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Théorie non-linéaire de la résistance postcritique des grandes poutres
en caisson raidies

Nichtlineare Theorie der iiberkritischen Festigkeit grosser ausgesteifter
Kastentrdager

Non-Linear Theory of Postbuckling Resistance of Large Stiffened Box Ghirders

R. MAQUOI CH. MASSONNET

Chargé de Recherches du Fonds National Professeur & I’Université de Liége
de la Recherche Scientifique

1. Introduction

Les accidents qui ont frappé, en 1’espace d’un an, trois grands ponts en
acier en caisson (pont sur le Danube & Vienne: 6 novembre 1969 [1], [2], [3],
pont de Milford Haven: 2 juin 1970 [4], pont sur la Yarra a Melbourne: 15
octobre 1970 [5]) joints au résultat étonnant obtenu par le professeur P. DuBas
dans son essai d’une poutre en caisson raidie par des raidisseurs théoriquement
strictement rigides [6] nous ont amenés, dans notre Contribution a la dis-
cussion préparée du Colloque de Londres de I’A.I.P.C. (25 et 26 mars 1971)
a avancer la thése que, dans le cas du pont de Vienne, au moins, la ruine était
imputable & ’application abusive, au cas des caissons, des trés bas coefficients
de sécurité, 1,35 et 1,25, utilisés dans le dimensionnement des poutres & ame
pleine a 1’aide de la théorie linéaire du voilement.

Cette these semble avoir été confirmée plus récemment (juin 1971) par la
nouvelle parue dans la presse, que le Secrétaire d’Etat britannique pour
I’Environnement avait, sur 1’avis d’une Commission Technique présidée par
le Dr. MERRISON, de 1’Université de Bristol, décidé de restreindre le trafic en
fermant une voie de circulation dans chaque sens sur 42 ponts métalliques en
caisson. Tous ces ponts seront soumis & une inspection minutieuse en vue de
déceler d’éventuels signes avant-coureurs de dommages sérieux. En outre,
aucun des 61 ponts en caisson actuellement en construction ne sera ouvert au
trafic avant d’avoir été rendu conforme aux régles provisoires édictées par la
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Commission Technique. Des mesures analogues pourraient étre prises pour
I’Ecosse et le Pays de Galles.

Il nous parait donc qu’il est extrémement urgent de développer, pour les
grandes poutres en caisson raidies, une doctrine de la résistance a la ruine qui
soit paralléle a la doctrine établie pour les grandes poutres & 4me pleine, par
BASLER et THURLIMANN, y compris les extensions et perfectionnements qu’elle
a recus au Colloque de Londres.

A premieére vue, il parait extrémement étonnant que le probléeme examiné
n’ait pas déja re¢u une solution dans la littérature technique, puisqu’il intéresse,
non seulement les constructeurs métalliques, mais encore les architectes navals
et les constructeurs de 1’aéronautique.

A vrai dire, de telles solutions ont été proposées, mais nous ne les considé-
rons pas comme satisfaisantes.

La totalité des publications connues de nous ([7] & [12]) qui étudient la
résistance ultime de panneaux de téle raidis longitudinalement, adoptent le
point de vue suivant:

Pour les dimensions habituellement adoptées, la téle voile d’abord entre
les raidisseurs. La répartition des contraintes se modifie comme représentée
a la fig. 7. On remplace alors les bandes de tole réelle de largeur b’ par des
bandes de tble fictive de largeur effective b, définie par la relation

be _ 19|
= R (1.1)

€

qui transmettent le méme effort de compression d’intensité moyenne |5'|. La
tole étant supposée beaucoup plus large que longue (@ < b), tous les raidisseurs
se comportent a peu pres de la méme maniere et la résistance ultime du pan-
neau est simplement égale a n fois la résistance ultime d’une des colonnes
formée d’un raidisseur et de deux bandes adjacentes de tdle de largeur b,/2
chacune.

Dans son mémoire de 1965 sur la résistance ultime a la flexion longitudinale
des coques de navires, CALDWELL [7] déclare: «Cependant, une méthode géné-
rale de calcul satisfaisante (des panneaux raidis), applicable & toutes les pro-
portions de plaque et de raidisseurs et tenant compte des effets possibles du
cisaillement et de la pression transversale, manque encore. Pour cette raison,
un programme d’essais de compression sur panneaux raidis va étre entrepris
au Royal Naval College de Greenwich (ou ’auteur est professeur).»

En supposant que 1’élancement réduit

s A,/R,
X = A L 1.2
ol (1.2)
des raidisseurs est inférieur a 0,6 (ce qui, pour 1’acier A 37, correspond & un
élancement inférieur & 56) FAULKNER, dans sa discussion du mémoire de

CALDWELL [7], admet que la contrainte de ruine dans les raidisseurs est pra-
tiquement égale a la limite élastique.
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I1 définit le rendement p,, d’'un panneau comprimé comme étant le rapport
de ’effort de compression réel a la ruine a 1’effort plastique maximum R, €.
On a donc par définition, dans le cas particulier envisagé,

b, Q.

C|F@|b t+R,2,  R,(bit+8,) v T (1.3)

p])— Re(b’t"}‘gr) - Re(b,t-l-.Qr) - -Qr ’ .e
bt

en appelant Q, 1’aire de la section droite d’un raidisseur.

FAULKNER déclare avoir analysé ’ensemble des essais sur panneaux raidis
longitudinalement exécutés aux Etats-Unis par VasTa, FRANKLAND [8] et plus
tard par les chercheurs du David Taylor Model Basin [9]. Une expression de
la largeur effective qui correspond raisonnablement & cet ensemble de résul-
tats expérimentaux est

R
—, e 1.4)
B]/lamaxl B (o] ‘
\ b [T,
ou B_7 7 (1.5)

et o,,,, €St la contrainte longitudinale membranaire maximum dans le sous-
panneau, atteinte au droit des raidisseurs bordant celui-ci.

Cette formule est légérement plus optimiste que celle proposée par G.
WINTER [10], & savoir

b, 1,9,/ R, 09 R,
b 'B Iamaxl B2 lomazl
Si, & la ruine, o,,,, est égal a la limite élastique, la formule (1.4) donne
b, 2 1
€ = ——, |
[b,:lruine B B* ( 7)
Remplacant gif par sa valeur (1.7) dans (1.3), FAULKNER obtient la relation
2 1 2,
%“ﬁ%?i
p = Q, ’ (1.8)
1+ b

qui lui permet de tracer 1’abaque de la fig. 1.

Cet abaque n’est malheureusement valable que pour des raidisseurs de
trés faible élancement, ce qui n’est pas le cas normalement rencontré dans
les ponts métalliques en caisson.

Un autre ensemble de recherches intéressantes ont été réalisées au Japon
en 1959 par des spécialistes de la construction navale. YosHIKI et Collab. [12],
[13] obtiennent un accord satisfaisant entre la contrainte moyenne de ruine
expérimentale des plaques raidies essayées par eux et la contrainte de flam-



94 R. MAQUOI - CH. MASSONNET

Po
1,0
0,8 \\.
& \ &:
0,6} ﬁ§ D ?20
) \\ 2,0
0,4 r E 5 E \§ 2:8
’ ] .. 5,0
0,2 -
L ) ) . 8 Fig. 1. '

o
I
ol
IS
o
o

bement de 1’ensemble formé par un raidisseur et deux bandes adjacentes de
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5 chacune, déterminée par la théorie d’ENGESSER-SHANLEY
m2 B,
ag, .

or = 22

toéle de largeur

(1.9)

Si le raidisseur est de forme dissymétrique et & section ouverte & parois minces,
la contrainte critique doit s’évaluer par la théorie du flambement par flexion
et torsion. :

Pour tenir compte de la courbure initiale du raidisseur, il faut remplacer
sa contrainte critique par sa contrainte moyenne de ruine o;%?. Cette con-
trainte est pratiquement atteinte quand la fibre la plus comprimée du rai-
disseur atteint la limite élastique, ce qui, d’aprés une formule classique de
Résistance des Matériaux, s’écrit:

P 1

Pg
ou P est 1’effort de compression & la ruine, f, la fleche initiale du raidisseur,
£ la section formée du raidisseur et d’une largeur de tole égale a b, déterminée
par une formule valable de largeur effective (cf. § 9), ¢ le rayon d’inertie de
cette section, et Py=n%KE I/a® la charge critique de flambement eulérien
élastique pour le flambement hors du plan du panneau. On déduit de (1.10).
(1.11)

e

| graid| (1 + fo _l_) - R

72 1— Q]opaia|
E
formule qui permet de déterminer ¢7%/¢ par tatonnements, mais sans difficulté.
Le rendement global du panneau raidi vaut, dans ces conditions,

|o7aid| Q
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2. Position du probléme

Le probleme de I’évaluation de la résistance & la ruine d’un caisson formé
de quatre parois minces en acier soumis & flexion pure, est d’une difficulté
considérable parce qu’il est influencé a la fois:

a) par la non-linéarité géométrique (effets des grandes déformations);

b) par la non-linéarité matérielle, due a l’entrée en plasticité de certaines
portions de la poutre;

c¢) par 'interaction entre les quatre parois composant ce caisson;

d) par la présence d’un grand nombre de raidisseurs longitudinaux.

En ce qui concerne le point a), nous croyons qu’il est suffisamment bien
établi par nous-mémes [14] et par d’autres [15] que la prise en compte de la
non-linéarité géométrique est absolument indispensable, pour pouvoir nous
dispenser de recommencer cette démonstration ici.

En ce qui concerne le point b), la prise en compte simultanée des grandes
déformations et des déformations plastiques, quoique théoriquement possible
[16], complique & tel point les calculs que, méme avec un ordinateur trés
puissant, ils deviennent extrémement pesants. D’autre part, la théorie de la
plasticité, si elle s’applique couramment aux charpentes, n’est généralement
pas considérée comme adéquate pour les ponts. C’est pourquoi, dans la pré-
sente étude, nous adoptons le point de vue de WoLMIR (17) et de SKALOUD
[18], [19] selon lesquels la ruine d’une plaque membrane comprimée est atteinte
quand la contrainte moyenne de membrane le long des bords latéraux non chargés
atteint la limite élastique R, déterminée en compression simple.

Le Professeur DuBas a montré au Colloque de Londres [5] que, dans son
premier essai, cette hypothése était du coté de la sécurité et était erronée de
6,5%,. Nous pourrons done, si nous le voulons, améliorer la valeur de la charge
de ruine déterminée par notre théorie en la multipliant par 1,065.

En ce qui concerne le point ¢), ci-dessus, on peut constater que l’interaction
entre la table comprimée et le restant du caisson, c’est-a-dire les deux ames
et la table tendue, est beaucoup plus faible que l’interaction entre 1’ame
d’une poutre & Ame pleine et son cadre raidisseur formé des deux semelles et
des deux raidisseurs transversaux adjacents.

D’autre part, la flexibilité des 4&mes dans leur plan est telle qu’on peut treés
raisonnablement adopter pour les bords non chargés de la table comprimée
des conditions d’appui simple (w=70*w/0y®=0) (fig. 2).

En ce qui concerne les conditions aux limites relatives aux contraintes de
membrane, un caisson constitué de plaques parfaitement rectilignes et sollicité
en flexion pue obéirait & la théorie de NAVIER et 1’on aurait, le long des bords
non chargés, N,=N_, =0.

Si I'on tient compte d’une faible courbure initiale inévitable de la table
comprimée, les conditions ci-dessus (¥, =N, =0) doivent rester raisonnable-
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Fig. 2.

ment correctes en régime faiblement posteritique. Or, nous verrons par les
exemples numériques discutés a la fin du présent mémoire que le coefficient
de posteriticité n =g/o,, ne dépasse pas 1,5 pour les caissons habituellement
mis en ceuvre.

Dans le sens longitudinal, la table comprimée présente une série de bosses
alternativement vers le haut et vers le bas, séparées par des lignes nodales
transversales rectilignes (fig. 2); nous pouvons donc limiter nos investigations
au panneau rectangulaire de dimensions a, b, correspondant & 1’une de ces
bosses et délimité par les deux lignes nodales adjacentes A B, C D (fig. 2).

