des equations aux derivees partielles

non lineaires, nous avons choisi de les resoudre par la technique de Bubnov-
Galerkin. Cette technique, comme celle de Rayleigh-Ritz, consiste ä se

donner comme deformee de voilement une expression simple dependant d'un
petit nombre de parametres.

Wolmir montre dans son livre [17] que, tant que le coefficient de post-
criticite n reste faible, de bons resultats sont obtenus en adoptant comme
deformee le mode fondamental de voilement

ttx iryW /ii COS COS-7^ (2.1)
a b

donne par la theorie lineaire du voilement, et que 1'introduction dans w du
terme additionnel

3ttx ttvCOS-7^
a b

OTT X iAw f31 cos cos -

ne diminue les contraintes de ruine que d'environ 5 pour cent, tout en entrai-
nant un considerable accroissement des developpements mathematiques.

Nous nous en tiendrons done ä l'expression simple (2.1) pour w et nous
admettrons que l'erreur par exces commise de ce fait compense l'erreur par
defaut commise en adoptant le critere de ruine de Wolmir-Skaloud (voir
plus haut).
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Comme le voilement est un phenomene du second ordre, il aurait fallu, en
principe, introduire dans le modele mathematique l'effet des contraintes
residuelles, ainsi qu'il a ete fait dans les recherches de Galambos et Ketter et
dans les recherches de la Commission VIII de la C.E.C.M. qui ont conduit aux
trois courbes europeennes de flambement [26], [27], [28]. La prise en compte
correcte des contraintes residuelles dans le cas actuel, nous parait tres
complexe et nous ne 1'avons pas envisagee, considerant qu'elle pouvait etre tant
bien que mal remplacee par une majoration de la fleche initiale /0 du panneau.

Apres avoir developpe la theorie, nous avons juge indispensable de la sou-
mettre au feu de l'experience. Les seules experiences valables disponibles ä

l'heure actuelle sont les quatre essais effectues par P. Dubas [5]. Nous mon-
trons au paragraphe 12 que notre theorie est en accord satisfaisant avec ces
essais.

3. Equations fondamentales

Les equations classiques des plaques membranes sont dues ä von Kärmän
[29]. Marguerre [30] y a introduit l'effet d'une legere courbure initiale.
Plusieurs auteurs ([31], [32]) ont etendu ces equations au cas anisotrope. Le
lecteur pourra se referer ä ces auteurs, ou bien ä l'annexe du present memoire,
oü il trouvera la generalisation de la theorie de Pflüger au cas non-lineaire.
L'examen de cette annexe montre que l'excentricite des raidisseurs a deux
effets distincts:

a) eile modine la forme des equations fondamentales en y introduisant les

nouveaux termes

+ (ex + ey)w"" -vDi^-w"" +^w""\
v I D D \ ex + e

et t=*(Vd-* +e^ )-t=* +

respectivement

b) eile modifie les valeurs des rigidites B, C, D, qui se calculent ä present, ä

partir des dimensions de la plaque raidie, par les formules:

"2 ~2

B =B - e2D B =B - e2D¦^x ^x J_jj2 a: *' V V \ _ 7,2 V V'

C =B+T\(Byx+Bxy) + Yy^exevD,

Les valeurs de ex,ey, B, D, Bx,By, Bxy, Byx,Dx,Dy, sont definies dans l'annexe.
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Comme nous 1'avons dit au paragraphe 2, les nouveaux termes dans les

equations compliquent enormement la resolution dejä si penible des equations
des plaques membranes orthotropes pour un gain de precision minime (^6%)
et nous avons done deeide de les supprimer.

Par contre, il n'y a aueun inconvenient ä adopter, pour les rigidites, les

valeurs ameliorees donnees par la theorie developpee en annexe. Si l'on intro-
duit de plus les notations simplificatives

dF d2F BF d2F
F'=1T> ^"=44> F=1T> F'=-»i> ...etc.... (3.1)

dx cx1 cy cy*

on peut presenter les equations fondamentales sous la forme suivante:

Dx D Dy
1 - V2) [(Wq +U)")2- (Wq +W") (Wq +w")- w0'2 + Wq Wq]

Bxw"" + 2Cw"" + Byw""
<f>" (w'0' +w") + <f)" (Wq +w") — 2(j>" (w'q +w").

(3.2)

(3.3)

L'equation (3.2) decoule des conditions exprimant l'existence d'un champ de

deplacement continu (u,v,w) dans la plaque par l'intermediaire d'une relation
de compatibilite entre les composantes du tenseur deformation de membrane
(ex, ey, yxy); eile porte pour cette raison le nom d'equation de compatibilite et
regit la fonetion de contrainte cf> qui gouverne elle-meme les composantes du
tenseur membrane par les relations

N*=jf2=* ' Nv=Jx^2=(f) ' N*v=-JxJy -* ' (3'4)

L'equation (3.3) provient de la relation exprimant l'equilibre de translation
verticale d'un element de plaque raidie et s'appelle, pour cette raison, Vequation

d'equilibre; eile gouverne le deplacement transversal w d'un point situe
dans le feuillet moyen de la töle. w0 est le deplacement initial de ce feuillet.

Dx, D et Dy sont les trois rigidites extensionnelles de la plaque raidie et

Bx, C et By, ses trois rigidites flexionnelles.
Comme on l'a dit dans le paragraphe «Position du probleme, on admettra que
la töle a une deformee initiale

7TX Try /n „.
wn /ncos — cos -j- (3.5)u ;u a b

et que sa deformee supplementaire est affine au mode fondamental de voilement

donne par la theorie lineaire, ä savoir

w(x,y) /cos—cos-t-. (3.6)
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4. Conditions aux limites et marche generale de la Solution

Chacune des deux equations fondamentales (3.2), (3.3), admet deux
conditions aux limites sur chaque bord; il y a done en tout pour les quatre bords
16 conditions aux limites. Ces conditions sont les suivantes:

4.1. Conditions de flexion

Le long des bords charges x ± a/2:

d2 w d2 w
w 0; M„ 0 d'oü, puisque 7—^- 0, ——=- 0. (4.1)

cy* cx1

Le long des bords non charges y ±b/2:
d2w d2w
c^c2= ' dy*

w 0; My 0 d'oü, puisque -^-^ 0, —— 0. (4.2)

4.2. Conditions de membrane

a) Le long des bords charges x + a/2

a.l. Nxy 0. (4.3)

a.2. Les bords AB et CD restent rectilignes, mais peuvent se rapprocher,
ce qui s'ecrit

S^ Cste

ou, en vertu de la formule (2.32) de l'annexe:
a/2

S*= f{r^(^--^,f')-lK + tt'')2 + i<}^ 0*. (4.4)

-a/2
X x y

b) Le long des bords non charges y ±bj2:

N„ 0, Nxv 0. (4.5)

Le probleme mathematique ä resoudre est d'integrer le Systeme d'equations
aux derivees partielles non lineaires (3.2), (3.3) avec les conditions ä la surface
(4.1) ä (4.5). Pour resoudre ce probleme, nous nous inspirerons du livre de

Wolmir et procederons comme suit:
La deformee supplementaire satisfaisant des le depart aux conditions de

flexion ä la surface (4.1), (4.2), nous commencerons par rechercher par
integration une fonetion de contrainte <j> qui satisfait rigoureusement ä l'equation
de compatibilite (3.2) et aux conditions ä la surface correspondantes (4.3) ä

(4.5). Ensuite, en adoptant la technique de Bubnov-Galerkin, nous choisirons
le parametre / de l'expression (3.6) afin de satisfaire «au mieux» ä l'equation
d'equilibre (3.3), ce qui achevera la Solution.

La condition (4.4) est verifiee a posteriori.
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5. Integration de l'equation de compatibilite

En remplagant w0 et w par leurs expressions (3.5), (3.6) dans l'equation de

compatibilite (3.2), on met celle-ci sous la forme:

,..„ ,„„ 4 2 2

V+2V+^=-(1-')/(/+2/o)2»(cos^+cos"^)- (6,1)

Cette equation est lineaire en cf), et son integrale generale est done la somme
de 1'integrale generale de l'equation sans second membre et d'une integrale
particuliere de l'equation complete.

Le second membre etant ä variables separees et de type harmonique, on
choisit une Solution particuliere de la forme

/ x a 2ttx 2-rry /r, _.
(/>0(x,y) =.41cos \-A2cos—-~- (5.2)

a o

et l'on trouve par identification des deux membres de (5.1)

Ai _Dx^=nnf+2fo)i (5.3a)

moyennant la notation connue
oc a/b. (5.4)

On posera pour simplifier
D"

£. (5.5)
<*Dy

II faut maintenant ajouter ä la Solution particuliere (5.2) 1'integrale generale
<f)x de l'equation homogene

y^y^=«>
qui est teile que </> (/>0 + ^1 satisfasse aux conditions ä la surface (4.3) ä (4.5).

Pour exprimer que la plaque est comprimee dans le sens des x, on introduit
une premiere Solution

-.1 vx%-

A ce stade, on a done

.- 2 ttx 2 Try y2
cf> <f>0 + (f)1 A1cos- + A2cos—j^- + px—
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d'oü, par les relations (3.4),

Nxy 0 le long de tous les bords puisque —V™ ™x
0, (5.7 a,b)

(Nv)v=±m [jjl --r^ cos——, (5.7c)

TO*-±«/2 gdr --£_-^2COS-^ + ?v (5.7d)

L'effort total passant dans la plaque comprimee vaut done

+ &/2

J (Nx)x=±a/2dy Pxb> (5-8)
-6/2

ce qui montre que la signification physique de px est l'effort moyen de
compression dans l'unite de largeur de la plaque raidie.