Bien sir, le voilement de la table comprimée entraine le voilement con-
comitant des deux dmes; mais 1’effet de ce voilement sur la valeur du module
de flexion W a la ruine est faible, parce que de toutes facons le module de
flexion des dmes W, ne représente qu’environ 10 pour cent du module de
flexion global, de sorte qu’une diminution de 20 pour cent de ce module W,
n’entrainerait qu’une erreur de 2 pour cent sur la résistance globale a la
flexion du caisson.

En ce qui concerne le point d) ci-dessus, il faut noter que les grandes poutres
en caisson modernes comportent généralement une dizaine de raidisseurs
longitudinaux. Dans ces conditions, il n’est plus mathématiquement possible
d’analyser I’action individuelle de ces raidisseurs, comme SKALOUD et NOVOTNY
Pont fait dans le cas d’un ou deux raidisseurs longitudinaux [18], [20]. Il faut,
au contraire, «tartiner» les rigidités de ces raidisseurs, a I’instar de ce qui a
été fait avec succes dans la méthode GuyoN-MassoNNET de calcul des ponts
a poutres multiples [21].

On est amené ainsi a adopter, comme équations, fondamentales, celles d une
plaque membrane orthotrope. Les équations de ces plaques sont dues a
RosTovrsev [31] dans le cas d’une plaque & matériau orthotrope, & SOPER
[32] dans le cas d’une plaque & deux cours de raidisseurs perpendiculaires.
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Elles ont été obtenues a partir de la théorie classique de HUBER [22], [23], en
complétant les expressions des déformations e,, €, et y,, par les mémes termes
non-linéaires que voN KARMAN a employés pour étendre aux plaques mem-
branes isotropes la théorie classique de LAGRANGE.

Cependant, les équations fondamentales, en question (cf. par. 3) ne valent
en principe que si ¢’est le matériau qui est lui-méme orthotrope. Or, en réalité,
on a affaire ici & une orthotropie de structure, due & des raidisseurs fixés d’un
seul coté de la tole.

PrLUGER a établi [24] le modéle mathématique de telles plaques en régime
linéaire et 1’un de nous a montré en 1959 [25]:

a) que D’excentricité en question avait une influence considérable sur la rigi-
dité torsionnelle apparente;

b) qu’il n’était pas possible de ramener le modéle de PFLUGER & celui de
HUBER.

Ces considérations nous ont amenés & généraliser la théorie de PFLUGER
en y introduisant les composantes non linéaires de ¢,, ¢, et y,,. Cependant,
nous nous sommes apercus que, face & un déploiement mathématique énorme,
cette solution raffinée n’apportait que des corrections de 1’ordre de 5 pour cent.

C’est pourquoi, nous avons décidé de reporter la théorie correspondante en
annexe et d’axer nos efforts sur la théorie la plus simple qui tienne compte de
facon décente des caractéristiques essentielles du probleme.

Les équations fondamentales étant des équations aux dérivées partielles
non linéaires, nous avons choisi de les résoudre par la technique de BuBNov-
GALERKIN. Cette technique, comme celle de RavLEIGH-RITZ, consiste & se
donner comme déformée de voilement une expression simple dépendant d’un
petit nombre de parameétres.

WorLMIir montre dans son livre [17] que, tant que le coefficient de post-
criticité n reste faible, de bons résultats sont obtenus en adoptant comme
déformée le mode fondamental de voilement

w = fucos%xcos%y (2.1)
donné par la théorie linéaire du voilement, et que l’introduction dans w du

terme additionnel

3nmx T
C‘OS—:I{

b

Adw = f3, cos

ne diminue les contraintes de ruine que d’environ 5 pour cent, tout en entrai-
nant un considérable accroissement des développements mathématiques.

Nous nous en tiendrons donc & l’expression simple (2.1) pour w et nous
admettrons que I’erreur par excés commise de ce fait compense 1’erreur par
défaut commise en adoptant le critére de ruine de WOLMIR-SKALOUD (voir
plus haut).
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Comme le voilement est un phénoméne du second ordre, il aurait fallu, en
principe, introduire dans le modele mathématique ’effet des contraintes rési-
duelles, ainsi qu’il a été fait dans les recherches de GALaAMBOS et KETTER et
dans les recherches de la Commission VIII de la C.E.C.M. qui ont conduit aux
trois courbes européennes de flambement [26], [27], [28]. La prise en compte
correcte des contraintes résiduelles dans le cas actuel, nous parait trés com-
plexe et nous ne 1’avons pas envisagée, considérant qu’elle pouvait étre tant
bien que mal remplacée par une majoration de la fleche initiale f, du panneau.

Apres avoir développé la théorie, nous avons jugé indispensable de la sou-
mettre au feu de 'expérience. Les seules expériences valables disponibles a
I’heure actuelle sont les quatre essais effectués par P. DuBas [5]. Nous mon-
trons au paragraphe 12 que notre théorie est en accord satisfaisant avec ces
essais. '

3. Equations fondamentales

Les équations classiques des plaques membranes sont dues & voN KARMAN
[29]. MARGUERRE [30] y a introduit 1’effet d une légere courbure initiale. Plu-
sieurs auteurs ([31], [32]) ont étendu ces équations au cas anisotrope. Le
lecteur pourra se référer a ces auteurs, ou bien & ’annexe du présent mémoire,
ou il trouvera la généralisation de la théorie de PFLUGER au cas non-linéaire.
L’examen de cette annexe montre que l’excentricité des raidisseurs a deux
effets distincts:

a) elle modifie la forme des équations fondamentales en y introduisant les
nouveaux termes

+(€x+ey) VD(D—

. +D* )
14 D D /u/ y 7
et ol “p,? |- 55

respectivement

b) elle modifie les valeurs des rigidités B, C, D, qui se calculent & présent, a
partir des dimensions de la plaque raidie, par les formules:

— P2 _ 72

Bgc=Bgc—1 sexD,, Bysz—l—_éeyD

C =B+- (B +B,,)+ 1 e e, D

_ 1 —

D =——-D, Fem 2y,
L~vp, 1, DDy

Lesvaleursdee,,e,,B,D,B,,B,,B,,,B,,,D, D, sont définies dans ’annexe.

Y’ yx>
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Comme nous ’avons dit au paragraphe 2, les nouveaux termes dans les
équations compliquent énormément la résolution déja si pénible des équations
des plaques membranes orthotropes pour un gain de précision minime (=~ 69%,)
et nous avons donc décidé de les supprimer.

Par contre, il n’y a aucun inconvénient & adopter, pour les rigidités, les
valeurs améliorées données par la théorie développée en annexe. Si 1’on intro-
duit de plus les notations simplificatives

2 2
oF oo OF o OF o OF

¥ = Er =%y’ =

...ete. ... (3.1)

on peut présenter les équations fondamentales sous la forme suivante:

¢ T
R L A
Exwr///+25w--r/+gyw---- —
(3.3)

By )+ g ) =247 ().

L’équation (3.2) découle des conditions exprimant 1’existence d’'un champ de
déplacement continu (%, v, w) dans la plaque par I'intermédiaire d une relation
de compatibilité entre les composantes du tenseur déformation de membrane
(x> €, Yay); elle porte pour cette raison le nom d’équation de compatibilité et
régit la fonction de contrainte ¢ qui gouverne elle-méme les composantes du
tenseur membrane par les relations

L I _ P, _ P
No=ga=0"  Ny=gi=¢" Ny=-gi =4 69

L’équation (3.3) provient de la relation exprimant 1’équilibre de translation

verticale d’un élément de plaque raidie et s’appelle, pour cette raison, 1’équa-

tion d’équilibre; elle gouverne le déplacement transversal w d’un point situé

dans le feuillet moyen de la toéle. w, est le déplacement initial de ce feuillet.

D,, D et D, sont les trois rigidités extensionnelles de la plaque raidie et
B, C et B ses trois rigidités flexionnelles.

Comme on l a dit dans le paragraphe «Position du probleme, on admettra que

la tOle a une déformée initiale
Y

_ T os ™Y 5

Wo focos a Y cos 2 (3.5)

et que sa déformée supplémentaire est affine au mode fondamental de voile-
ment donné par la théorie linéaire, & savoir

Y

w(z,y) = feos—a—cosT. (3.6)
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4. Conditions aux limites et marche générale de la solution
Chacune des deux équations fondamentales (3.2), (3.3), admet deux con-

ditions aux limites sur chaque bord; il y a donc en tout pour les quatre bords
16 conditions aux limites. Ces conditions sont les suivantes:

4.1. Conditions de flexion

Le long des bords chargés z = +a/2:

2w P w
— 0 — 7o) 1 = —_— = 4.1
w=0; M, =0 d’ou, puisque v : 322 (4.1)
Le long des bords non chargés y = +b/2:
w w
— 0" — AT ] = — = . 4:.2
w = 0; M, = 0 d’ott, puisque P 0, o 0 (4.2)

4.2. Conditions de membrane

a) Le long des bords chargés x = +a/2
a.l. N,, =0. (4.3)

a.2. Les bords 4 B et C'D restent rectilignes, mais peuvent se rapprocher,
ce qui s’écrit

81‘ — Oste
ou, en vertu de la formule (2.32) de 1’annexe:
al2
3, = ( R A A —L(wg+w' 2+ L we?de = C¥ .  (4.4)
x J 1 —p2 Dx }/D_—DJ 2 0 2 70
—a/2 # L

b) Le long des bords non chargés y = +b/2:
N,=0, N, =0. | (4.5)

Le probléme mathématique & résoudre est d’intégrer le systéme d’équations
aux dérivées partielles non linéaires (3.2), (3.3) avec les conditions & la surface
(4.1) & (4.5). Pour résoudre ce probléme, nous nous inspirerons du livre de
WoLMIR et procéderons comme suit:

La déformée supplémentaire satisfaisant dés le départ aux conditions de
flexion a la surface (4.1), (4.2), nous commencerons par rechercher par inté-
gration une fonction de contrainte ¢ qui satisfait rigoureusement a 1’équation
de compatibilité (3.2) et aux conditions & la surface correspondantes (4.3) a
(4.5). Ensuite, en adoptant la technique de BUBNOV-(GALERKIN, nous choisirons
le parameétre f de I’expression (3.6) afin de satisfaire «au mieux» & 1’équation
d’équilibre (3.3), ce qui achévera la solution.

La condition (4.4) est vérifiée a posteriori.
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5. Intégration de I’équation de compatibilité

En remplacant w, et w par leurs expressions (3.5), (3.6) dans 1’équation de
compatibilité (3.2), on met celle-ci sous la forme:

5
D

. et/ rree 4 2 2
+2¢5 +93) =—(l—ﬁz)f(f+2f0)2;b2(cos ;Tx+eos Z?’ (5.1)

z Yy

Cette équation est linéaire en ¢, et son intégrale générale est donc la somme
de l'intégrale générale de 1’équation sans second membre et d’une intégrale
particuliere de 1’équation complete.

Le second membre étant & variables séparées et de type harmonique, on
choisit une solution particuliére de la forme

¢y (x,y) = A, cos 2;rx+A2 cos%—y (5.2)

et I’on trouve par identification des deux membres de (5.1)

D, o (1—9?

4, = -2 0 2y, (5.32)
D, (1—-v2 D

4,= -2 jag) = Do (5.3b)

moyennant la notation connue

«=ab. (5.4)
On posera pour simplifier
D$
aD, £. (5.5)

11 faut maintenant ajouter & la solution particuliere (5.2) I'intégrale générale
¢, de ’équation homogene

¢.... (ﬁ“’/ ¢IIII . _
D, +2 5 + =0, (5.6)

qui est telle que ¢ =d¢,+ ¢, satisfasse aux conditions a la surface (4.3) & (4.5).
Pour exprimer que la plaque est comprimée dans le sens des x, on introduit
une premiére solution

y
¢1 _— p .

2mwx 2wy y>

a + A4, cos b +px—2—

b = ¢o+ bt = 4, cos
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d’ou, par les relations (3.4),

2 1
N,, = 0 le long de tous les bords puisque Z($o+ 1) =0, (5.7a,b)

ox oy
2 4 72 27x

(N )yt = (W)y=ib/2 = — ?Al cos ——, (5.7¢)
> 4 72 2my

(N )t = (W)x—ia/z = — gz dacos—=4p,. (5.7d)

L’effort total passant dans la plaque comprimée vaut donc
+b/2

f (N.r)x=ia/2dy = pxb7 (58)
-b/2

ce qui montre que la signification physique de p, est I’effort moyen de com-
pression dans 'unité de largeur de la plaque raidie.

En comparant les conditions a satisfaire (4.3) & (4.5) avec les conditions
(5.7a & c), nous voyons que tout est en ordre sauf qu’il subsiste des efforts

N, non nuls le long des bords non chargés. Ces efforts étant en coszjzf, il

est logique, pour les faire disparaitre, de choisir une fonction de contrainte

27x

1 (. y) = [ (y) cos

comme solution générale de 1’équation homogéne (5.6).

On voit de suite que f(y) sera une combinaison linéaire de termes en chfBy
ou shfBy, ou B est une constante adéquate. Pour respecter la symétrie du
probleme, on ne conserve que la forme ch By, puisque chB(—y) = chBy, de
sorte que la fonction a essayer est

27x

ch By cos Pt

Introduisons cette expression dans (5.6); on trouve:

B 472 B2 167* 1

D, Y@ 5Tt D, "
o zw‘/‘p— l/ D*
= — ___:'77_ —_ . 5.
d’olt p=x- D]/li 1 D,D, (5.9)
A ’ _5
Posons & présent 0 =-—-——. (5.10)
YD, D,
On obtient I'intégrale suffisamment générale de (5.6):
2
#1 (#,) = K, cos 22 ch B,y + Ky cos—— " ch By (5.11)

a a
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D,
avec ]/ Y1+ y1-62 = *71,

VD 1/1—92—2_27'2-

Les constantes K, et K,, convenablement choisies, doivent permettre de satis-
faire & I’ensemble des conditions de membrane a la surface (4.3) & (4.5). La
fonction de contrainte ¢# seule donne les efforts unitaires

(5.12)

(Nyy)zmtap =0, car sin 2 0 pour z = ta/2, (5.13a)
o> 3 2m /81 Bs ) in 2mx
= _ 1
Wadyesvs = (=) =" (Kapush B4 Ko o B3  (5.13b)
0% 2 B.b By b 2nx
(N,)y—sve = (39021)x=ib/2 = —?(K ch™2- +K20h%) cos— =, (5.13¢)
+b/2
fb/2f (NVy)oetapdy = —[K1ByshBiy+ K, ByshByylip3. (5.13d)

Cette derniére relation montre que la fonction ¢%(x,y) affecte la distribution
des NV,.

Faisons maintenant les sommes des expressions homologues (5.7a a d) et
(5.13a a c¢) afin de satisfaire aux conditions (4.3) a (4.5).

On trouve:

1. que la condition (N,,),_..»=0 est toujours vérifiée,

2. que 'annulation de (N ,,),_, s quel que soit x entraine la condition

Klﬁlshgé—b+K2/82sh% =0, (5.14)

3. que ’annulation de (N,),_.,. quel que soit x entraine la condition
chh'%-b+K2ch@;—b =—A4,. (5.15)

La résolution du systéme d’équations (5.14), (5.15) donne, en tenant compte
des notations (5.12):

Ja Shzjg
Kl = 3 0 * 3 T A‘l —_ "L].A].’ (5.163})
y’lsh%“ch%”—j2sh~”—ifeh§§
71Shwl
K,=— A, = pp4,. (5.16b)

j1sh—= 71 ~—72Sh hM1
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L’expression finale de la fonction de contrainte est donc

27 27 2
é(x,y) = 4,c08 —— +A cos by—i—px‘yz

(5.17)

2
+ K, cos ch,81J+K cos 2m

chﬁzy

ou A4,, 4,, K, K, sont définis par le's formules (5.3) et (5.16) respectivement.
L’expression (5.17) satisfait rigoureusement aux conditions de membrane
aux limites (4.3) et (4.5) comme annoncé a la fin du paragraphe 4.
Il faut en plus montrer que la condition 8,=C%* est remplie. A partir de
Pexpression (4.4), on calcule, a 1’aide (3.5), (3.6) et (5.17)

a 4 72 27y 2 Y
8, = A, 2 2=, 5.18

x Dx(1—172)(p b2 cos b ) 4:@ f+ fO)COS b ( )
Remplacant la constante A, par sa valeur (5.3b), on constate que 1’expression
ci-dessus de 6, se réduit a

_ Py 2
Sx—m—@ﬂﬂ‘%o) (5.19)

qui est bien indépendante de ¥ comme il le fallait.

6. Intégration approchée de I’équation d’équilibre par la méthode de Bubnov-
Galerkin

Si I’on remplace w,, w et ¢ par leurs expressions (3.5), (3.6) et (5.17) dans
I’équation fondamentale d’équilibre (3.3), on obtient une expression tres
longue de la forme générale £ = F, dont le membre de gauche s’écrit:

4 _ _ —_ x
E = a:[(Bw+2oc20+cx4By)fcos%—coszbg.
Le membre de droite F est une expression trés longue, qu’on ne reproduira pas
ici, pour gagner de la place.

La technique d’intégration approchée de BUBNOV-GALERKIN consiste,
comme on sait, & exiger du parametre indéterminé qu’il satisfasse 1’équation
E — F =0 «en moyenne», ¢’est-a-dire qu’on ait

+aj2 +b/2
[ [(E-F)wdxdy =0.
—al2 ~b/2 '
Remplacant w par son expression (3.6), tenant compte de ce que le domaine
d’intégration est rectangulaire et prenant — par symétrie — le quart de I'inté-
grale double précédente, on trouve que f est déterminé par la condition:
+b/2

fcosﬂ—dxf E—F) eos—b—dy=0
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En effectuant toutes les intégrations nécessaires en tenant compte de la rela-
tion (5.14), qui peut s’écrire

#171Sh771 + #2jzshﬂjz -0

(0.4 o o4 (04

>

et en multipliant tout par —}Tf—ba, on trouve pour déterminer f la condition:

L 72D, a? (1 —v?)

e (By+202C o B [+ (f+ o) pat T2 =0 (42 0) (F+ o) (1+6)

- . . (6.1)
2D 2(]1 —p2
T (o sh Iy % sh T (120 (£ = 0.
On tire de cette relation la valeur de p,:
2 _ _ 2D 2(]1 —p2
pxz_'_f——zz_(Bx+2“2C+“4By)_Tr i (2 z )(1+§)f(f+2f0)
[+ a 16b 6.2)

72D, o? (1 —7?)
T 160 A

% sh Tl iy sh 7 (/2.

T o & M) &

7. Critére de ruine

Considérons la plaque réelle et introduisons aveec KLOPPEL [34] le coefficient

§ = (7.1)

bt

définissant 1’aire relative d’un raidisseur.
Soit m le nombre effectif de raidisseurs plus un *).
La section d’acier de la plaque raidie vaut

‘Qplaqueraidie = b ¢ (1 +77L8) (72)

ce qui signifie qu’on passe de la plaque non raidie & la plaque raidie en multi-
pliant une aire de la plaque non raidie par le facteur (1 +m3).

La section moyenne d’acier par unité de largeur vaut donc ¢ (1 +m3).

Conformément au paragraphe 2, nous admettons que la ruine est atteinte
quand la contrainte de membrane 6, moyenne le long des bords non chargés
AD ou BC (Fig. 2) atteint la limite élastique du métal en compression — R,
(ou R,=i R, représente une limite élastique éventuellement corrigée par un
facteur de forme ¢y ~ 1,065 pour tenir compte d’une plastification locale de la
plaque avant effondrement).

En multipliant les deux membres par ¢(1+m3$), la condition ci-dessus
s’écrit:

*) Ceci pour tenir compte de ce que les deux bords non chargés de la plaque jouent
ensemble le role d’un raidisseur supplémentaire.
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+a/2
— 1 —
N, =Ef(Nw)y=b/2dx =—R,t(1+m3). (7.3)
—al2
Mais
N, =2
oy
47 2 27 x 27 (1.4)
- 47 4, con Zy+pw+K1/3%cos "= ch By + Ky Bjcos ——chByy.

Comme l’intégrale de la somme des deux derniers termes du second membre
est nulle en vertu de (5.13b), la condition (7.3) se réduit a:

4 2 —
i Aa 0, = = Bt (1+m3)

ou, en tenant compte de la valeur (5.3b) de A4,:
472, D, o2 (1—0?)

b2 é: £ 32 & f(f+2f0)+px = —j{et(l +m8) (75)

et, en remplag:a,nt P, par sa valeur (6.2),
72D, a? (1 —7?)

f
- B 202C+at B, 1 8
2D a? (1 —72) o ., mh o 777'2) —

y ol N 2f) = —

16 b2 (:ulﬂ,?l sh o +/.L27r7.2Sh o f(f+“f0) Ret(l+m8)-
Si I’on désigne par

2 _ _ _
- (B,+2:*C+a!B) (7.7)"

Ter a?t(1+m3d)

la contrainte critique de voilement, on peut écrire la condition de ruine (7.6)
sous la forme:

2D o2 7
fifo Ter (1 +m ) — ylof;b(% 800+ 21)
w Dy (1= a o mj “sh”jzf(f+2f)—“E(1+m8)(7.8)
1662t \“7j, a Mag s v |

Introduisons les quantités non dimensionnelles
w2 D, (1 -9?)

- ny, —Zer _ 1. .
T k(>0!), —=<=r(>0!). (7.9)

e

Nous pouvons alors écrire la condition de ruine (7.8) sous la forme:

(1+m8)+k%:e(e+2eo) [(1+3§)

hﬂj1+,u o Shwjz)] _ 1+m8'

<t (7.10)

o 2miy o r

24
al (b 1S
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8. Définition et calcul du rendement de la table comprimée

On définit le rendement de la table comprimée comme étant le rapport de
la contrainte moyenne o, le long des bords chargés x = +a/2 a la valeur de la
limite d’élasticité en compression — R,, au moment ou la valeur moyenne
o, de o, le long des bords non chargés y = +b/2 atteint — R,.

Mais le rapport des contraintes ci-dessus est égal au rapport des efforts
unitaires correspondants. Or, la section moyenne d’acier par unité de largeur
vaut ¢t (1 +m8). Le rendement de la table comprimée vaut done, par définition:

pp=—t = — Noe (8.1)
- R, R,t(1+m3)
L’effort unitaire moyen ﬁ est donné par
+b/2

w59

—b/2

En y introduisant 1’expression (7.4) de ¢2¢/0y> et effectuant 1’intégration, on

trouve
_ 5 . )
N, =p—= (Kl,slsh%hufz,ez sh%h) cos

2w x

b

Le dernier terme du second membre est nul en vertu de la relation (5.14), ce
qui doit étre puisque, si la table n’est soumise & aucune contrainte de cisaille-
ment le long de ses bords non chargés, 1’équilibre de translation dans le sens
des x du morceau rectangulaire C D E F exige (fig. 3) que P'effort total sur £ F
soit exactement égal a 1’effort total sur C'D. Deés lors,

':7\_7.’12 = p.’t' (8'2)

En remplagant dans (8.1) N_=p, par son expression tirée de (7.5) et introdu-
isant les notations (7.9), on trouve

2k o £

pp=1— X2 7’1+m86(e+2€0). (8.3)

A titre de controle, nous avons particularisé cette formule pour le cas d’une
plaque carrée isotrope, qui est traitée dans le livre de WorLmIr [17], pp. 138
et 139. On trouve dans ce cas:

j1=j27 ‘Uu1='—"l,L2, Da:z_Dy:.D, §=1, 1;=V, OL=1, 8=0.

De plus, la plaque n’ayant aucune déformation initiale, ¢,=0. La formule
(8.3) se réduit alors a:

2k
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Fig. 3.
La condition de ruine (7.10) se réduit dans le cas actuel a:
4k 1
| R
+ € ot
0 A 2kr 1
d’olt 32 e2=§(1—7)
1 1 o,
done pr = l—é(l—w) =§( —R?cr-). (8.4)

€

Ce résultat est identique & celui obtenu par WoLMIR.