En comparant les conditions ä satisfaire (4.3) ä (4.5) avec les conditions
(5.7a ä c), nous voyons que tout est en ordre sauf qu'il subsiste des efforts

2 TT X
Ny non nuls le long des bords non charges. Ces efforts etant en cos il
est logique, pour les faire disparaitre, de choisir une fonetion de contrainte

4>l(x>y) f(y)co^-~-

comme Solution generale de l'equation homogene (5.6).
On voit de suite que f (y) sera une combinaison lineaire de termes en chßy

ou shßy, oü ß est une constante adequate. Pour respecter la symetrie du
probleme, on ne conserve que la forme chßy, puisque chß(-y) chßy, de
sorte que la fonetion ä essayer est

V. o 27TX
chpycos——.

Introduisons cette expression dans (5.6); on trouve:

j8« i** ß* 16^ 1

Dx a* d a* Dy
U'

^^.tf^-iÄ (5.9)

Posons ä present 0 (5.10)

On obtient l'integrale suffisamment generale de (5.6):

<l>i(x>y) K1cos -^— ch ß±y + K2cos-^— ch ß2y (5.11)
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& =—/^Vi+.r^ —ya 1 j) f a
(5.12)

A.^/iTTrf?-^.
Les constantes Kt et K2, convenablement choisies, doivent permettre de satisfaire

ä l'ensemble des conditions de membrane ä la surface (4.3) ä (4.5). La
fonetion de contrainte <f>\ seule donne les efforts unitaires

2 77 T
(Nxy)x==±ai2 0, car sin 0 pour x ±aj2, (5.13 a)

a

/*t x / £2<i?\ 2tt/t, n ß,b Tr n ß2b\ 2ttx /crio,x

„T> /32<4?\ 47T2/,.-- ß,ft „ ,]S26\ 2nx ,_10(^v±w (t^L.w - --^richT-+^ch^)cos^' (5-i3c)

+ 6/2

J(^_)x=±a/2*/ -[^ftshfty + JTgftshiS^]^. (5.13d)
-&/2

Cette derniere relation montre que la fonetion <f>\ (x, y) affecte la distribution
des Nx.

Faisons maintenant les sommes des expressions homologues (5.7 a ä d) et
(5.13a ä c) afin de satisfaire aux conditions (4.3) ä (4.5).

On trouve:

1. que la condition (Nxy)x==±a[2 0 est toujours verifiee,

2. que l'annulation de (Nxy)y=±bj2 quel que soit x entraine la condition

*iAsh^ + tf8j8ash^ 0, (5.14)

3. que l'annulation de (Ny)y=±bj2 quel que soit x entraine la condition

K1ch^ + K2ch^ -A1. (5.15)

La resolution du Systeme d'equations (5.14), (5.15) donne, en tenant compte
des notations (5.12):

j2sh^
K1= : -. : r-Ar iL,A,, (5.16a)

J1 OC (X J* OL OL

• .L ^ .1^sh—'-
K2 : : - : r~ A, Uoij. (5.16b)

1± sh -i- ch -^ - ]2 sh-1- ch —
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L'expression finale de la fonetion de contrainte est done

2ttx
t A ^^ 2Try ^ y2

(5.17)

1/ \ A A7T Us ATT U U
cf>(x,y) =A1cos—— -M2cos —r^- + px~

rr 2 TTX - n rr 2 TTX _
+ K1 cos chß1y + K2 cos ch ß2 ya a

oü Ax, A2, K1, K2 sont definis par les formules (5.3) et (5.16) respectivement.
L'expression (5.17) satisfait rigoureusement aux conditions de membrane

aux limites (4.3) et (4.5) comme annonce ä la fin du paragraphe 4.

II faut en plus montrer que la condition 8x Cste est remplie. A partir de

l'expression (4.4), on calcule, ä l'aide (3.5), (3.6) et (5.17)

o a I 4 772 2 77-y\ tt2 f,. ^ „-rry ,,_. ,^^ 5x7T^)(^-^^cos-T1)-^/(/ + 2/o)cos b- (5"18)

Rempla^ant la constante A2 par sa valeur (5.3b), on constate que l'expression
ci-dessus de 8X se reduit ä

8^idfe)-£/(/+2/o) (5"19)

qui est bien independante de y comme il le fallait.

6. Integration approchee de l'equation d'equilibre par la methode de Bubnov-
Galerkin

Si l'on remplace w0, w et (f> par leurs expressions (3.5), (3.6) et (5.17) dans

l'equation fondamentale d'equilibre (3.3), on obtient une expression tres
longue de la forme generale E F, dont le membre de gauche s'ecrit:

E ^(Bx + 2oc2C + oc*By)fcos —cos^.
a4 x y a b

Le membre de droite F est une expression tres longue, qu'on ne reproduira pas
ici, pour gagner de la place.

La technique d'integration approchee de Bubnov-Galerkin consiste,
comme on sait, ä exiger du parametre indetermine qu'il satisfasse l'equation
E — F 0 «en moyenne», c'est-ä-dire qu'on ait

+ aJ2 +b/2
j J (E-F)wdxdy 0.

-al2 -b/2

Remplagant w par son expression (3.6), tenant compte de ce que le domaine
d'integration est rectangulaire et prenant - par symetrie - le quart de 1'integrale

double precedente, on trouve que / est determine par la condition:

Jcos — dx\ (E-F) cos -—-dy 0.
o a 0 b
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En effectuant toutes les integrations necessaires en tenant compte de la relation

(5.14), qui peut s'ecrire

Msh7^ + M2sh^ o,
OC oc oc oc

et en multipliant tout par —377, on trouve pour determiner / la condition:

g(^ + 2a2g + a^)/ + (/ + /0)yx + ^J^21~v2)/(/ + 2/0)(/ + /o)(l+^)
TT2 D„. OC2 (1 — V2) I OC ,TTJ, OC 77 jo\ ^ w+ *1662 h^^a +^W2S a)/(/ + 2/")(/ + /<») 0-

On tire de cette relation la valeur de px:

^ -7-^^^^ + 2a2g + a^_)-^^1g6^21~i;2)(l+a/(/ + 2/0)

TT2DV0C2(1—V2) I OC 777*1 a i TTJvXtyr _wx

7. Critere de ruine

Considerons la plaque reelle et introduisons avec Klöppel [34] le coefficient

definissant l'aire relative d'un raidisseur.
Soit m le nombre effectif de raidisseurs plus un *).
La section d'aeier de la plaque raidie vaut

^plaque raidie bt(l+m8) (7.2)

ce qui signifie qu'on passe de la plaque non raidie ä la plaque raidie en multipliant

une aire de la plaque non raidie par le facteur (1+mS).
La section moyenne d'aeier par unite de largeur vaut done t(l+m8).
Conformement au paragraphe 2, nous admettons que la ruine est atteinte

quand la contrainte de membrane 5X moyenne le long des bords non charges
AD ou BC (Fig. 2) atteint la limite elastique du metal en compression — Re
(oü Re ifjRe represente une limite elastique eventuellement corrigee par un
facteur de forme ifj ^ 1,065 pour tenir compte d'une plastification locale de la
plaque avant effondrement).

En multipliant les deux membres par t(l+m8), la condition ci-dessus
s'ecrit:

*) Ceci pour tenir compte de ce que les deux bords non charges de la plaque jouent
ensemble le role d'un raidisseur supplementaire.
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ha/2

N, laj(Nx)y= ¦¦bl2 dx Ret(l+m8). (7.3)

Mais

N =*±
x dy*

-all

4tt2 2iry Tr 2ttx „ r. ™ 2ttx n
-j^-A2cos—^- + px + K1ßlcos—^-chß1y + K2ßlcos-^-chß2y.

(7.4)

Comme 1'integrale de la somme des deux derniers termes du second membre
est nulle en vertu de (5.13b), la condition (7.3) se reduit ä:

4 772 -—A2 + px -Ret(\+m8)

ou, en tenant compte de la valeur (5.3b) de A2:

^jg^DXa ^f(f + 2f0) + px -Bet(l+mS)

et, en remplagant px par sa valeur (6.2),

-^g(_3x+ 2^C + a^_)-^^1g^21~';2)(l + 3,)/(/ + 2/0)

tt^DXO-v2)/ _o_ tt/, ct.irj.

(7.5)

(7.6)

1662 V ^.i
Si l'on designe par

o.r —

"Ja^^sh^i + ^^-sh^-2 /(/ + 2/0) -Bet(1+mS).

aH(l+m8) (Bx + 2oc*C + «*By) (7.7)

la contrainte critique de voilement, on peut ecrire la condition de ruine (7.6)
sous la forme:

^^(l+mS)-"2^ *2)(l+3fl/(/ + 2/0)

7T2J>ya2(l-.2)
1662*

L " sh^ + M
" sh^-2)/(/ + 2/0) -Re(l+m8).