9. Examen de quelques formules de largeur effective des plaques isotropes

Déja au paragraphe 1, nous avons rencontré la notion de largeur effective,
ou largeur de la plaque fictive uniformément comprimée qui transmet le méme
effort que la plaque réelle en régime posteritique. Comme cette notion joue
un role important dans une correction a apporter au rendement des plaques
raidies (§ 10), il faut s’y arréter quelques instants.

L’inventeur de la notion de largeur effective est TH. von KArRMAN [10];
il propose la formule (fig. 4)

b VT VT
k=== =—, ®mz1). (9.1)
Pek = Opax n
En remplagant o, par sa valeur classique
, D t\2 —3,62R,
G, = —km = —‘75920 (g) = —_Bz__, (9.2)
Ee? b ]/ R,
avec k= 4:, D= 'l—m, v = 0,3, = 7 T’ (1.5)
’ or ’
on a _ Imaz _ 0:276 |Onae| o (9.3)

o, R

e
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et on peut encore écrire la formule (9.1) sous la forme

por = 1,90 : (9.4)

]
9 max

Fig. 4.

La théorie de premiére approximation développée dans le présent mémoire
fournit pour la largeur effective, dans le cas d’une plaque isotrope parfaitement

plane, ’expression
1 o, 1 1
= {1+ ) = |1+~ 8.4
p1 2( +— ) 2( +n), (8.4)

max

qui a été établie au paragraphe 8. En y remplagant » par son expression (9.3),
on peut mettre la formule (8.4) sous la forme

1 3,62 R, |
=) -0

Des expressions plus précises de p ont été obtenues par SOKOLOV en adoptant
plusieurs paramétres dans la représentation des fonctions w et ¢ (cf. § 3). En
analysant les résultats de SokorLov, PapkoviTcH a obtenu (cf. [17]) la for-
mule pratique

0,56 2,03 R
T = 044 (9.6)

| Umax[

PPapkoviter, = 0,44+

Enfin, & 'aide de la relation (9.3), les formules de FAULKNER et de WINTER
(1.4) et (1.6) peuvent aisément étre mises sous la forme

7 ’ 1,062 0,276
- 1,052]/ Tor __ Ger . 2202 5710 (020,276), (9.7)
PFraulkner O in 3,62 o V’I?/ ” ( ) ( )
1 0,250

Pwinter = Tﬁ - w (7’& = 0,25) . (98)«
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Les expressions (9.1), (8.4), (9.6), (9.7) et (9.8) sont représentées graphiquement
sur 1’abaque de la figure 5. On voit que la dispersion des diverses formules est
assez considérable. C’est la formule (8.4) qui donne les résultats les plus plus
optimistes, ce qui n’a rien d’étonnant, puisqu’elle est basée sur la méthode
de Bubnov-Galerkin, qui donne des résultats erronés par exces et qu’en plus
on suppose la plaque initialement parfaitement plane.

P

1,00 —1 :
\\\\ \\\ von Ko'rEén

N\

\

0,20
| NN

Papcovitch //\\
N \
\\l N % dre anprox.
L\

0,80 < ~

N
wint v .
\\\
»

//
/4
o

0,70

0,60 —

0,50

10. Correction due au caractére discontinu du raidissage

La théorie développée jusqu’a présent a supposé les raidisseurs «tartinés»
continiment sur la table pour en faire une plaque matériellement orthotrope.
Comme le révéle l'essai A1 du professeur DuBas, dont nous reproduisons
ci-dessous (fig. 6) le diagramme des dilatations e, & diverses étapes du charge-
ment, ce diagramme présente des festons qui correspondent aux déformations
locales de la tole entre raidisseurs adjacents.

10.1. Commencons par considérer le cas ol les raidisseurs restent quasi-
rectilignes jusqu’au stade de ruine (fig. 7). Alors, la correction est tres simple.
Quelle que soit la formule de largeur effective adoptée (cf. par. 9), on peut,
A titre de premiére approximation, admettre que la contrainte aux bords de
tous les panneaux partiels est la contrainte moyenne du panneau entier,
5=a, (fig. 7). Avec cette hypothése, la perte relative d’efficacité de tous les
panneaux partiels est la méme et vaut
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200 200 200 200
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Fig. 1.

b b
A

Le rendement partiel di au caractére discontinu du raidissage est, par défini-
tion, le rapport de 1’effort de compression total transmis par le panneau raidi
réel & I’effort analogue transmis par le panneau continu de substitution con-
sidéré dans la présente étude (cf. par. 2). Ce rendement partiel vaut, d’apres
la fig. 7:

by (o) | &
. mbl(G)et+mR,6 v vt
T (mbt+mQ,)6 Q (10-1)
’ 1+77

ou la notation b,(c) spécifie que la largeur effective du sous-panneau doit
étre calculée pour une contrainte membranaire maximum aux bords de ce
sous-panneau, o,,.., égale a .

Si, en particulier on adopte pour la largeur effective 1’expression (1.4) pré-
conisée par FAULKNER, il faut done écrire cette formule sous la forme:
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8
b= B B2 IUI (10.2)
ou |¢|=|5,| =p, R, , p; étant calculable par la formule (8.3).

10.2. Si, au contraire, le raidissage est faible, la table comprimée présente
une seule grande cloque. Les contraintes moyennes de compression dans
chaque bande longitudinale de tole sont différentes.

Dans ce cas, la répartition des contraintes o, dépend d’ailleurs de la section
transversale considérée. Il est logique, comme dans la discussion du critére de
ruine (par. 7) de se baser sur les contraintes 6, (y) moyennes sur la longueur
du panneau, done sur les efforts unitaires moyens

. +a/2
N, (y) = &wadx
—al/2
D’apres la formule (7.4), on a
— 4 2 ta2 gy
N ) =7 Ayc0s 27 1 +(K1BiehByy -+ Koich foy) | cos——dz =
10.3)
4 72 27y (
- 5T —— Ay cos—— p TPz
La section d’acier par unité de largeur étant
t(1+m3d),
. N,
on a O = {1 +ms)

Si le nombre de raidisseurs excéde 10, on peut parler d’une répartition con-
tinue des largeurs effectives, qui varient en travers comme

R,
5 - 10.4
e 1oy
et adopter comme largeur effective «équivalente» 1’expression
b’ +z ’2
—al2

L’intégrale ne semblant pas pouvoir s’effectuer par les fonctions élémentaires,
il faut calculer les valeurs de b,/b" pour un certain nombre d’ordonnées y
réguliérement espacées, puis effectuer l'intégrale (10.5) numériquement par
la formule des trapézes ou de Simpson. L’expression du rendement partiel
s’écrit alors

bé Qr
, (?)équ.““m
pl=——tra—. (10.6)
1+th
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Quelle que soit la formule (10.1) ou (10.6) employée pour p’, le rendement
global de la table raidie, p,, est clairement donné par 1’expression

ou p; reste donné par 1’expression (8.3).
La contrainte moyenne de ruine est alors donnée par

&, = py R,. (10.8)

e

11. Rendement du caisson entier

Le rendement qui intéresse le projeteur d’un pont en caisson n’est pas la
perte de résistance a la compression de la table comprimée, mais bien la perte
sur le moment fléchissant de ruine.

Considérons donc la section en caisson rectangulaire représentée a la fig. 8.

Qs

Fig. 8.

Y v Qi

Nous pouvons calculer le rendement de ce caisson en supposant successive-
ment, que le caisson est, a la ruine:

en régime élastique,

en régime plastique.

11.1 Rendement du caisson en régime élastique

La géométrie donne, en négligeant 1’inertie propre des semelles:
1

,=0,+0,+202,, v=—~(2,d+dQ2,),
% (11.1)
2 2 *
I =Qs”2+9i(d—v)2+g%d +2'Qa(%_”) :

Si nous supposons que, tant dans le caisson parfait de référence que dans le
caisson réel ou la table comprimée est en régime posteritique, la fibre la plus
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sollicitée est la fibre supérieure, le moment de ruine du caisson parfait de
référence est

My = By = By,

4
v

tandis que le moment de ruine du caisson réel, ou la table comprimée a 1’aire
effective

Qﬁ' = Qspga
, — I(£2¢)
vaut Md =R, s
* v (£2%)

Le rendement élastiqgue du caisson entier vaut alors, par définition:

élastique — Mf’tl — I(‘Qg) v('Qs)‘
caisson M I('Qs) ’U(.Qg)

p

(11.2)

Pour situer le rendement élastique du caisson par rapport a celui de la table
comprimée, supposons que les 4mes aient une aire £, négligeable. Alors, on
trouve de suite

Q0. Q.d
=255 g =
Q.+, Q.+,
d’ont M,=RQd,  M{=R,d
et phtime = % — o, (113

8

Dans ’autre cas extréme ou les semelles sont négligeables par rapport aux
ames, un affaiblissement de la semelle comprimée n’affectera pas le rendement
du caisson, qui restera égal a 1’unité.

Par raison de continuité, dans les caissons réels ou les 4mes interviennent
pour une dizaine de pour cent dans la résistance a la flexion, nous pouvons
conclure que le rendement du caisson entier est supérieur de quelque un ou
deux pour cent au rendement de la table comprimée.

Si ’on tient compte, & présent, de la perte de rendement des dmes, dont
les parties comprimées sont courbées horizontalement par compatibilité avec
les déformations de la table, on arrive a la conclusion que, pratiquement:

p table comprimée = p caisson, (8.6)

de sorte qu’il est pratiquement sans intérét d’analyser mathématiquement le
caisson entier, la complication des mathématiques étant hors de proportion
avec le gain de précision attendu.

11.2. Rendement du caisson en régime parfaitement plastique
L’axe neutre en régime parfaitement plastique est déterminé par la con-

dition d’équilibre de translation [od£2=0. Des calculs élémentaires déja faits
2



RESISTANCE POSTCRITIQUE DES GRANDES POUTRES EN CAISSON RAIDIES 115

par CALDWELL donnent (fig. 9) pour le moment ultime:

My = Esd{Pth')’+2Qa [%-V+72LJ;—’)“] +9¢(1—7)} (11.4)

ou la position de 1’axe neutre plastique est définie par

‘y — _1_7 _ 2'Qa+‘Qi_Pt‘Qs. (11.5)

d 20Q,(1+p,)

Fig. 9.

12. Comparaison de la présente théorie avec les essais effectués par Dubas

Dusas [5] a exécuté deux essais de flexion pure jusqu’a la ruine sur des
poutres en caisson dont la section droite est représentée a la figure 10.

| |

I )

=

a Fig. 10.

12.1. Essar A1 de Dubas [5]

Le panneau raidi expérimenté a les dimensions suivantes:

a = 900 mm,
b = 800 mm,
t = 3,2 mm.
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La tole est raidie par trois raidisseurs 60 X 2,9 mm entredistants de 200 mm.
La limite apparente d’élasticité vaut 29,5 kg/mm?2. La fleche initiale observée
est de 5 mm. On admet E =21 000 kg/mm? et »=0,3.

On calcule successivement:

a) Rapport des dimensions: o = 1,125
b) Minceur: A = 250

c) Rigidités extensionnelles:
D =D,="1385-10* kg/mm,
D, =9,212-10* kg/mm,
D = 6,206-10* kg/mm.

d) Position des axes des nervures:
e, = 6,267 mm,
e, =0.
e) Rigidités flexionnelles et torsionnelles:
B = B,=6,302-10* kg/mm,
B, =2,017-107 kg/mm,
B,, =1,976-10* kg/mm,
B, =0,
B, =1,989.107 kg/mm,

B, =6,30-10* kg/mm,

Yy

C =17,29-10* kg/mm.

La contrainte critique de voilement du panneau continu de substitution est

donnée par (7.7) et vaut
j G, = — 60,4 kg/mm?2.

Cette contrainte, bien que supérieure a R,, doit conserver cette valeur pour
I’étude du critére de ruine et du rendement.

On calcule ensuite les parametres caractéristiques non dimensionnels donnés
par (7.9), (5.12), (5.16), (5.5).

Le critére de ruine s’écrit alors d’aprés (7.10)

€

+0,00922 ¢ (€ + 2 ¢;) = 0,488

€+ €

5
avec eoz—ftg=32 = 1,566.

La seule solution significative de cette équation est
e = 1,22,
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Le rendement de la table de compression donné par (8.3) vaut
Pt — 0,942.

Ce rendement élevé nous permet de substituer & la distribution réelle des
efforts pour la détermination du rendement partiel des sous-panneaux, une
répartition uniforme de sorte qu’on retrouve le cas examiné au par. 10.1.

Puisque la contrainte critique de voilement d’un panneau partiel de tole
isotrope vaut d’apres (9.2)

a,, = — 19,45 kg/mm?

(4
et correspond & un indice de posteriticité

295
19,45

n 1,52,

on peut appliquer la formule de FAULKNER (1.4) dans laquelle la contrainte

maximum o,,,, vaut
Omaz = Pt Be = — 27,75 kg/mm?
et B =235.
Dés lors, on obtient
b,
—< = 0,684.
b 2

Le rendement partiel p’ vaut done selon (10.1)
o =0,753.
Le rendement global du panneau est donc
py = 0,753 0,942 = 0,710
et la contrainte ultime moyenne
G, = —21 kg/mm?2.

La valeur obtenue p,= 0,710 est en trés bon accord avec le résultat de DuBas
(5) p,=0,69.

12.1. Essai A2 de Dubas [5]

Le panneau raidi a les caractéristiques suivantes:

a = 900 mm,
b = 800 mm,
t = 3,3 mm.,

Les raidisseurs, au nombre de trois, sont constitués de plats 36 X 3 mm, entre-
distants de 200 mm. La limite apparente d’élasticité R, vaut 30 kg/mm?. La



118 R. MAQUOI - CH. MASSONNET

fléche initiale observée est encore de 5 mm. On admet £ =21 000 kg/mm? et
v=0,3.

Les calculs se conduisent comme pour 1’exemple précédent

= 1,125,

= 2424,

=D, =17,615-10* kg/mm,
r = 8,749-10% kg/mm,
= 7,215-10* kg/mm,
= 2,55 mm,
=0,
= B, =6,911-10* kg/mm,
= 5,104-10% kg/mm,
y = 1,312-10* kg/mm, B
ve =0, C =17,567-10* kg/mm.

O 0 > R

&)
8

B, = 6,911-10* kg/mm,
B, = 5,056-10® kg/mm,

x

&S

La contrainte critique de voilement du panneau continu de substitution vaut
O = — 17,00 kg/mm?.
Le critére de ruine s’écrit donc

€

+0,0354€(e+2¢,) = 1,764

€+€

5
avec € = 33 = 1,515.

La soclution de cette équation fournit
e = 3,94.
On peut remarquer que la fleche totale au milieu du panneau vaut
fi=(e+¢)t =18 mm,

alors que la valeur expérimentale est d’environ 18,2 mm [5].
Le rendement de la table de compression vaut

p, = 0,684

et montre que la distribution transversale des efforts est loin d’étre uniforme.
Dés lors, pour calculer le rendement partiel des sous-panneaux, on doit pro-
céder comme expliqué au par. 10.2.

On pourra & cet effet utiliser la formule de FAULKNER, puisque la contrainte
critique de voilement du sous-panneau isotrope est de —20,65 kg/mm? et
correspond & un indice de posteriticité n =1,45.

La distribution des efforts N, est donnée par (10.3) out 4, et p, sont fournis
par les relations (5.3b) et (6.2) et valent
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A, = —59,07-104,
p, = —173,57 kg/mm.

On obtient donc

va = —73,57 + 36,44 cos 223/.

Les ordonnées moyennes pour chacun des sous-panneaux valent:

a) Panneaux extérieurs

_ b/2
Ngcwt = é [— 73,57é+ 36,44fcosﬁgdyi| =
b 4 b/ b

—73,67—-23,21 = — 96,78 kg/mm,
oot = — 25,20 kg/mm?2.

b) Panneaux intérieurs

_ 4 b4 9
Nint — = —73,579—}— 36,44 [ cos 7Tydy =
b 4 0 b

— 73,57+ 23,21 = — 50,36 kg/mm,
oint = —13,11 kg/mm?2.

On peut donc calculer les largeurs effectives de tole isotrope par (1.4) avec

B =229
et Opax = — 25,20 kg/mm? (panneaux extérieurs)
= —13,11 kg/mm? (panneaux intérieurs)
: o b,
On obtient ainsi (—f) = 0,724,
b ext

—¢) = 0,881.
(b )'L"nt

Le rapport (E,é) _ 0724 +0,881 0,803
b' | equ 2
et le rendement partiel est done
o = 0,831
d’ot p, = 0,684 0,831 = 0,568
et 6, = — 17 kg/mm?2

DuBAs obtient expérimentalement un rendement nettement plus faible,
Pg

de 0,39. Les nouveaux essais que nous comptons réaliser prochainement nous

permettront nous 1’espérons, d’éclaircir la raison de ce désaccord.
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13. Application de la présente théorie au pont sur le Danube a Vienne

La théorie développée ci-avant permet également d’expliquer l’accident
survenu, le 9 novembre 1969, au pont en caisson sur le Danube & Vienne.

I1 résulte du rapport des experts [2] que la cause primaire des dégats est le
voilement d’un panneau des caissons dans une des travées latérales du pont
(Fig. 11).

Les données nécessaires au calcul et a la comparaison nous ont été obligeam-
ment communiquées par le Professeur SATTLER, que nous tenons a remercier
vivement ici.

40m 2,5m | 1,5my 4.0m
4A37 A44 ‘50mm
ame - *T_
! ]
|
I
2 e 2
e o I % Ey
> N x >
Z =~ Il o e
tdle 10mm =) H S S
b T E— IE . ]o < E
17 - ] [
° 2 Eo |I1EZ|E 3 8
® 82s 11¥2 |35 a ~
£ Sas llos|E 3
=I
|
/N 4

8me

- !
pli \ joint de tle
changement type raid. long.
Entredistance des raidisseurs longitudinaux : 580 mm

Fig. 11.

Le panneau accidenté devait présenter une courbure initiale particuliére-
ment élevée par suite du soudage bout & bout de la téle et des raidisseurs, qui
changent de section dans ce panneau.

Le calcul exact de la performance de ce panneau étant impossible, nous
y substituons, comme les experts, un panneau simplifié.

Ce panneau a les dimensions suivantes:

a = 8000 mm,
b = 7540 mm,
t =10 mm.

Les raidisseurs longitudinaux, au nombre de 12, sont entredistants de 580 mm,
et constitués de plats 160 x 12. Le seul raidisseur transversal est médian et ses
caractéristiques estimées d’apres les renseignements en notre possession sont:
section 8000 mm? et rigidité flexionnelle unitaire B, =3-10° kgmm.
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La limite élastique est de 29 kg/mm?2. On admet en outre

E = 21 000 kg/mm?
v = 0,3.

La fleche initiale est d’abord prise égale a 1’épaisseur de la téle, donc ¢,=1.
Pour étudier ce probleme, on doit procéder en deux étapes, c’est-a-dire

étudier: '

a) le panneau complet en admettant que le raidisseur transversal est entrainé
lors du voilement;

b) un des sous-panneaux en supposant que le raidisseur transversal constitue
une ligne nodale pour le voilement.

On donne ci-aprés en parallele les résultats des deux calculs:

Panneaw entier Sous-panneaux
« = 1,058 a« =0,530
D = 23,077-10* kg/mm D =23,077-10* kg/mm
D, =30,030-10* kg/mm D, =30,030-10* kg/mm
D, =27,28-10* kg/mm D, =23,077-10* kg/mm
D = 20,067-10* kg/mm D =21,0-10* kg/mm
e, = 19,7 mm e, =19,5 mm
e, = 58,7mm e, =0
B =1,923-10% kgmm B =1,923-10° kgmm
B, =5,36-10% kgmm B, =5,36-10% kgmm
B, = 30,00-10% kgmm B, =1,923-10% kgmm
B,, = 1,287-10% kgmm B,, = 1,287-10% kgmm
B,, = 0,540-10% kgmm B, =0
B, =5,29.10% kgmm B, =5,27-108 kgmm
B, =29,42-108 kgmm B, =1,923-10% kgmm
C = 87,9410 kgmm C =2,566-10% kgmm
o, = —051,7 kg/mm? G = — 24,6 kg/mm?
Le critére de ruine s’écrit:
€:€0+11,30-10—4e(e+260) = 0,562, €:€0+10“26(6+260) —1,177.
La solution € vaut
e = 1,25, € = 4,95.

Le rendement de la table de compression est de

p; = 0,995, p; = 0,811.
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La contrainte critique de la téle isotrope

75920 x 102
=0 = 22 2
Cep (580)2 ,6 kg/mm

est telle que 1’indice de posteriticité

29

permet d’appliquer la formule (1.4) de FAULKNER pour calculer la largeur
effective de toéle.
On calcule alors le parameétre

B =215

et on admet que, pour chacun des sous-panneaux, o,,,,=p; B,, donc

Orar = — 28,9 kg/mm?, Omaz = — 23,5 kg/mm?,
b, b,

— =0,718 — = 0,797

bl b b bl b b

p’ = 0,789, p’ = 0,848.

On peut alors calculer le rendement global

p, = 0,785,  p, = 0,688

et la contrainte ultime moyenne
5, = — 22,77 kg/mm?, g, = — 19,95 kg/mm?2.

Le rendement local p’ est évidemment (cf. formule (1.4)) d’autant plus faible
que la contrainte o,,,,, et par conséquent le rendement p,, est plus élevé.
Quant au rendement global p,=p,p’, on peut aisément le mettre sous la

forme:
V + 2
Pt b’tpt
Py = Q, ’
14573

en remplacant, dans ’expression de p’, o,,,,/ B, par p;.

Cette formule montre que les rendements globaux p, se classent toujours
dans le méme ordre que les rendements p;.

On aurait donc pu, & partir de 1’établissement des valeurs de p;, se dispenser
d’achever les calculs pour le panneau entier.

On a également effectué le calcul du sous- panneau pour des valeurs plus
faibles de la fléche initiale, & savoir ¢,= 0,5 et e =0 (plaque parfaitement plane).
Les principaux résultats sont repris au tableau ci-apres, en regard des valeurs
obtenues pour ¢,=1.
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Grandeurs =1 € =0,5 =20
€ 4,95 4,75 4,21
pt 0,811 0,850 0,903
omasr (kg/mm?) | -23,562 —24,65 -26,19
b: /b 0,797 0,757 0,741
P 0,848 0,817 0,805
Py 0,688 0,695 0,727
oy (kg/mm?) -19,95 —-20,16 -21,08

Si I’on adoptait, conformément & certaines recommandations, une fleche
initiale valant 1/1000 de la largeur du panneau, on aurait f,=7,56 mm, ce qui
correspond & €,=0,756.

Des informations qui nous ont été communiquées par le Professeur SATTLER,
il ressort que:

a) La contrainte critique du panneau entier, calculée par la théorie linéaire
du voilement, valait — 22,1 kg/mm?2.

b) La contrainte admissible de ce panneau pendant la période de montage
était, selon les Normes Autrichiennes:

Cuq = 105’:5 = —17,6 kg/mm?

et la contrainte maximum sous poids mort calculée par le Bureau d’Etudes
du pont était inférieure & cette contrainte admissible.

¢) A cause d’erreurs sur la distribution du poids mort, la contrainte réelle de
poids mort, au moment de 1’accident était, selon le Professeur SATTLER:

o,m = — 19,8 kg/mm?2.

pm

d) Les effets thermiques estimés par le Professeur SATTLER ont provoqué une
contrainte supplémentaire de 2,6 kg/mm?, de sorte que la contrainte totale
au moment de ’accident était de

o, = — 22,4 kg/mm?2.
Comme notre théorie donne, pour une fleche initiale nulle
g, = — 21,1 kg/mm?
et pour une fleche initiale vraisemblable de 0,5 & 1 fois 1’épaisseur de la téle,
G, > — 20 kg/mm?

nous considérons qu’elle fournit 1’explication de la ruine.

Ces calculs montrent que la contrainte de ruine est, dans le cas actuel,
inférieure & la contrainte critique de voilement donnée par la théorie linéaire.
Par conséquent, si ’on veut s’en tenir & cette théorie, il faut augmenter au
plus t6t les coefficients de sécurité pour les différents cas de sollicitation.