\ TT)1 CC TTJ2 OC j

(7.8)

Introduisons les quantites non dimensionnelles

h
t

f
€°' I e'

*
A, _^d-v2) M>0!); ^r.r(>o!). (7.9)

t lb(Tcrt R

Nous pouvons alors ecrire la condition de ruine (7.8) sous la forme:

-(l+m8) + k^e(e + 2e0)\(l + 3£)
€ + €

/ a u^h y\= 1 + mosh+ M2
7T?2

(7.10)
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8. Definition et calcul du rendement de la table comprimee

On definit le rendement de la table comprimee comme etant le rapport de

la contrainte moyenne ax le long des bords charges x ± a/2 ä la valeur de la
limite d'elasticite en compression — Re, au moment oü la valeur moyenne
ax de ax le long des bords non charges y ± b/2 atteint — Re.

Mais le rapport des contraintes ci-dessus est egal au rapport des efforts
unitaires correspondants. Or, la section moyenne d'aeier par unite de largeur
vaut t (1 +m8). Le rendement de la table comprimee vaut done, par definition:

ct N
p _^- - ^ ±1* (8.1)

-Re Ret(l+m8)
L'effort unitaire moyen Nx est donne par

+ö/2

x b
-6/2
JPLa

En y introduisant l'expression (7.4) de d2<f>\dy2 et effectuant 1'integration, on
trouve

2ttX
Nx Px-^K1ß1sh7^ + K2ß2sh^ cos-

Le dernier terme du second membre est nul en vertu de la relation (5.14), ce

qui doit etre puisque, si la table n'est soumise ä aueune contrainte de cisaillement

le long de ses bords non charges, 1'equilibre de translation dans le sens
des x du morceau rectangulaire CDEF exige (fig. 3) que l'effort total sur EF
soit exaetement egal ä l'effort total sur CD. Des lors,

Nx px. (8.2)

En remplacant dans (8.1) Nx px par son expression tiree de (7.5) et introduisant

les notations (7.9), on trouve

2&«2 £
O X (8.3)

A titre de contröle, nous avons particularise cette formule pour le cas d'une
plaque carree isotrope, qui est traitee dans le livre de Wolmir [17], pp. 138

et 139. On trouve dans ce cas:

h ?2? /xi -/^2? Dx Dy D> £ !> v v, <x=l, § 0.

De plus, la plaque n'ayant aueune deformation initiale, e0 0. La formule
(8.3) se reduit alors ä:

i 2k 2
Pt= l—^T€ '
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*1_J

^+

*+i

^t>

La condition de ruine (7.10) se reduit dans le cas actuel ä:

1 +
4Ä.

2kr 2 ln ^

-W€ =2{l~r)d'oü

done ft=i_*(i_r) *(i_f!kJ.

Ce resultat est identique ä celui obtenu par Wolmir.

Fig. 3.

(8.4)

9. Examen de quelques formules de largeur effective des plaques isotropes

Dejä au paragraphe 1, nous avons rencontre la notion de largeur effective,
ou largeur de la plaque fictive uniformement comprimee qui transmet le meme
effort que la plaque reelle en regime postcritique. Comme cette notion joue
un role important dans une correction ä apporter au rendement des plaques
raidies (§ 10), il faut s'y arreter quelques instants.

L'inventeur de la notion de largeur effective est Th. von Kärman [10];
il propose la formule (fig. 4)

>*-%-i£i-ik- (»ii)-
En rempla9ant acr par sa valeur classique

772Do'= -fc-rs— -75920
b2t W- 3,62 Re

~.B2

avec

on a

k 4, D
Ee* n o r> _ b' -,/ Re

120^v2T " 0'3' B=ll-E>
0,276 \o'm

Ä_
IJ52

(9.1)

(9.2)

(1.5)

(9.3)
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et on peut encore ecrire la formule (9.1) sous la forme

1,Pvk

109

(9.4)

bL/2

max I

b» /2
—- h*——».

\fvi—Iv;iN^
y
i CT

_j¦T, i ¦ ¦ '

b'

Fig. 4.

La theorie de premiere approximation developpee dans le present memoire
fournit pour la largeur effective, dans le cas d'une plaque isotrope parfaitement
plane, l'expression

qui a ete etablie au paragraphe 8. En y remplacant n par son expression (9.3),
on peut mettre la formule (8.4) sous la forme

_
1 / 3,62 Re\

Pl-2\1+Kax\B*j- (9.5)

Des expressions plus precises de p ont ete obtenues par Sokolov en adoptant
plusieurs parametres dans la representation des fonctions w et </> (cf. § 3). En
analysant les resultats de Sokolov, Papkovitch a obtenu (cf. [17]) la
formule pratique

r, .* °>56 kaa 2><>3i?.
PPapkovitch 0,44 + —^- 0,44 + T

n ia \ B2'11
i KJmax\ ¦*-*

(9.6)

Enfin, ä l'aide de la relation (9.3), les formules de Faulkner et de Winter
(1.4) et (1.6) peuvent aisement etre mises sous la forme

PFaulkner 1,052 l/^-^V- i^_2_M^ (nä 0,276), (9.7)
' Gmax 6^2omax ^n U

(n^0,25). (9.8)
0,250

Pwinter /—
"

yn
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Les expressions (9.1), (8.4), (9.6), (9.7) et (9.8) sont representees graphiquement
sur l'abaque de la figure 5. On voit que la dispersion des diverses formules est

assez considerable. C'est la formule (8.4) qui donne les resultats les plus plus
optimistes, ce qui n'a rien d'etonnant, puisqu'elle est basee sur la methode
de Bubnov-Galerkin, qui donne des resultats errones par exces et qu'en plus
on suppose la plaque initialement parfaitement plane.

0,90

0,70

0,60

0,50

\\ von Körmon

\
yPopcovitch

BßrfflL

\\ FaulknerXaWinter

NX
X

2,00,2 0.4 0.6 0,8
Fig. 5.

10. Correction due au caractere discontinu du raidissage

La theorie developpee jusqu'ä present a suppose les raidisseurs «tartines»
continüment sur la table pour en faire une plaque materiellement orthotrope.
Comme le revele l'essai A 1 du pröfesseur Dubas, dont nous reproduisons
ci-dessous (fig. 6) le diagramme des dilatations ex ä diverses etapes du charge-
ment, ce diagramme presente des festons qui correspondent aux deformations
locales de la töle entre raidisseurs adjacents.

10.1. Commencons par considerer le cas oü les raidisseurs restent quasi-
rectilignes jusqu'au stade de ruine (fig. 7). Alors, la correction est tres simple.
Quelle que soit la formule de largeur effective adoptee (cf. par. 9), on peut,
ä titre de premiere approximation, admettre que la contrainte aux bords de

tous les panneaux partiels est la contrainte moyenne du panneau entier,
ö öx (fig. 7). Avec cette hypothese, la perte relative d'efficacite de tous les

panneaux partiels est la meme et vaut
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200 200 200 200
H •+• *+- H-« *

€
0 T

0,2
0,4 ]

0,6
0,8
1,0]

»,2

1,4
t

1,8
3.8

5,8

7,8
9,7

10,9

11.9 Fig. 6.

LL&
Remax

Fig. 7.

b'«- b'(a\

Le rendement partiel du au caractere discontinu du raidissage est, par definition,

le rapport de l'effort de compression total transmis par le panneau raidi
reel ä l'effort analogue transmis par le panneau continu de Substitution con-
sidere dans la presente etude (cf. par. 2). Ce rendement partiel vaut, d'apres
lafig. 7:

K(°) &r
mb'e(ö)öt + mQrö b' ^ b't /1A1>P i^v* ^n\^ cy— (1(U)(mb't + mQr)ö 1 + b't

oü la notation b'e (5) specifie que la largeur effective du sous-panneau doit
etre calculee pour une contrainte membranaire maximum aux bords de ce

sous-panneau, o'max, egale ä 5.
Si, en particulier on adopte pour la largeur effective l'expression (1.4) pre-
conisee par Faulkner, il faut done ecrire cette formule sous la forme:
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6. 2 ,/Äl 1 Ä.
_/ - hm_=i R2i-i (10-2)
o £> i \a\ t> |erI

oü \ö\ \öx\ =ptRe,pt etant calculable par la formule (8.3).
10.2. Si, au contraire, le raidissage est faible, la table comprimee presente

une seule grande cloque. Les contraintes moyennes de compression dans
chaque bände longitudinale de töle sont differentes.

Dans ce cas, la repartition des contraintes crx depend d'ailleurs de la section
transversale consideree. II est logique, comme dans la discussion du critere de
ruine (par. 7) de se baser sur les contraintes öx(y) moyennes sur la longueur
du panneau, done sur les efforts unitaires moyens

+ a/2

Nx(y) lJNxdx.
-a/2

D'apres la formule (7.4), on a

— 4tt2 2ttv +a/2 2ttx
Nx(y) --r2-A2cos-^- + px + (K1ß2chß1y + K2ß2chß2y) J 00B——dx

o o _a/2 a
iTT2 2TTV (10-3)

--ü-2-A2^S-j-+px.

La section d'aeier par unite de largeur etant

t(l+m8),

on a t(l+m8)'
Si le nombre de raidisseurs excede 10, on peut parier d'une repartition
continue des largeurs effectives, qui varient en travers comme

^ l/|Ä-i™ (10-4)

et adopter comme largeur effective «equivalente» l'expression
+a/2

(fL.= fJ>>*- <«>•»>

-a/2

L'integrale ne semblant pas pouvoir s'effectuer par les fonctions elementaires,
il faut calculer les valeurs de b'e\b' pour un certain nombre d'ordonnees y
regulierement espaeees, puis effectuer l'integrale (10.5) numeriquement par
la formule des trapezes ou de Simpson. L'expression du rendement partiel
s'ecrit alors

[b'Jequ. b't
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Quelle que soit la formule (10.1) ou (10.6) employee pour p le rendement
global de la table raidie, pg, est clairement donne par l'expression

Pg PtP (10.7)

ou pt reste donne par l'expression (8.3).
La contrainte moyenne de ruine est alors donnee par

du Pg R< (10.8)

11. Rendement du caisson entier

Le rendement qui interesse le projeteur d'un pont en caisson n'est pas la
perte de resistance ä la compression de la table comprimee, mais bien la perte
sur le moment flechissant de ruine.