Quant & nous, nous préconisons d’évaluer la résistance ultime &, des pan-



124 R. MAQUOI - CH. MASSONNET

neaux raidis par la théorie développée dans ce mémoire, puis d’adopter comme
contrainte admissible
Caqg = &’
s
s étant le coefficient de sécurité correspondant au cas de sollicitation considéré
(c’est-a-dire, en Belgique, s=1,5 pour le cas I de sollicitation et s=1,33 pour
le cas 1I).

Nous avons également calculé la charge ultime du panneau comme indiqué
au par. 1 en considérant que le raidisseur plus une bande de tdle de largeur
effective b, périt par flambement, pour une contrainte moyenne o,,,, dans la
tole égale & la contrainte de flambement ol de la piéce comprimée.

On remarquera que b, dépend de o/,,, par la formule de FAULKNER et que
d’autre part, o), . dépend des caractéristiques de la piéce comprimée et, des
lors, de b.; on doit donc procéder par approximations successives jusqu’a ce
que la valeur o,,,, prise en compte dans le calcul coincide avec la valeur de la
contrainte critique de flambement o/l de la piéce comprimée. On a donc les

relations

B =215,
. 2 2¢
b, :0,928]/——,9 _0215 22
b O'ma.zl |0maac’
g (distance du centre de gravité au plan moyen de la tole)
_ 192085 )
1920+ 10b, € ’
12 X 1603
I = %—+ 106 g2 + 1920 (85 —¢)2,

Q =1920+108,

. _VT
v =Y
y 4000

?

Le coefficient de réduction ¢,; a été déterminé a partir de la courbe C' proposée
par la Commission 8 de la Convention Européenne de la Construction Métal-
lique, valable pour les profils composés par soudage [27].

Apres quelques tatonnements, on aboutit a:

7

Oz = Ol o~ — 14,5 kg/mm?

et b, = 509 mm.

On constate qu’une telle méthode de calcul conduit dans le cas présent a un
vrai gaspillage d’acier; 1’économie réalisée par 1’application de la théorie pro-
posée est de 1’ordre de 399, .
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Conclusions

Les essais du professeur DuBas [5] et les considérations développées par
nous ailleurs [6] ont montré clairement que 1’application de la théorie linéaire
du voilement avec les coefficients de sécurité classiques

s = 1,35 dans le cas I de sollicitation,
s = 1,25 dans le cas II de sollicitation

(montage p. ex.) a des poutres de pont en caisson raidies est dangereuse parce
que la réserve de résistance posteritique est nettement plus faible que dans
les poutres a ame pleine de sorte que la méthode donne une sécurité a la ruine
nettement insuffisante.

Il importe cependant de ne pas tomber d’un extréme dans 1’autre. Si 1’on
fait abstraction de toute réserve de résistance postcritique, on est amené a
concevoir la résistance ultime de la plaque raidie comme étant la somme des
charges critiques de flambement des colonnes formées des raidisseurs longi-
tudinaux et d’une bande de tole égale & la valeur de la largeur effective.

Les exemples numériques présentés au paragraphe 13 montrent que cette
méthode, si elle donne toute sécurité, conduit & un réel gaspillage d’acier.

L’objet du présent mémoire est le développement d’une théorie non linéaire
des plaques raidies formant membrures comprimées des grands ponts en caisson
en acier, qui prenne en compte la réserve de résistance postcritique de ces
plaques.

L’analyse du probléme (par. 2) montre que la réserve de résistance plastique
est trés faible dans le type de structure considéré et qu’on peut obtenir une
valeur suffisamment précise de la charge de ruine par une théorie élastique
en exprimant que la contrainte longitudinale moyenne de membrane le long
des bords latéraux de la plaque atteint la limite élastique de compression
simple R, = — R, .

Dans notre esprit, cette théorie représente 1’équivalent, pour les ponts en
caisson, des méthodes de dimensionnement & la ruine des poutres & ame pleine,
a savoir le modeéle de Basler-Thiirlimann et les perfectionnements divers qui
lui ont été apportés au cours du Colloque de Londres en mars 1971.

Nous préconisons de dimensionner les ponts en caisson en adoptant, vis-a-vis
de la contrainte de ruine G, déterminée par notre théorie, la méme sécurité que celle
qui est imposée par la Norme vis-a-vis de la limite élastique de Uacier pour le cas
de sollicitation considéré.

Les exemples numériques d’application développés aux paragraphes 12 et
13 montrent:

1. que la théorie proposée permet d’expliquer I’accident survenu, le 9 novem-
bre 1969, au pont sur le Danube & Vienne;

2. que cette théorie est en accord satisfaisant avec le trés petit nombre de
résultats expérimentaux connus.
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Ces résultats sont cependant en nombre nettement insuffisant pour consti-
tuer un test réellement valable. C’est pourquoi, vu 'actualité du probléme,
il est urgent d’entreprendre des essais jusqu’a la ruine sur poutres en caisson
raidies ayant les proportions des grands ponts réalisés ces derniéres années
et d’enregistrer soigneusement un maximum d’informations sur le comporte-
ment de ces poutres dans le domaine posteritique et surtout au voisinage de
la ruine.

Un obstacle & 1’application pratique de la présente théorie est sa complexité
mathématique. Il ne nous est pas paru possible de réduire cette théorie & des
abaques simples de dimensionnement.

Si ’on dispose d’un petit ordinateur, on peut utiliser le petit programme de
calcul que nous avons élaboré et obtenir la solution en quelques secondes. Ce
programme, écrit en FORTRAN IV, sera envoyé a tout lecteur qui en fera
la demande.

Par ailleurs, on peut simplifier partiellement le calcul manuel en remplagant
les rigidités modifiées selon PFLUGER par leurs expressions classiques. Divers
exemples numériques nous ont en effet montré que 1’erreur qui en résulte est
généralement tres faible.

Annexe

Théorie non-linéaire des plaques membranes orthotropes légérement courbes a
nervures dissymétriques

1. Introduction

La théorie non-linéaire des plaques planes orthotropes a nervures dissy-
métriques est due & PFLUGER [24]. Nous en avons donné un exposé en 1959 [25]
dans les «Mémoires de ’A.I.P.C.» en vue:

a) de montrer que ce type de plaques n’obéit pas & l’équation classique de

HuBEr [22]

ot w tw ot w
xb—ﬂ+20—+3y5@z=p(7c,y) (L.1)

B 020 y?

gouvernant les plaques & matériau orthotrope; en particulier, il n’a pas de
plan moyen déterminé;

b) d’essayer néanmoins d’obtenir, par des considérations énergétiques, les
valeurs moyennes des rigidités flexionnelles qu’il convient d’introduire dans
I’équation de HUBER (1.1) afin d’obtenir les meilleurs résultats numériques
dans I’analyse, par cette équation, d’un pont & poutres multiples.
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Dans la présente Annexe, nous nous fixons comme buts:

a) d’étendre la théorie de PFLUGER en tenant compte & la fois des contraintes
de membrane et d’une légére courbure initiale de la tdle isotrope;

b) de déterminer, par cette théorie, les expressions des rigidités extensionnelles
et flexionnelles qu’il convient d’introduire dans les équations généralisant
a la fois I’équation (1.1) de HUBER et celles de voN KARMAN-MARGUERRE,
afin d’obtenir les meilleurs résultats numériques dans ’analyse, par ces
équations, de la table raidie comprimée d’une grande poutre en caisson;

c) d’évaluer, par des calculs numériques comparatifs, I’erreur commise par
Pintroduction des diverses simplifications discutées en détail au para-
graphe 2 du mémoire.

2. Equations fondamentales
2.1. Hypothéses de calcul ‘

On analyse ci-apres le comportement d’une dalle isotrope renforcée par
deux familles orthogonales de nervures identiques et réguliérement espacées,
disposées d’un seul coté de cette dalle, et qui peuvent étre faites d’un autre
matériau que la dalle elle-méme (Fig. A.1) ou méme de plusieurs matériaux.

Fig. A. 1.

Les hypothéses adoptées ci-apres sont les mémes que celles mises & la base
de la théorie des plaques membranes par voN KARMAN et MARGUERRE:

1. Les matériaux composant la plaque nervurée obéissent a la loi de HOOKE.

2. Les déformations de flexion obéissent & I’hypothese de BErRNOULLI, selon
laquelle des sections planes faites normalement au feuillet moyen de la
dalle restent planes et perpendiculaires a ce feuillet apres déformation.

3. On néglige le gauchissement de ces sections provoqué par les contraintes de
cisaillement.

4. Les déplacements des points du feuillet moyen perpendiculairement & ce
feuillet sont du méme ordre de grandeur que 1’épaisseur de la dalle, de
sorte que les extensions de ce feuillet ne peuvent plus étre négligés.
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En plus de ces quatre hypotheses, nous admettons:

5. Que les efforts de cisaillement paralleles au feuillet moyen sont repris
exclusivement par la dalle isotrope; cette hypothése est d’autant mieux
vérifiée que les nervures sont plus minces dans le sens paralléle a la plaque.

6. Que, pour 1’évaluation des moments de torsion dans la plaque, les nervures
peuvent étre supposées détachées de la dalle isotrope.

7. Que les effets provenant du gauchissement des sections droites des nervures
sont négligeables, de sorte que ces nervures suivent en torsion les lois de
la torsion uniforme selon Saint-Venant.

2.2. Notations

2.2.1. Les axes coordonnés sont disposés comme suit: Le plan z=0 est le plan
moyen de la dalle isotrope; les axes x et y sont paralléles aux deux familles
de nervures.

Les composantes du déplacement d’un point du plan moyen suivant les
axes , ¥, 2, sont désignées par, u, v, w.

On désigne par:

t: I’épaisseur de la dalle;

E,v le module de Younag et le coefficient de Po1sson des matériaux inter-
venants;

les distances entre deux nervures successives paralleéles a Oy et & Ox,
respectivement;

(), (): les dérivées partielles par rapport & x et & y, respectivement.

2.2.2. Rugidités extensionnelles unitaires de la dalle isotrope:

Et

1—»2

D= (2.1)

de la plaque nervurée:

D,- L |EB@de, D =lJE(z)dQ .
b, v, v
by

by

Les notations | et [ représentent des intégrales étendues aux sections de la
be by
plaque nervurée de largeurs b, et b, respectivement (Fig. A.1).

2.2.3. Distances des axes neutres des nervures au plan moyen z =0
1 [ 1
b, D

e. =

E(2)zdQ,, %=1 {E (2)2dS,. (2.2)
xx e e

bz by

2.2.4. Bugidités flexionnelles et torsiommelles unitaires. Rigidité de la dalle
isotrope:
E3

By

(2.3)
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Rigidités flexionnelles unitaires de la plaque nervurée par rapport aux axes
neutres correspondants:

Bx=£;fE@Hz~qﬁde By:;;ﬁE&Hz—%Fdﬂy (2.3)
by

bz
Dans les intégrales (2.1) & (2.3) ci-dessus, il faut remplacer £ par E/(1 —v?)
dans la partie de I'intégrale relative & la dalle isotrope.

Les rigidités torsionnelles unitaires des nervures B,, et B, , sont & déter-
miner en se basant sur la théorie de la torsion de Saint-Venant. Dans le cas
particulier fréquent ol ces nervures sont a section ouverte et & parois minces,
on calculera b, B,, et b, B, par la formule G/3 > b3, ou b est la largeur d’un
des rectangles d’épaisseur ¢ faible composant la section droite de la nervure.

Si M et Mk sont les moments de torsion unitaires repris par ces nervures,
on a les relations

M* = B,,0 M = B,,0 (a)

Xy’ Yyxr - Yyx >

ou 0, et 6, sont les angles de torsion unitaires des nervures paralléles a I’axe
des x et a I’axe des y, respectivement. Dans ces formules, les moments M * et
les torsions sont mesurés positivement dans le sens d’un tire-bouchon vissé
dans le sens positif des axes x ou y. D’apres cette convention et I’hypothése 2,
ona b, =w"etf, =—w", ol w’ représente d’ailleurs la torsion géométrique
de la dalle isotrope; en remplacant les § par ces valeurs dans les formules (a),
on trouve les relations

Ma,cky = Bacyw’. ’ M;x =-B,w". (2.4)

yx

Introduisons encore la notation
C=B+B,,+B,. (2.5)

2.2.5. Ktat de contrainte dans la plaque nervurée. La dalle isotrope est en état
‘double de contrainte caractérisé par les composantes o, 6, 7,, et est en outre
le siege de contraintes tangentielles transversales 7., et 7,,. Les nervures sont
le siege de contraintes normales ¢, ou o,, ainsi que de contraintes tangentielles
22> Tyz» Provoquées par leur torsion a la Saint-Venant.

La loi de Hooke fournit entre ces contraintes et les déformations correspon-
dantes les relations suivantes:

Dans la dalle isotrope:

T

1 1 _ _ Txy -

d’ou 'on déduit

E E

E §
W=1pletre) e =yTlatva). T =g Ve (26)
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Dans les nervures, on a
o,=He,, o,=Ke, (2.7)

parce qu’il est connu que la torsion & la Saint-Venant ne produit aucune
dilatation e,, €, ou €, du matériau.

2.2.6. Efforts résultants unitaires dans une section droite. On définit les efforts
résultants dans une section droite comme dans la théorie classique des plaques
isotropes; ces efforts se divisent en deux groupes:

A. Efforts de I’état membranaire (paralléles au plan moyen de la plaque):

Efforts normaux

N, = El;faxdgx, N, - b—lyforyd.Qy. (2.8)

by y

Efforts de cisaillement paralléles au plan moyen:

L1 1 ‘
Ny =5 (Txydgx, N, = b_nydey. (2.8)
daa?l; da%’le

Les deux derniéres intégrales ne s’étendent qu’a la dalle isotrope parce que
les contraintes de cisaillement dans les nervures paralléles au plan moyen sont
supposées nulles en accord avec 1’hypothése 5.

’ ,/ Mxy
Y
/' P Tx
Mx L7
1, |
Fig. A. 2.
Myx

B. Efforts de Uétat de flexion (les sens positifs de ces efforts sont définis a la
figure A.2):

— moments fléchissants par rapport aux axes x et y situés dans le plan moyen
de la dalle
1 1
M, =chawzd[2x, M, =5;fcyzdﬂy. (2.9)
bz

by
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— moments de torsion (positifs dans le sens positif des axes x et )

1 1 ’
M., = b, (TxydewJFM;g,, M, = —E;JTwdey+M;;y. (2.9)
dalle dalle

Efforts tranchants normaux au plan moyen

T,={r,,d8,, T, =[7,d,. (2.9)
be by

2.3. Equations d’équilibre

La plaque nervurée est supposée chargée de forces normales a son plan
moyen, réparties avec l'intensité p (x,y).

L’équilibre de translation parallélement au plan moyen donne les deux
équations (classiques en élasticité plane)

N,+N,,=0, N, +N,=0 (2.10)

parce que les angles d’inclinaison sur 1’horizontale des éléments dx et dy sont
suffisamment faibles, d’aprés 1’hypothése 4, pour que leurs cosinus soient pris
égaux & 'unité.

L’équilibre de translation normalement au plan moyen et 1’équilibre de
rotation donnent les 3 équations suivantes (cf. par exemple [23]) *)

*) Dans le mémoire original de PFLUGER [24], on trouve les équations d’équilibre
écrites sous la forme:

NL+Ny+2Tu" =0,
N,y +Ngy—N @ —ew”)+2Tv" =0,
M;/+(_sz+Myx)/-+M:-y-_‘AT(w//+ev/In~62w//.-)+2Twla:0

ot N(=—N3) et T =N, sont Deffort constant de compression excentré de e dans le
sens x et Deffort constant de cisaillement, respectivement, existant avant voilement,
dans le cas ou la plaque raidie est initialement parfaitement plane.

Dans nos applications pratiques, 7' sera toujours nul. De plus, nous négligerons les
termes en N apparaissant dans les 2e et 3e équations, qui sont également négligés par
GIENCKE ([33] p. 56). En effet, les déformations dans le plan (x, y) sont trés petites et,
par conséquent, on peut négliger le terme — Nv”’ dans la deuxieme équation et le terme
— Newv' dans la troisiéme équation.

Enfin, le terme (—e2w’”") de la troisieme équation est négligeable devant le terme
en w”’. En effet, en adoptant comme déformée de la plaque 'expression

m™T mY
w=fu COS —-C08 3=,
on trouve:
w2

T m 2
w' —e2w’ = ——fn cos T2 cos TY (1 —e2 ).
a? a

b b2
Il est visible que la correction (—e2w’") conduit & remplacer l'unité par le terme

(1 —e? %) Pour une plaque normale de grand pont, on a e &~ 10 ecm b = 1000 cm, d’ou

b = 10-3 (négligeable).
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T;+T, + N, (wg +w’)+ N, (wg' +w ™)+ 2N, (wg' +w”') +¢ = 0,

(2.11)
— M, +M,-T,=0,  M,+M,,—T,=0.

En éliminant les efforts tranchants 7, T, , entre ces trois relations, on trouve
I’équation:

M/ +(-M,,+M,) +M,;+N, (wy+w’')+ N, (wy +w)

!/$)

(2.12)
+2N,, (wy +w')+q = 0.
2.4. Etat de déformation de la plaque nervurée
L’état de déformation du plan moyen de la dalle est caractérisé:
a) par ses déformations membranaires, ¢’est-a-dire par les dilatations
o= u + bt w P —bwl, & =v i rwl-tud  (2.13)
et par la distorsion
Gy = 0 0+ (w0 + ") (g + ) — w0 (2.14)
b) par ses déformations flexionnelles, ¢’est-a-dire les courbures
Xz = —w, Xy = —w"’ (2.15)
et la torsion géométrique
0,,=—0,,=w". (2.16)

En vertu de I’hypothése N? 2 (Bernoulli), I’état plan de déformation en un
point de la dalle situé a la distance z du plan moyen est donné par les relations:

€ = €, T2 Xz> eyzéy+sz3 'yxyz'};xy_'Qszy' (2-17)
En éliminant u et v entre les expressions (2.13) et (2.14), on obtient la condition
de compatibilité qui les lie

& & —Vay = (wg + w2 —(wy +w) (w +w") —wg twy wy' . (2.18)

2.5. Expressions explicites des efforts unitaires

A T'instar de voN KARMAN, introduisons une fonction de contrainte régis-
sant le tenseur de membrane par les relations

N,=¢", N,=¢", N, =—¢", (2.19)

x xy —

qui satisfont identiquement aux deux premiéres équations d’équilibre (2.10).

En remplacant, dans les expressions de définition (2.8) et (2.9) des efforts
unitaires, les contraintes par leurs expressions (2.6) ou (2.7) en fonction des
déformations, puis les déformations par leurs expressions (2.17), et en tenant
compte des relations (2.4), on obtient les formules:
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*

N, =D, (é¢,—e,w')+vDe, = ¢,
N, =D,(e,—e,w’)+vDé, = ¢", (2.20)
1—v_ _ .
NmyzNyuv: 9 D'yxy:_(;b ’
M, =—-B,w' —vBw +e,D, (e,—e,w"),
M, =-B,w —vBw'+e,D, (¢,—e,w"), 591
M,, =[(1-v) B+ B, w", (2.21)
M, =-[(1-v)B+B, Jw'.
Résolvons (2.20) par rapport & é,, €,, y,,; il vient:
1 2YD e = .. D rr vD ’ D .
( —V) ace.a:'_"(qS +e, D, w )—'j)—'(‘ﬁ +e, D, w )7
v
- - 124 .. VD ok 17
(1—-9?)D,é, = (¢'"+e,D,w )_ﬁ(¢ +e, D, w"), (2.22)
l—v __ _ .
D
avec Vo= v. (2.23)
yD,D,

En remplagant €, et €, par leurs expressions (2.22) dans (2.21), on trouve,
pour les composantes du tenseur-moment, les expressions explicites en fonc-
tion de w et ¢:

’” .. €y o n_vD ..
M, =—-B,w'—vBw +(1—172) [(qS +e, D, w") D, (" +e,D,w )],
M B w —vBuw +—_ (¢ +e,D,w) =224 e, D,w)|, (2.24
Y = yw i L +(1'—l72) (¢ +ey yw )_Dx (96 +ex xw ) ’ ( e )

Mxy = [(IHV)BWLBxy]w,a
M, =—[(1—v) B+B,Jw".

2.6. Equations fondamentales

2.6.1. Hquation de compatibilite. Remplacons dans la condition de compa-
tibilité (2.18), é,, €, et y,,, par leurs expressions (2.22); il vient, en multipliant
les deux membres par (1 —v?)
¢”” (ﬁ”” (ﬁ”” 1res € rree

25— — v Sz —
D, + 5 + Dy—l—(ex-l—ey)w vD wa +Dyw

(L= 72) [y 00 = (ay” +0) () ") =0y 00y ]

€y

(2.25)

moyennant la notation
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- 1—v
D=—"F5D. (2.26)
]. _VD——sz

C’est la premiére équation fondamentale, dite de compatibilité.

2.6.2. Equation d’équilibre. En introduisant les expressions (2.24) dans
I’équation d’équilibre restante (2.12) et en posant pour simplifier

1;2

Ex =B, — 1 _262D
—v
_ ];2
B, = B,—1=¢D,, (2.27)

1 v
C = B+§(Byx+Bxy)+l——T26 €. _D,

on obtient la seconde équation fondamentale, dite d’équilibre:

e +ey¢ o

n 27 Y I D ceee v D . rrer
(2.28)

— ¢ (wy' +w") =" (wy' +w) + 2" (wo +w N—q=0.
2.7. Forme simplifiée des équations fondamentales

Les équations fondamentales (2.25), (2.28) se simplifient considérablement
si on y néglige tous les termes qui contiennent explicitement les excentricités
e, et e,. Elles s’écrivent alors:

¢"° ¢ LY & ¢Il’/
+2 + =
Dx D DI/
-9 1. I . . 7’ 17 712 .. 144 (2'29)
(1 =22)[(wy +w"" )2 —(wy" +w™") (wy' +w'") —wy" 2 +wy wy'],
l—?xw”"+26'_w”"+§yw"" =" (wy +w )+ (wy' +w')—2¢" (wy' +w’).

C’est sous cette forme que les équations fondamentales ont été appliquées
dans le présent mémoire. Cette forme est littéralement identique aux équations
des plaques membranes faites d’un matérian orthotrope mais les expressions
des rigidités extensionnelles et flexionnelles sont cependant différentes. Une
fois w et ¢ déterminés par intégration des équations (2.29), les composantes
du tenseur se déterminent par les formules (2.19). Quant aux composantes du
tenseur moment, on peut les déterminer, soit par les formules (2.24), soit par
les formules plus simples :

M, =—-B,w' —vBw +e,¢"",
M, =-B,w —vBw’'+e,¢",

sz = [(I—V)B—i-Bxy]’w",
Myx = —[(l—v)B—I—BW]w",

(2.30)
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obtenues en gardant la partie principale des termes correctifs, soit enfin par
les relations

M, =-B,w'—vBw",
M, =-B,w’ —vBw",

., (2.31)
Mxy=[(l_V)B+Bxy]w ’

Myx = ”[(I_V)B'*'Byx]w"y

qui sont fournies par la théorie des plaques membranes & matériau orthotrope.