Considerons done la section en caisson rectangulaire representee ä la fig. 8.

v v

ÜQ

a\

Ür

Fig. 8.

Nous pouvons calculer le rendement de ce caisson en supposant successive-
ment, que le caisson est, ä la ruine:

en regime elastique,

en regime plastique.

11.1 Rendement du caisson en regime elastique

La geometrie donne, en negligeant 1'inertie propre des semelles:

Qt=Qs+Qi + 2Qa, v -Jf(Qid + dQa),

Od2 ld \2I =QsV*+Qi{d-vy+i7>y + 2Qa^-v}
(11.1)

Si nous supposons que, tant dans le caisson parfait de reference que dans le
caisson reel oü la table comprimee est en regime postcritique, la fibre la plus
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sollicitee est la fibre superieure, le moment de ruine du caisson parfait de
reference est

m^rL r1^
tandis que le moment de ruine du caisson reel, oü la table comprimee a l'aire
effective

&es=QsPg>

Le rendement elastique du caisson entier vaut alors, par definition:

M% I(Qi)v(Q,) ,„ rtXDelastique — _£ _ v s/ v s/ (\\ 2)Pcaisson M^ J (ßj v (Qey
V •

Pour situer le rendement elastique du caisson par rapport ä celui de la table
comprimee, supposons que les ämes aient une aire Qa negligeable. Alors, on
trouve de suite

j &s&i d2 &d

d'oü Mp ReQsd, M$ ReQesd

Qe
et püastique =*=p (11.3)"caisson Q °

Dans l'autre cas extreme oü les semelles sont negligeables par rapport aux
ämes, un affaiblissement de la semelle comprimee n'affectera pas le rendement
du caisson, qui restera egal ä l'unite.

Par raison de continuite, dans les caissons reels oü les ämes interviennent
pour une dizaine de pour cent dans la resistance ä la flexion, nous pouvons
conclure que le rendement du caisson entier est superieur de quelque un ou
deux pour cent au rendement de la table comprimee.

Si l'on tient compte, ä present, de la perte de rendement des ämes, dont
les parties comprimees sont courbees horizontalement par compatibilite avec
ies deformations de la table, on arrive ä la conclusion que, pratiquement:

p table comprimee p caisson, (8.6)

de sorte qu'il est pratiquement sans interet d'analyser mathematiquement le
caisson entier, la complication des mathematiques etant hors de proportion
avec le gain de precision attendu.

11.2. Rendement du caisson en regime parfaitement plastique

L'axe neutre en regime parfaitement plastique est determine par la
condition d'equilibre de translation J*adQ 0. Des calculs elementaires dejä faits

Q
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par Caldwell donnent (fig. 9) pour le moment ultime:

M* Red{ptQ,y + 2Qa^-y + f±^+Qi(l-y)} (H-4)

oü la position de l'axe neutre plastique est definie par

v= 2Qa+Qi-PlQs
y d 2ßa(l+Pa)

• (ll-b)

<<U
Oh /*_ Re

Fig. 9.

12. Comparaison de la presente theorie avec les essais effectues par Dubas

Dubas [5] a execute deux essais de flexion pure jusqu'ä la ruine sur des

poutres en caisson dont la section droite est representee ä la figure 10.

Fig. 10.

12.1. Essai AI de Dubas [5]
Le panneau raidi experimente a les dimensions suivantes:

a 900 mm,
b 800 mm,
t 3,2 mm.
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La töle est raidie par trois raidisseurs 60x2,9 mm entredistants de 200 mm.
La limite apparente d'elasticite vaut 29,5 kg/mm2. La fleche initiale observee
est de 5 mm. On admet E 2\ 000 kg/mm2 et v 0,3.

On calcule successivement :

a) Rapport des dimensions: oc 1,125

b) Minceur: A 250

c) Rigidites extensionnelles:

D Dy 7,385- IO4 kg/mm,
Dx 9,212-IO4 kg/mm,
D 6,206-IO4 kg/mm.

d) Position des axes des nervures:

ex 6,267 mm,
ey 0.

e) Rigidites flexionnelles et torsionnelles:

B By 6,302• IO4 kg/mm,
Bx 2,017-107 kg/mm,
Bxy 1,976-IO4 kg/mm,

BJX 0,

Bx 1,989-107 kg/mm,
By 6,30-IO4 kg/mm,
C 7,29- IO4 kg/mm.

La contrainte critique de voilement du panneau continu de Substitution est
donnee par (7.7) et vaut

acr —60,4 kg/mm2.

Cette contrainte, bien que superieure ä Re, doit conserver cette valeur pour
l'etude du critere de ruine et du rendement.

On calcule ensuite les parametres caracteristiques non dimensionnels donnes

par (7.9), (5.12), (5.16), (5.5).
Le critere de ruine s'ecrit alors d'apres (7.10)

—— + 0,00922 6 (e + 2 €0) 0,488

avec 6o
i° Jt-=ij56.

La seule Solution significative de cette equation est

e= 1,22.
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Le rendement de la table de compression donne par (8.3) vaut

Pt 0,942.

Ce rendement eleve nous permet de substituer ä la distribution reelle des

efforts pour la determination du rendement partiel des sous-panneaux, une

repartition uniforme de sorte qu'on retrouve le cas examine au par. 10.1.

Puisque la contrainte critique de voilement d'un panneau partiel de töle
isotrope vaut d'apres (9.2)

a'cr -19,45 kg/mm2

et correspond ä un indice de postcriticite

n
29>5

152U- 19,45 -1'52'

on peut appliquer la formule de Faulkner (1.4) dans laquelle la contrainte
maximum a'max vaut

<W P*^e -27,75 kg/mm2

et £ 2,35.

Des lors, on obtient

-^ 0,684.
b

Le rendement partiel p vaut done selon (10.1)

p 0,753.

Le rendement global du panneau est done

Pg 0,753X0,942 0,710

et la contrainte ultime moyenne

öu — 21 kg/mm2.

La valeur obtenue pg 0,H0 est en tres bon aecord avec le resultat de Dubas

(5)^ 0,69.

12.1. Essai A2 de Dubas [5]

Le panneau raidi a les caracteristiques suivantes:

a 900 mm,
b 800 mm,
t 3,3 mm.

Les raidisseurs, au nombre de trois, sont constitues de plats 36 X 3 mm, entre-
distants de 200 mm. La limite apparente d'elasticite Re vaut 30 kg/mm2. La
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fleche initiale observee est encore de 5 mm. On admet E — 21 000 kg/mm2 et
v 0,3.

Les calculs se conduisent comme pour 1'exemple precedent

oc 1,125,
A =242,4,
D =Dy 7,615 • IO4 kg/mm,
Dx 8,749-IO4 kg/mm,
D 7,215-IO4 kg/mm,
ex 2,55 mm,
ey =0,
B By 6,911 • IO4 kg/mm, By 6,911 • IO4 kg/mm,
Bx 5,104-IO6 kg/mm, Bx 5,056- IO6 kg/mm,
Bxy 1,312-IO4 kg/mm,
Byx 0, C 7,567-IO4 kg/mm.

La contrainte critique de voilement du panneau continu de Substitution vaut

acr -17,00 kg/mm2.

Le critere de ruine s'ecrit done

6

* + €t
+ 0,0354 e(e +2 €0) 1,764

avec 60 — 1,515.

La soelution de cette equation fournit

e 3,94.

On peut remarquer que la fleche totale au milieu du panneau vaut

ft (e + e0)t 18 mm,

alors que la valeur experimentale est d'environ 18,2 mm [5].
Le rendement de la table de compression vaut

Pr 0,684

et montre que la distribution transversale des efforts est loin d'etre uniforme.
Des lors, pour calculer le rendement partiel des sous-panneaux, on doit pro-
ceder comme explique au par. 10.2.

On pourra ä cet effet utiliser la formule de Faulkner, puisque la contrainte
critique de voilement du sous-panneau isotrope est de —20,65 kg/mm2 et
correspond ä un indice de postcriticite n= 1,45.

La distribution des efforts Nx est donnee par (10.3) oü A2 et px sont fournis
par les relations (5.3b) et (6.2) et valent
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A2 -59,07-IO4,

px — 73,57 kg/mm.

On obtient done

Nx - 73,57 + 36,44 cos
2ny

b '

Les ordonnees moyennes pour chacun des sous-panneaux valent:

a) Panneaux exterieurs

4T b b'2 2ttu 1

Nft T -73,57 - + 36,44 J cos —r-~dy\
b L 4 b/4: b J

-73,57-23,21 -96,78 kg/mm,
=ext -25,20 kg/mm2.

b) Panneaux interieurs

4T b &/4 2ttv 1

^^ ^[-73,57| + 36,44oJcos-p^J

-73,57 + 23,21 -50,36 kg/mm,
5£». -13,11 kg/mm2.