3. Expression mathématique de la condition que les deux bords paralléles x = + a2
forment des lignes nodales rectilignes, mais qui peuvent se rapprocher

La condition cherchée s’écrit évidemment

5, = C% (indépendant de y),

+af2
=u(x =a/2)—u(x —a/2) = [u'dx = constante. (2.31)
—al2

mais 3,

De la premiere relation (2.22) ou I’on néglige les termes en ¢, et e, pour rester
cohérent avec les formules (2.31), on déduit

(1 *ﬁz)DwéJ; = ¢ _TD__S{)”'

En égalant la valeur de €, tirée de cette relation avec celle donnée par la pre-
miére formule (2.13), on déduit, en tenant compte de (A. 2.23):

1 1 1 (¢ 7 1 1
I=-__ ’ "ne - 12=— r v Yy - ’ "2 - 79
En remplagant ' par cette valeur dans (2.31), on obtient la condition cherchée
+a/2 1 ¢ 1 .
h v 1 :
_ 22 ’ AV i ’9 = ste. 2. 2
f{l—ﬁz(Dx Vﬁ¢) 2(w0+w)+2w0}dx C (2.32)
—al2 =Y
Notations
B Rigidité flexionnelle unitaire de la dalle isotrope
v /R,
B = = ]/—E—,—Q Coefficient de Faulkner
B, Rigidité flexionnelle unitaire selon 0x de la plaque nervurée
B, Rigidité flexionnelle unitaire selon 0y de la plaque nervurée
B, B, Rigidités torsionnelles unitaires des nervures paralléles a Ox et

0y respectivement
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Rigidités flexionnelles unitaires modifiées selon Pfliiger

Rigidité torsionnelle de la plaque nervurée

Rigidité extensionnelle unitaire de la dalle isotrope

Rigidité extensionnelle unitaire selon 0z de la plaque nervurée
Rigidité extensionnelle unitaire selon 0y de la plaque nervurée
Rigidités extensionnelles unitaires modifiées selon Pfliiger
Rigidité torsionnelle unitaire modifiée selon Pfliiger

Module d’élasticité

Module d’élasticité tangent

Moment d’inertie

Moments fléchissants unitaires

Moments de torsion unitaires

Efforts membranaires unitaires

Effort de compression a la ruine

Charge critique de flambement eulérien élastique

Limite apparente d’élasticité en traction

Limite apparente d’élasticité en compression

Longueur du panneau

Largeur du panneau

Entredistance des raidisseurs longitudinaux

Largeur effective du sous-panneau isotrope

Hauteur de ’Ame '

Distance des axes neutres des nervures paralleéles & Ox et Oy
respectivement, par rapport au plan moyen de la dalle isotrope
Fléche initiale au centre du panneau

Fléche additionnelle au centre du panneau

Rayon d’inertie

Nombre de raidisseurs plus un

Indice de posteriticité

Effort moyen unitaire agissant sur le panneau dans la direction Oz
Coefficient de sécurité

Epaisseur de la dalle isotrope

Déplacements selon les axes 0z, Oy, 0z

Déformée initiale

Déformée additionnelle

Axes de coordonnées, liés au centre du panneau

Rapport a/b des dimensions du panneau

Aire relative d’un raidisseur
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Sx ’ 8()
€= 0/ t
e =f[t
€x> €ys Yay
€rs €ys Vay
A
A
14
v
Ty Oy Tay
Ter
4
Oer
Omazr = R
!
Umaa:
-t
o
Tud
Oy
O.raid

r

P’ Py
Pe
Py = PiP’

2] = ™~

00000

o~

Déplacements relatifs selon Ox

Fleche initiale relative

Fleche additionnelle relative

Déformations unitaires

Déformations unitaires membranaires

Fonction de contrainte

Elancement ou minceur

Elancement réduit

Coefficient de Poisson

Coefficient de Poisson modifié selon Pfliiger

Contraintes

Contrainte critique de voilement du panneau continu de substi-
tution

Contrainte critique de voilement d’une plaque isotrope
Contrainte longitudinale membranaire maximum dans le pan-
neau raidi atteinte au droit des d4mes du caisson (Fig. 6)
Contrainte longitudinale membranaire maximum dans un sous-
panneau atteinte au droit des raidisseurs bordant ce sous-
panneau (fig. 5)

Contrainte longitudinale membranaire moyenne sur la largeur
b’ d’un sous-panneau (fig. 5)

Contrainte longitudinale membranaire moyenne sur la largeur
b du panneau raidi (fig. 6)

Contrainte admissible

Contrainte longitudinale moyenne ultime

Contrainte moyenne de ruine d’un raidisseur muni d 'une largeur
effective de tole

Facteur de forme

Rendement partiel

Rendement de la table de compression

Rendement global

Aire de la section transversale d 'une ame du caisson

Aire de la section transversale de la semelle inférieure

Aire de la section transversale d un raidisseur

Aire de la section transversale de la semelle supérieure

Aire totale de la section transversale du caisson



138 R. MAQUOI - CH. MASSONNET
Bibliographie

[1] Crcin, P.: Betrachtungen iiber die Bruchursachen der neuen Wiener Donaubriicke.
Tiefbau, Vol. 12, pp. 665-674, 1970.

[2] SATTLER, K.: Nochmals: Betrachtungen iiber die Bruchursachen der neuen Wiener
Donaubriicke. Tiefbau, Vol. 12, pp. 948-950, 1970.

[3] Roix, H. K.: Nochmals: Betrachtungen iiber die Bruchursachen der neuen Wiener
Donaubriicke. Tiefbau, Vol. 12, pp. 1152, 1970.

(4] KERENSKY, O. A.: An Engineer’s Ethics. Structural Engineer, Décembre 1970.

[5] Dusas, P.: Essais sur le comportement posteritique de poutres en caisson raidies.
Colloque de ’AIPC; Design of Plate and Box Girders for Ultimate Strength, Londres
25 et 26 mars 1971 (a paraitre).

[6] MaqQuor, R. et MassONNET, CH.: Discussion of the Report by Professor P. Dusas.
Ibid.

[7] CaLbpwELL, J. B.: Ultimate Longitudinal Strength. Trans. Royal. Inst. of Nav.
Arch. Vol. 107, pp. 411-430, 1965.

[8] FrRaNKLAND: E.M.B. report 469, Mai 1940.

[9] ConLEY, BECKER and ALLNUTT: David Taylor Model Basin report 1682, mai 1963.

[10] voNn KARMAN, TH., SECHLER, E. E. et DoNNELL, L. H.: The Strength of Thin Plates
in Compression. Trans. ASME; Vol. 54, 1932.

[11] WINTER, G.: Performance of Thin Steel Compression Flanges. 3¢ Congrés de 'ATPC,
Liége, Publication Préliminaire, pp. 137148, 1948.

[12] Yosuiki, M., AKITA, Y. et Nacasawa, H.: On the Buckling of the Reinforced Thin
Sheet. Panel of High Tensile Steel under Compression. Naval Architecture and
Shipbuilding in Japan, Vol. 104, pp. 141-147, 1958.

[13] YosHiki, M. et FujiTa, Y.: On the Ultimate Strength of Stiffened Plates Subjected
to Compression Load. Naval Architecture and Shipbuilding in Japan, Vol. 104,
pp- 149-155, 1958.

[14] MassoNNET, CH.: Poutres de grandes dimensions & &me mince. Publication Préli-
minaire du 8e Congrés de I’AIPC, New-York, pp. 157 & 177, 1968.

[15] BasLER, K.: Vollwandtrager, Berechnung im tuberkritischen Bereich. Schweizer
Stahlbau-Vereinigung. o

[16] MassONNET, CH.: General theory of elasto-plastic membrane-plates. Dans le Volume:
Engineering Plasticity, pp. 443 & 471. Cambridge University Press, 1968.

[17] WoLmMIR, A. S.: Biegsame Platten und Schalen. V.E.B., Verlag fir Bauwesen,
Berlin, 1962.

[18] SkarouDp, M. et Novorny, R.: Uberkritisches Verhalten einer anfinglich gekriimm-
ten gleichférmig gedriickten, in der Mitte mit einer Léangsrippe versteiften Platte.
Acta Technica, C.S.A.V., N0 2, 1965.

[19] SkarouDp, M.: Post-buckled behaviour of stiffened webs. Academia Nakladatelstoi
Ceskoslovenske Akademie VED, Prague 1970.

[20] SkALOUD, M. et NovorNy, R.: Uberkritisches Verhalten einer gleichférmig gedriick-
ten, in der Dritteln mit zwei Léngsrippen versteiften Platte. Acta Technica C.S.A.V.
n’ 6, 1964.

[21] Bares, R. et MassoNNET, CH.: Le calcul des grillages de poutres et dalles ortho-
tropes selon la méthode Guyon-Massonnet-Bares. Editeurs-SNTL, Prague et Dunod,
Paris, 1966. ‘

[22] HuBer, M. T.: Die Theorie der kreuzweise bewehrten Eisenbetonplatten nebst
Anwendungen auf mehrere bautechnisch wichtige Aufgaben uUber rechteckige Plat-
ten. Bauingenieur, Vol. 5, 1923.



RESISTANCE POSTCRITIQUE DES GRANDES POUTRES EN CAISSON RAIDIES 139

[23] TiMmosHENKO, S. P.: Theory of Plates and Shells, 2nd edition, Mc Graw Hill Book Co.,
1959. Théorie des Plaques et des Coques, Béranger, Paris, 1961.

[24] PFLUGER, A.: Zum Beulproblem der anisotropen Rechteckplatte. Ingenieur-Archiv,
Vol. 16, pp. 111-120, 1947.

[25] MassoNNET, CH.: Plaques et coques cylindriques orthotropes a nervures dissy-
métriques. Mémoires de I’AIPC, Vol. 19, pp. 202-230, 1959.

[26] BEER, H. et ScHULZ, G.: Die Traglast des planmiéssig mittig gedriickten Stabs mit
Imperfectionen. VDI Zeitschrift Vol. 111, pp. 1537-1541, 1683-1687, 1767-1772,
1969.

[27] BEER, H. et ScHULZ, G.: Bases théoriques des courbes européennes de flambement.
Construction Métallique, Vol. 7, 1970, N° 3, pp. 37/57.

[28] FrEY, F.: Calcul au flambement des barres industrielles. Bulletin Technique de la
Suisse Romande, N° 11, mai 1971, 12 pp.

[29] vox KArMAN, T.: Festigkeitsprobleme im Maschinenbau. Encyklopadie der Mathe-
matischen Wissenschaften, Vol. IV, N0 4, Teubner, Leipzig, 1910, pp. 348-352.

[30] MARGUERRE, K.: Proceedings of the Fifth International Congress of Applied Mecha-
nics, Cambridge (Mass.), U.S.A., 1938, p. 93.

[31] Référence citée & la page 291 du livre de S. G. LERNITSKII: Anisotropic Plates,
Gordon and Breach, 1968.

[32] SopER, W. G.: J. Appl. Mech. Vol. 25, pp. 444448, 1958.

[33] GienckE, E.: Einfluss der Streifen — Exzentrizitdt auf Biegung und Stabilitdt
orthotroper Platten. Beitrag aus Statik und Stahlbau, Stahlbau-Verlag G.M.B.H.,
Koln 1961.

[34] KropPEL, K. et MOLLER, K.: Beulwerte ausgesteifter Rechteckplatten, Vol. II,
W. Ernst und Sohn, ed., 1968.

Résumé

Divers accidents ont récemment attiré 1’attention sur le probléme des ponts
en caisson raidis en acier. Les auteurs ont montré ailleurs [6] que les coefficients
de sécurité 1,35 ou 1,25 généralement adoptés lors de I’application de la théorie
linéaire du voilement des plaques comprimées raidies sont insuffisants.

Dans le présent mémoire, ils établissent une théorie a la ruine des plaques-
membranes comprimées a raidisseurs dissymétriques et & déformation initiale,
et I’appliquent au probléeme des ponts en caisson.

Zusammenfassung

Verschiedene Unfille haben jingst die Aufmerksamkeit auf das Problem
stahlerner ausgesteifter Kastentriger-Briicken gelenkt. An anderer Stelle [6]
haben die Autoren gezeigt, dass der Sicherheitskoeffizient von 1,35 bzw. 1,25,
wie er allgemein unter Beniitzung der linearen Beultheorie von ausgesteiften
Platten verwendet wird, ungeniigend ist.

In der vorliegenden Arbeit stellen die Verfasser eine Bruchtheorie zusam-
mengedriickter Membranplatten bei dissymmetrischer Aussteifung und anfiang-
licher Verformung auf und iibertragen diese Theorie auf das Problem der
Kastentragerbriicken.
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Summary

Different accidents have recently called the attention to the problem of
stiffened box girder steel bridges. On a previous occasion the authors [6] have
explained that the security coefficients of 1.35 or 1.25 generally used in the
linear buckling theory of compressed stiffened plates are not sufficient.

In the present paper the authors establish a rupture theory for compressed
membrane plates with dissymmetric stiffeners and initial deformation and
apply the said theory on the problem of box girder bridges.
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