On peut done calculer les largeurs effectives de töle isotrope par (1.4) avec

B 2,29

et armax — 25,20 kg/mm2 (panneaux exterieurs)
—13,11 kg/mm2 (panneaux interieurs)

7-7) 0,724,

0,881.

ext

®\b'!int

t 4t lb'e\ 0.724 + 0,881 AQA_Le rapport h-|) 0,803
\b fequ. "

et le rendement partiel est done

p 0,831

d'oü Pg 0,684x0,831 0,568

et äu — 17 kg/mm2

Dubas obtient experimentalement un rendement pg nettement plus faible,
de 0,39. Les nouveaux essais que nous comptons realiser prochainement nous
permettront nous l'esperons, d'eclaircir la raison de ce desaecord.
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13. Application de la presente theorie au pont sur le Danube ä Vienne

La theorie developpee ci-avant permet egalement d'expliquer 1'accident

survenu, le 9 novembre 1969, au pont en caisson sur le Danube ä Vienne.
II resulte du rapport des experts [2] que la cause primaire des degäts est le

voilement d'un panneau des caissons dans une des travees laterales du pont
(Fig. 11).

Les donnees necessaires au calcul et ä la comparaison nous ont ete obligeam-
ment communiquees par le Pröfesseur Sattler, que nous tenons ä remercier
vivement ici.

3me

A37

töle 10 mm

2,5m

Ä44

1,5m

50mm

._ £ -
3 E d»

S2I

A

4.0m

ifc[170 mm

Joint de t5le

chongement type roid.long.
Entredistance des raidisseurs longitudinaux : 580 mm

Fig. 11.

Le panneau accidente devait presenter une courbure initiale particuliere-
ment elevee par suite du soudage bout ä bout de la töle et des raidisseurs, qui
changent de section dans ce panneau.

Le calcul exact de la Performance de ce panneau etant impossible, nous

y substituons, comme les experts, un panneau simplifie.
Ce panneau a les dimensions suivantes:

a 8000 mm,
b 7540 mm,
t 10 mm.

Les raidisseurs longitudinaux, au nombre de 12, sont entredistants de 580 mm,
et constitues de plats 160 x 12. Le seul raidisseur transversal est median et ses

caracteristiques estimees d'apres les renseignements en notre possession sont:
section 8000 mm2 et rigidite flexionnelle unitaire By 3- IO9 kgmm.
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La limite elastique est de 29 kg/mm2. On admet en outre

E 21 000 kg/mm2

v 0,3.

La fleche initiale est d'abord prise egale ä l'epaisseur de la töle, done e0=l.
Pour etudier ce probleme, on doit proceder en deux etapes, c'est-ä-dire

etudier:

a) le panneau complet en admettant que le raidisseur transversal est entraine
lors du voilement;

b) un des sous-panneaux en supposant que le raidisseur transversal constitue
une ligne nodale pour le voilement.

On donne ci-apres en parallele les resultats des deux calculs:

Sous-panneaux

oc 0,530

D 23,077-IO4 kg/mm
Dx 30,030-IO4 kg/mm
Dy 23,077- IO4 kg/mm
D 21,0- IO4 kg/mm
ex 19,5 mm

ey =0
B 1,923- 106kgmm
Bx 5,36-108kgmm
By 1,923-106kgmm
Bxy 1,287 -106kgmm

Panneau entier

OL 1,058

D 23,077-IO4 kg/mm
Dx 30,030-IO4 kg/mm
Dy 27,28-IO4 kg/mm
D 20,067-IO4 kg/mm
Cx 19,7 mm

e» 58,7 mm
B 1,923-106kgmm
Bx 5,36-IO8 kgmm
By 30,00-IO8 kgmm
Bxy 1,287-IO6 kgmm
Byx 0,540-IO6 kgmm
Bx 5,29-IO8 kgmm
By 29,42-IO8 kgmm
C 87,94-IO6 kgmm

acr =—51,7 kg/mm2

Bx 5,27-IO8 kgmm
By 1,923-IO6 kgmm
C 2,566- IO6 kgmm

ocr — 24,6 kg/mm2

Le critere de ruine s'ecrit:

+ ll,30-10-4e(e + 2e0) 0,562,
€ + €,e + e0

La Solution e vaut
€ 1,25, e 4,95.

Le rendement de la table de compression est de

p, 0,995, Pl 0,811

+ 10-2e(e + 2£0) 1,177.
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La contrainte critique de la töle isotrope

_
75920 xlO2

Gcr ~ (580)2

est teile que l'indice de postcriticite

—22,6 kg/mm2

permet d'appliquer la formule (1.4) de Faulkner pour calculer la largeur
effective de töle.

On calcule alors le parametre

B 2,15

et on admet que, pour chacun des sous-panneaux, ^fmax Pt^ey done

°'max - 28,9 kg/mm2, a'max - 23,5 kg/mm2,

tt =0,718, ^ =0,797,
b b

p' =0,789, p =0,848.

On peut alors calculer le rendement global

pg 0,785, Pg 0.688

et la contrainte ultime moyenne

öu -22,77 kg/mm2, öu -19,95 kg/mm2.

Le rendement local p est evidemment (cf. formule (1.4)) d'autant plus faible

que la contrainte o'max, et par consequent le rendement pt, est plus eleve.

Quant au rendement global pg ptp on peut aisement le mettre sous la
forme:

2 /- Qr 2
-B^Pt+b^Pt-ß^

en remplagant, dans l'expression de p o'max\Re par pt.
Cette formule montre que les rendements globaux pg se classent toujours

dans le meme ordre que les rendements pt.
On aurait done pu, ä partir de l'etablissement des valeurs de pt, se dispenser

d'aehever les calculs pour le panneau entier.
On a egalement effectue le calcul du sous-panneau pour des valeurs plus

faibles de la fleche initiale, ä savoir e0 0,5 et e 0 (plaque parfaitement plane).
Les principaux resultats sont repris au tableau ci-apres, en regard des valeurs
obtenues pour e0 1.
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Grandeurs €0=1 e0 0,5 _r0 0

€ 4,95 4,75 4,21
Pt 0,811 0,850 0,903

v'max (kg/mm2) -23,52 -24,65 -26,19
be/b 0,797 0,757 0,741
p 0,848 0,817 0,805
Pg 0,688 0,695 0,727

au (kg/mm2) -19,95 -20,16 -21,08

Si l'on adoptait, conformement ä certaines recommandations, une fleche
initiale valant 1/1000 de la largeur du panneau, on aurait /0 7,56 mm, ce qui
correspond ä e0 0,756.

Des informations qui nous ont ete communiquees par le Pröfesseur Sattler,
il ressort que:

a) La contrainte critique du panneau entier, calculee par la theorie lineaire
du voilement, valait —22,1 kg/mm2.

b) La contrainte admissible de ce panneau pendant la periode de montage
etait, selon les Normes Autrichiennes:

}ad 1,25
-17,6 kg/mm2

et la contrainte maximum sous poids mort calculee par le Bureau d'Etudes
du pont etait inferieure ä cette contrainte admissible.

c) A cause d'erreurs sur la distribution du poids mort, la contrainte reelle de

poids mort, au moment de 1'accident etait, selon le Pröfesseur Sattler:
°pm ~ 19>8 kg/mm2.

d) Les effets thermiques estimes par le Pröfesseur Sattler ont provoque une
contrainte supplementaire de 2,6 kg/mm2, de sorte que la contrainte totale
au moment de 1'accident etait de

at —22,4 kg/mm2.

Comme notre theorie donne, pour une fleche initiale nulle

äu —21,1 kg/mm2

et pour une fleche initiale vraisemblable de 0,5 ä 1 fois l'epaisseur de la töle,

äu ^ — 20 kg/mm2

nous considerons qu'elle fournit l'explication de la ruine.
Ces calculs montrent que la contrainte de ruine est, dans le cas actuel,

inferieure ä la contrainte critique de voilement donnee par la theorie lineaire.
Par consequent, si l'on veut s'en tenir ä cette theorie, il faut augmenter au
plus tot les coefficients de securite pour les differents cas de sollicitation.

Quant ä nous, nous preconisons d'evaluer la resistance ultime äu des pan-
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neaux raidis par la theorie developpee dans ce memoire, puis d'adopter comme
contrainte admissible

°aä ->
s etant le coefficient de securite correspondant au cas de sollicitation considere
(c'est-ä-dire, en Belgique, s= 1,5 pour le cas / de sollicitation et s 1,33 pour
le cas II).

Nous avons egalement calcule la charge ultime du panneau comme indique
au par. 1 en considerant que le raidisseur plus une bände de töle de largeur
effective b'e perit par flambement, pour une contrainte moyenne Grmax dans la
töle egale ä la contrainte de flambement a{Jr de la piece comprimee.

On remarquera que b'e depend de o'max par la formule de Faulkner et que
d'autre part, o'max depend des caracteristiques de la piece comprimee et, des

lors, de b'e; on doit done proceder par approximations successives jusqu'ä ce

que la valeur o'max prise en compte dans le calcul coi'ncide avec la valeur de la
contrainte critique de flambement o{*. de la piece comprimee. On a done les

relations
B 2,15,

f 0,928 /^EI-0,215*"" ' I amax I I ^rnax I

g (distance du centre de gravite au plan moyen de la töle)
1920x85

1920 + 10 6;
(b'e en mm)

/ =^\-2 + 106^+1920(85-0)*

Q 1920+ 106^,

• -il-
4000

A

a£ -29^ kg/mm2.

Le coefficient de reduction cf>n a ete determine ä partir de la courbe C proposee
par la Commission 8 de la Convention Europeenne de la Construction Metallique,

valable pour les profils composes par soudage [27].
Apres quelques tätonnements, on aboutit ä:

^max ^er

et b' 509 mm.

•11 ^ _ 14,5 kg/mm2

On constate qu'une teile methode de calcul conduit dans le cas present ä un
vrai gaspillage d'aeier; l'economie realisee par 1'application de la theorie
proposee est de l'ordre de 39%.
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Conclusions

Les essais du pröfesseur Dubas [5] et les considerations developpees par
nous ailleurs [6] ont montre clairement que 1'application de la theorie lineaire
du voilement avec les coefficients de securite classiques

s 1,35 dans le cas I de sollicitation,
s 1,25 dans le cas II de sollicitation

(montage p. ex.) ä des poutres de pont en caisson raidies est dangereuse parce
que la reserve de resistance postcritique est nettement plus faible que dans
les poutres ä äme pleine de sorte que la methode donne une securite ä la ruine
nettement insuffisante.

II importe cependant de ne pas tomber d'un extreme dans l'autre. Si l'on
fait abstraction de toute reserve de resistance postcritique, on est amene ä

concevoir la resistance ultime de la plaque raidie comme etant la somme des

charges critiques de flambement des colonnes formees des raidisseurs
longitudinaux et d'une bände de töle egale ä la valeur de la largeur effective.

Les exemples numeriques presentes au paragraphe 13 montrent que cette
methode, si eile donne toute securite, conduit ä un reel gaspillage d'aeier.

L'objet du present memoire est le developpement d'une theorie non lineaire
des plaques raidies formant membrures comprimees des grands ponts en caisson

en acier, qui prenne en compte la reserve de resistance postcritique de ces

plaques.
L'analyse du probleme (par. 2) montre que la reserve de resistance plastique

est tres faible dans le type de structure considere et qu'on peut obtenir une
valeur suffisamment precise de la charge de ruine par une theorie elastique
en exprimant que la contrainte longitudinale moyenne de membrane le long
des bords lateraux de la plaque atteint la limite elastique de compression
simple R'e — Re.

Dans notre esprit, cette theorie represente l'equivalent, pour les ponts en
caisson, des methodes de dimensionnement ä la ruine des poutres ä äme pleine,
ä savoir le modele de Basler-Thürlimann et les perfectionnements divers qui
lui ont ete apportes au cours du Colloque de Londres en mars 1971.

Nous preconisons de dimensionner les ponts en caisson en adoptant, vis-a-vis
de la contrainte de ruine üu determinee par notre theorie, la meme securite que celle

qui est imposee par la Norme vis-a-vis de la limite elastique de Vacier pour le cas
de sollicitation considere.

Les exemples numeriques d'application developpes aux paragraphes 12 et
13 montrent:

1. que la theorie proposee permet d'expliquer l'accident survenu, le 9 novem-
bre 1969, au pont sur le Danube ä Vienne;

2. que cette theorie est en aecord satisfaisant avec le tres petit nombre de
resultats experimentaux connus.
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Ces resultats sont cependant en nombre nettement insuffisant pour consti-
tuer un test reellement valable. C'est pourquoi, vu l'actualite du probleme,
il est urgent d'entreprendre des essais jusqu'ä la ruine sur poutres en caisson
raidies ayant les proportions des grands ponts realises ces dernieres annees
et d'enregistrer soigneusement un maximum d'informations sur le comportement

de ces poutres dans le domaine postcritique et surtout au voisinage de
la ruine.

Un obstacle ä 1'application pratique de la presente theorie est sa complexite
mathematique. II ne nous est pas paru possible de reduire cette theorie ä des

abaques simples de dimensionnement.
Si l'on dispose d'un petit ordinateur, on peut utiliser le petit programme de

calcul que nous avons elabore et obtenir la Solution en quelques secondes. Ce

programme, ecrit en FORTRAN IV, sera envoye ä tout lecteur qui en fera
la demande.

Par ailleurs, on peut simplifier partiellement le calcul manuel en rempla9ant
les rigidites modifiees selon Pfluger par leurs expressions classiques. Divers
exemples numeriques nous ont en effet montre que l'erreur qui en resulte est
generalement tres faible.

Annexe

Theorie non-lineaire des plaques membranes orthotropes legerement courbes ä

nervures dissymetriques

1. Introduction

La theorie non-lineaire des plaques planes orthotropes ä nervures
dissymetriques est due ä Pfluger [24]. Nous en avons donne un expose en 1959 [25]
dans les «Memoires de l'A.I.P.C.» en vue:

a) de montrer que ce type de plaques n'obeit pas ä l'equation classique de

Huber [22]

^^ + 2Cä5^ + ^ä7=5p(a?'y) (L)

gouvernant les plaques ä materiau orthotrope; en particulier, il n'a pas de

plan moyen determine;

b) d'essayer neanmoins d'obtenir, par des considerations energetiques, les
valeurs moyennes des rigidites flexionnelles qu'il convient d'introduire dans

l'equation de Huber (1.1) afin d'obtenir les meilleurs resultats numeriques
dans l'analyse, par cette equation, d'un pont ä poutres multiples.
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Dans la presente Annexe, nous nous fixons comme buts:

a) d'etendre la theorie de Pfluger en tenant compte ä la fois des contraintes
de membrane et d'une legere courbure initiale de la töle isotrope;

b) de determiner, par cette theorie, les expressions des rigidites extensionnelles
et flexionnelles qu'il convient d'introduire dans les equations generalisant
ä la fois l'equation (1.1) de Huber et celles de von Kärmän-Marguerre,
afin d'obtenir les meilleurs resultats numeriques dans l'analyse, par ces

equations, de la table raidie comprimee d'une grande poutre en caisson;
c) d'evaluer, par des calculs numeriques comparatifs, l'erreur commise par

l'introduction des diverses simplifications discutees en detail au
paragraphe 2 du memoire.

2. Equations fondamentales

2.1. Hypotheses de calcul

On analyse ci-apres le comportement d'une dalle isotrope renforcee par
deux familles orthogonales de nervures identiques et regulierement espacees,
disposees d'un seul cote de cette dalle, et qui peuvent etre faites d'un autre
materiau que la dalle elle-meme (Fig. A. 1) ou meme de plusieurs materiaux.

1^1

Fig. A. 1.

Les hypotheses adoptees ci-apres sont les memes que celles mises ä la base
de la theorie des plaques membranes par von Kärmän et Marguerre:
1. Les materiaux composant la plaque nervuree obeissent ä la loi de Hooke.
2. Les deformations de flexion obeissent ä l'hypothese de Bernoulli, selon

laquelle des sections planes faites normalement au feuillet moyen de la
dalle restent planes et perpendiculaires ä ce feuillet apres deformation.

3. On neglige le gauchissement de ces sections provoque par les contraintes de
cisaillement.

4. Les deplacements des points du feuillet moyen perpendiculairement ä ce

feuillet sont du meme ordre de grandeur que l'epaisseur de la dalle, de
sorte que les extensions de ce feuillet ne peuvent plus etre negliges.
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En plus de ces quatre hypotheses, nous admettons:
5. Que les efforts de cisaillement paralleles au feuillet moyen sont repris

exclusivement par la dalle isotrope; cette hypothese est d'autant mieux
verifiee que les nervures sont plus minces dans le sens parallele ä la plaque.

6. Que, pour 1'evaluation des moments de torsion dans la plaque, les nervures
peuvent etre supposees detachees de la dalle isotrope.

7. Que les effets provenant du gauchissement des sections droites des nervures
sont negligeables, de sorte que ces nervures suivent en torsion les lois de

la torsion uniforme selon Saint-Venant.

2.2. Notations

2.2.1. Les axes coordonnes sont disposes comme suit: Le plan z 0 est le plan
moyen de la dalle isotrope; les axes x et y sont paralleles aux deux familles
de nervures.

Les composantes du deplacement d'un point du plan moyen suivant les

axes x, y, z. sont designees par, u, v, w.
On designe par:

t: l'epaisseur de la dalle;
E, v le module de Young et le coefficient de Poisson des materiaux inter-

venants;
bx, by\ les distances entre deux nervures successives paralleles ä Oy et ä Ox,

respectivement;
()', ()': les derivees partielles par rapport ä x et ä y, respectivement.

2.2.2. Rigidites extensionnelles unitaires de la dalle isotrope:

de la plaque nervuree:

Dx ±(E(z)dQx, Dv ^\E{z)dQy.
x J y J

bx by

Les notations J et J representent des integrales etendues aux sections de la
bx by

plaque nervuree de largeurs bx et by respectivement (Fig. A. 1).

2.2.3. Distances des axes neutres des nervures au plan moyen z 0'

^ -^-h(z)zdQx, ey ¥iw{E{z)zdÜy. (2.2)
x x J y y J

bx by

2.2.4. Rigidites flexionnelles et torsionnelles unitaires. Rigidite de la dalle
isotrope:
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Rigidites flexionnelles unitaires de la plaque nervuree par rapport aux axes
neutres correspondants:

Bx ±-\E(z)(z-ex)*dQx, By ±JE(z)(z-eydQy. (2.3)
bx by

Dans les integrales (2.1) ä (2.3) ci-dessus, il faut remplacer E par Ej(\—v2)
dans la partie de 1'integrale relative ä la dalle isotrope.

Les rigidites torsionnelles unitaires des nervures Bxy et Byx, sont ä determiner

en se basant sur la theorie de la torsion de Saint-Venant. Dans le cas

particulier frequent oü ces nervures sont ä section ouverte et ä parois minces,
on calculera bxBxy et byByx par la formule G/3^bts, oü b est la largeur d'un
des rectangles d'epaisseur t faible composant la section droite de la nervure.

Si M*y et M*x sont les moments de torsion unitaires repris par ces nervures,
on a les relations

™xy -BxyOxy ™yx Byx6yx, (a)

oü 8xy et 6yx sont les angles de torsion unitaires des nervures paralleles ä l'axe
des x et ä Taxe des y, respectivement. Dans ces formules, les moments M* et
les torsions sont mesures positivement dans le sens d'un tire-bouchon visse
dans le sens positif des axes x ou y. D'apres cette Convention et l'hypothese 2,

on a 8xy w" et 6yx —w", ou w" represente d'ailleurs la torsion geometrique
de la dalle isotrope; en rempla^ant les 6 par ces valeurs dans les formules (a),
on trouve les relations

M*y Bxyw", M*x -Byxw". (2.4)

Introduisons encore la notation

C B + Bxv + Byx. (2.5)

2.2.5. Etat de contrainte dans la plaque nervuree. La dalle isotrope est en etat
double de contrainte caracterise par les composantes ax, oy, rxy et est en outre
le siege de contraintes tangentielles transversales rxz et ryz. Les nervures sont
le siege de contraintes normales ox ou ay, ainsi que de contraintes tangentielles
rxz, ryz, provoquees par leur torsion ä la Saint-Venant.

La loi de Hooke fournit entre ces contraintes et les deformations correspon-
dantes les relations suivantes:

Dans la dalle isotrope:

1 1 t™ / „ E

d'oü l'on deduit

y
±(oy-vox), yxy=^ (a^cG 2^))'

E E E
<Tx=J—^(€x + V€y), €y Y~^(€v + V€^> Txy =T(JTv)7xv' ^'6^
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Dans les nervures, on a

°x E €x > Gy Eey (2.7)

parce qu'il est connu que la torsion ä la Saint-Venant ne produit aueune
dilatation ex, ey ou ez du materiau.

2.2.6. Efforts resultants unitaires dans une section droite. On definit les efforts
resultants dans une section droite comme dans la theorie classique des plaques
isotropes; ces efforts se divisent en deux groupes:

A. Efforts de Vetat membranaire (paralleles au plan moyen de la plaque):

Efforts normaux

bx " öi

y ~b~) °ydQy (2.*

Efforts de cisaillement paralleles au plan moyen:

bj^ xv ~ u TxvdMx,xy l I ' xy^uux'
ux J
dalle

N„
dalle

Tyxtäy (2.8)

Les deux dernieres integrales ne s'etendent qu'ä la dalle isotrope parce que
les contraintes de cisaillement dans les nervures paralleles au plan moyen sont
supposees nulles en aecord avec l'hypothese 5.

Vl/Mv,

//'-yt13 Fig. A. 2.

B. Efforts de Vetat de flexion (les sens positifs de ces efforts sont definis ä la
figure A. 2):

— moments flechissants par rapport aux axes x et y situes dans le plan moyen
de la dalle

Mx =lJ(J*zdQ*> Mv =lJavzdQv (2-9)
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— moments de torsion (positifs dans le sens positif des axes x et y)

M*v -7 \T*v zdQ* + M*y' M»* -1T T^z dQ»+ M*» ¦ (2-9)
°xJ uyJ
dalle dalle

Efforts tranchants normaux au plan moyen

Tx yxsdQx, Ty=yysdQy. (2.9)
bx by

2.3. Equations d'equilibre

La plaque nervuree est supposee chargee de forces normales ä son plan
moyen, reparties avec l'intensite p(x,y).

L'equilibre de translation parallelement au plan moyen donne les deux

equations (classiques en elasticite plane)

K + Nyx 0, N'xy + Ny 0 (2.10)

parce que les angles d'inclinaison sur l'horizontale des elements dx et dy sont
suffisamment faibles, d'apres l'hypothese 4, pour que leurs cosinus soient pris
egaux ä l'unite.

L'equilibre de translation normalement au plan moyen et 1'equilibre de

rotation donnent les 3 equations suivantes (cf. par exemple [23]) *)

*) Dans le memoire original de Pfluger [24], on trouve les equations d'equilibre
ecrites sous la forme:

N'x + N-yx + 2Tu'-=0,
Ny + N'Xy-N(v"-ew"-) + 2Tv" 0,

Mx + -MXy + MyXY' + M'y -N {w" + ev"' - e2 w"'') + 2 Tw'- 0

oü N — N%) et T Nxy sont l'effort constant de compression excentre de e dans le

sens x et l'effort constant de cisaillement, respectivement, existant avant voilement,
dans le cas oü la plaque raidie est initialement parfaitement plane.

Dans nos applications pratiques, T sera toujours nul. De plus, nous negligerons les

termes en N apparaissant dans les 2e et 3e equations, qui sont egalement negliges par
Giencke ([33] p. 56). En effet, les deformations dans le plan (x, y) sont tres petites et,

par consequent, on peut negliger le terme —Nv" dans la deuxieme equation et le terme
— Nev" dans la troisieme equation.

Enfin, le terme (—e2w"") de la troisieme equation est negligeable devant le terme
en w". En effet, en adoptant comme deformee de la plaque l'expression

TTX TTV
w /ll cos — COS -r—

on trouve:
o // n2 ^^ w2/ /i o

77"2\

w —e2w " Zu cos — cos -j— 1 — e^ tt I •
a2 a b \ b2l

II est visible que la correction — e2w"") conduit ä remplacer l'unite par le terme

(1 — e2Tr). Pour une plaque normale de grand pont, on a e^ 10 cm b 1000 cm, d'oü

e2 tt2
IO-3 (negligeable).

b2
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T; + Ty +Nx(w'0' + w")+Ny(wö+W) + 2Nxy(w-0'+w-')+q 0,

-M'xy + Mx-Ty 0, M'x + M-yx-Tx 0.

En eliminant les efforts tranchants Tx, Ty, entre ces trois relations, on trouve
l'equation:

Mx' + (-Mxy + Myxy + My + Nx(w'0' + w") + Ny « +W)
+ 2Nxy(w-0' + w-')+q 0.

(2.12)

2.4. Etat de deformation de la plaque nervuree

L'etat de deformation du plan moyen de la dalle est caracterise:

a) par ses deformations membranaires, c'est-ä-dire par les dilatations

ex u' + \(w^ + w'Y-\w^9 ey v'+i(w0 + w')2-±w02 (2.13)

et par la distorsion

Yxy u +v' + (W0 + w')(Wq + w,)-w'0Wq. (2.14)

b) par ses deformations flexionnelles, c'est-ä-dire les courbures

Xx -w"> Xy -™' (2-15)

et la torsion geometrique
exu -Oux w'\ (2.16)

En vertu de l'hypothese N° 2 (Bernoulli), l'etat plan de deformation en un
point de la dalle situe ä la distance z du plan moyen est donne par les relations:

€x eX + zXx> €y *y + zXy> Yxy Yxy-2 zXxy • (2-17)

En eliminant u et v entre les expressions (2.13) et (2.14), on obtient la condition
de compatibilite qui les lie

e'x+ey-Yxy (^o'+^')2-(^o'+^'')(^O,+^,0-^O,2 + ^o'^O,• (2-18)

2.5. Expressions explicites des efforts unitaires

A 1'instar de von Kärmän, introduisons une fonetion de contrainte regis-
sant le tenseur de membrane par les relations

Nx=<(,~, Ny <j>", _Vw -f, (2.19)

qui satisfont identiquement aux deux premieres equations d'equilibre (2.10).
En rempla9ant, dans les expressions de definition (2.8) et (2.9) des efforts

unitaires, les contraintes par leurs expressions (2.6) ou (2.7) en fonetion des

deformations, puis les deformations par leurs expressions (2.17), et en tenant
compte des relations (2.4), on obtient les formules:
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Nx Dx(*x-ZxW")+vDZy <£">

Ny =Dy(£y-eyw-)+vD£x <f>",

Nxy Nyx =^2~DYxv -</>">

Mx —Bxw"~vBw" +exDx(ex — exw"),
My — Byw" —v Bw" + eyDy (£y — eyw"),
Mxy [(l-v)B + Bxy]w",
MyX -[(l-v)B + Byx\w".

Resolvons (2.20) par rapport ä £x, ey, yxy; il vient:

vD
(l~^)Dx^x (<l>" +exDxw'')-jT-(<l>" + eyDyw")>

vD
(\-v2)Dyly (<f>" + eyDyw-)-Tr(<}>- +exDxw"),

1Jx

-77-DYxy ~<t>"

(2.20)

(2.21)

(2.22)

avec
D

V — z V

i^XDy
(2.23)

En remplagant ex et ey par leurs expressions (2.22) dans (2.21), on trouve,
pour les composantes du tenseur-moment, les expressions explicites en fonetion

de w et c/>:

M„ =-B„w

Bw"+jj^^4>" + evDytfMy -ByW" ~V

Mxy [(l-v)B + Bxy\w",
Myx -[(l-v)B + Byx\w'f.

2.6. Equations fondamentales

2.6.1. Equation de compatibilite. Remplagons dans la condition de compatibilite

(2.18), ex, ly et yxy par leurs expressions (2.22); il vient, en multipliant
les deux membres par (1 — v2)

y+iy+^+^'^"'--y^7'''y7'")'
(1-v2)[(Wq + w")2-(w'0' +w'')(wq +w'')-Wq2 + w0' Wq]

moyennant la notation

(2.25)
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D l~VD2 D. (2.26)

l~VD^Dy

C'est la premiere equation fondamentale, dite de compatibilite.

2.6.2. Equation d'equilibre. En introduisant les expressions (2.24) dans

l'equation d'equilibre restante (2.12) et en posant pour simplifier

- v2
B B - e2 D^x ^x i _-2,x -^x •>

By By-y^elDy, (2.27)

C B + -(Byx + Bxy) + y^-2exeyD,

on obtient la seconde equation fondamentale, dite d'equilibre:

Bxw'''72Cw''--+Byw----+T^Jey^r-7ex^r')-^'f>--''
v (2 98)

-<£** (Wo+w'')-<f>''(w0'+w'') + 2(l)''(w0' + w'')-q 0.

2.7. Forme simplifiee des equations fondamentales

Les equations fondamentales (2.25), (2.28) se simplifient considerablement
si on y neglige tous les termes qui contiennent explicitement les excentricites
ex et ey. Elles s'ecrivent alors:

Dx D
+

Dy
(2 29)

(1-V2) [(Wq +W")2- (Wq +W") (Wq +W")-W'Q'2 + WqWq]

Bxw"" + 2Cw"" +Byw"" <f>n (w'q +w") + (f>" (wq +w")-2<f>" (w0' + w").

C'est sous cette forme que les equations fondamentales ont ete appliquees
dans le present memoire. Cette forme est litteralement identique aux equations
des plaques membranes faites d'un materiau orthotrope mais les expressions
des rigidites extensionnelles et flexionnelles sont cependant differentes. Une
fois w et <f) determines par integration des equations (2.29), les composantes
du tenseur se determinent par les formules (2.19). Quant aux composantes du
tenseur moment, on peut les determiner, soit par les formules (2.24), soit par
les formules plus simples

Mx =-Bxw"-vBw"+ex<j>~,
My =-Byw~-vBw" + ev4>"9

Mxy \_(\-v)B + Bxy\w",
[ ' }

Myx -[(l-v)B + Byx]w",
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obtenues en gardant la partie principale des termes correctifs, soit enfin par
les relations

Mx -Bxw" -vBw"
Mu -Bvw" -vBw",

(2 31)
Mxy [(l-v)B + Bxv]w7 l ' '

Myx -[(l-v)B + Byx]w-',

qui sont fournies par la theorie des plaques membranes ä materiau orthotrope.

3. Expression mathematique de la condition que les deux bords paralleles x ± a/2
forment des lignes nodales rectilignes, mais qui peuvent se rapprocher

La condition cherchee s'ecrit evidemment

8X Cste (independant de y),
ro/2

mais Sx u(x a/2) — u(x —a/2) \u' dx constante. (2-31)
-a/2

De la premiere relation (2.22) oü l'on neglige les termes en ex et ey pour rester
coherent avec les formules (2.31), on deduit

(l-i*)Dxix 4>~ --£</>".
Uy

En egalant la valeur de ex tiree de cette relation avec celle donnee par la
premiere formule (2.13), on deduit, en tenant compte de (A. 2.23):

«' ^K+-T+|<~(£^
En remplagant u' par cette valeur dans (2.31), on obtient la condition cherchee

/fe (£ " Wir/') ~ i««'>!+H * - <*•¦ ^-a/2 x v

Notations

B Rigidite flexionnelle unitaire de la dalle isotrope

B — V-^r Coefficient de Faulkner
t i E

Bx Rigidite flexionnelle unitaire selon 0 x de la plaque nervuree
By Rigidite flexionnelle unitaire selon Oy de la plaque nervuree
Bxy, Byx Rigidites torsionnelles unitaires des nervures paralleles ä Ox et

0 y respectivement
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Rigidites flexionnelles unitaires modifiees selon Pflüger
Rigidite torsionnelle de la plaque nervuree
Rigidite extensionnelle unitaire de la dalle isotrope
Rigidite extensionnelle unitaire selon Ox de la plaque nervuree
Rigidite extensionnelle unitaire selon Oy de la plaque nervuree
Rigidites extensionnelles unitaires modifiees selon Pflüger
Rigidite torsionnelle unitaire modifiee selon Pflüger
Module d'elasticite
Module d'elasticite tangent

Bx,
C

By

D
Dx
Dv
D,Dx,Dy
C

E
Et

F' ¦¦

F' --

_dF~
dy

dx
I
MX,MV
M M¦"*¦ xy' -"*- yx
Nx,Ny,Ä
P
Pe
Pe

K
a
b

b'

d

ex ' ey

/o

/
i
m

n
G

Px
s

t

U, V W

w0

w

x,y z

oc

8

Moment d'inertie
Moments flechissants unitaires
Moments de torsion unitaires
Efforts membranaires unitaires
Effort de compression ä la ruine
Charge critique de flambement eulerien elastique
Limite apparente d'elasticite en traction
Limite apparente d'elasticite en compression
Longueur du panneau
Largeur du panneau
Entredistance des raidisseurs longitudinaux
Largeur effective du sous-panneau isotrope
Hauteur de l'äme
Distance des axes neutres des nervures paralleles ä Ox et Oy
respectivement, par rapport au plan moyen de la dalle isotrope
Fleche initiale au centre du panneau
Fleche additionnelle au centre du panneau
Rayon d'inertie
Nombre de raidisseurs plus un

Indice de postcriticite

Effort moyen unitaire agissant sur le panneau dans la direction Ox
Coefficient de securite
Epaisseur de la dalle isotrope
Deplacements selon les axes Ox, Oy, Oz

Deformee initiale
Deformee additionnelle
Axes de coordonnees, lies au centre du panneau
Rapport ajb des dimensions du panneau
Aire relative d'un raidisseur
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8X>

€

So

folt
-fit

*x>

*-xi

X

€y > Yxy

€y' Yxy

X

V

V

ax> Gy> Txy

Gcr

o'cr

^mt izr -*¦

aad

°u
fTraidur

P * Pp

Pt

Pg PtP

ßa
Qt
Qr

Deplacements relatifs selon Ox
Fleche initiale relative
Fleche additionnelle relative
Deformations unitaires
Deformations unitaires membranaires
Fonetion de contrainte
Elancement ou minceur
Elancement reduit
Coefficient de Poisson
Coefficient de Poisson modine selon Pflüger
Contraintes
Contrainte critique de voilement du panneau continu de Substitution

Contrainte critique de voilement d'une plaque isotrope
Contrainte longitudinale membranaire maximum dans le
panneau raidi atteinte au droit des ämes du caisson (Fig. 6)

Contrainte longitudinale membranaire maximum dans un sous-

panneau atteinte au droit des raidisseurs bordant ce sous-

panneau (fig. 5)
Contrainte longitudinale membranaire moyenne sur la largeur
V d'un sous-panneau (fig. 5)
Contrainte longitudinale membranaire moyenne sur la largeur
b du panneau raidi (fig. 6)

Contrainte admissible
Contrainte longitudinale moyenne ultime
Contrainte moyenne de ruine d 'un raidisseur muni d 'une largeur
effective de töle
Facteur de forme
Rendement partiel
Rendement de la table de compression
Rendement global
Aire de la section transversale d'une äme du caisson
Aire de la section transversale de la semelle inferieure
Aire de la section transversale d'un raidisseur
Aire de la section transversale de la semelle superieure
Aire totale de la section transversale du caisson
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Resume

Divers accidents ont recemment attire l'attention sur le probleme des ponts
en caisson raidis en acier. Les auteurs ont montre ailleurs [6] que les coefficients
de securite 1,35 ou 1,25 generalement adoptes lors de l'application de la theorie
lineaire du voilement des plaques comprimees raidies sont insuffisants.

Dans le present memoire, ils etablissent une theorie ä la ruine des plaques-
membranes comprimees ä raidisseurs dissymetriques et ä deformation initiale,
et l'appliquent au probleme des ponts en caisson.

Zusammenfassung

Verschiedene Unfälle haben jüngst die Aufmerksamkeit auf das Problem
stählerner ausgesteifter Kastenträger-Brücken gelenkt. An anderer Stelle [6]
haben die Autoren gezeigt, dass der Sicherheitskoeffizient von 1,35 bzw. 1,25,
wie er allgemein unter Benützung der linearen Beultheorie von ausgesteiften
Platten verwendet wird, ungenügend ist.

In der vorliegenden Arbeit stellen die Verfasser eine Bruchtheorie
zusammengedrückter Membranplatten bei dissymmetrischer Aussteifung und anfänglicher

Verformung auf und übertragen diese Theorie auf das Problem der
Kastenträgerbrücken.
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Summary

Different accidents have recently called the attention to the problem of
stiffened box girder steel bridges. On a previous occasion the authors [6] have

explained that the security coefficients of 1.35 or 1.25 generally used in the
linear buckling theory of compressed stiffened plates are not sufficient.

In the present paper the authors establish a rupture theory for compressed
membrane plates with dissymmetric stiffeners and initial deformation and

apply the said theory on the problem of box girder bridges.
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