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Solutions of Two Dimensional Problems of Elasticity Without Use of
the Stress Function

Solutions de problémes d’élasticité bidimensionnels sans emplot de la fonction de
tension

Losungen zweidimensionaler Hlastizitdtsprobleme ohne Beniitzung der
Spannungsfunktion

JOSEPH L. KRAHULA

Professor of Mechanics, Rensselaer Polytechnic Institute of Connecticut, Inc., Hartford
Graduate Center, East Windsor Hill, Connecticut 06028 U.S.A.

1. Introduction and Method of Solution

The usual method of solving two-dimensional problems of elasticity is to
introduce a stress function such that the equations of equilibrium are satisfied.
The compatibility equations, which are expressed in terms of the stress funec-
tion, are then solved for the stress function. This procedure, however, gives
no indication of how to satisfy any boundary conditions. It is the purpose of
this paper to show that it is often advantageous to first specify one of the
stresses from observation of a loaded surface and then use the governing
equations to solve the problem if only in view of Saint-Venant’s Principle.

Consider any loaded surface, that of a thin plate for example, shown in
Fig. 1. Use coordinates such that the loaded surface coincides with a line
parallel to one of the coordinate axis. Then the stress perpendicular to the
surface may be of the form

For a closed form solution to exist the equations of equilibrium and compati-
bility must then be able to be integrated to determine the other stresses in
terms of Y;(n) and its derivatives and any functions of integration which may
arise. These functions are then integrated and the resulting constants are
adjusted to satisfy the boundary conditions often only in view of Saint-Venant’s
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Fig. 1. A loaded surface of a thin plate.

Principle. This procedure will now be illustrated for several two dimensional
problems.

2. Application of the Method

Let the loaded surface (n=y=const.) in Fig. 1 be a horizontal line and
hence solve plane stress beam problems using cartesian coordinates x and y.
The governing Eqs. [1] (zero body forces) in addition to boundary conditions
are

00 oT oT oo
z xy: ry ——yz 2 = . ]_
oz T oy gr Ty ~ 0 Voato)=0 (1)

Eliminating 7,, from these equations shows that both ¢, and o, are biharmonic
functions. Because of the type of load at the surface y = const., the stress o,
must be of the form

Uyzig()lfi(y)xi: @'=O,1,2,...7L, (2)

where Y; (y) is a function of y to be determined. The two equations of equili-
brium yield the other stresses as

n . n
}fill x1,+2 Ifil xi_*_l
E= e T I Ty A / ) s = — —_— 5 3
Ox 1;)(@_'_1)(@_!_2) +xa(ﬂ)+ﬁ(ll) Tacy ~ (,'/_‘_1) ‘x(y) ( )

where « and B are arbitrary functions of integration. Substituting in the
equations of compatibility yields the reoccurrence relations

" +20+1) (0+2) i+ (4 1) (04+2) ((+3) (1+4) Yiyy = 0 (4)
and B"+2(Yy+Y) =0  a"+2Y¥+6Y,=0. (5)

The forms of Egs. (4) were to be expected since o, is biharmonic. Note that
the solutions for odd and even polynomial loads are uncoupled.
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Consider first the examples Y; =0 therefore s,=0 and
0, = 26y +e)Tteytey, Ty =—(CYP+ogy+eg),

where ¢, —c; are constants of integration. The function B itself solves the case
of pure bending (B=c¢,¥) and pure tension or compression of a beam (8=c,).
The function «=c;y%+c5 solves the problem of a cantilever beam loaded at
its free end (see article 21 of Ref. [1]).

Consider next the solutions when Y, is not zero. Depending on the location
of the origin of coordinates the case =0 solves the problems of uniformly
loaded beam of article 22 of Ref. [1] and the uniformly loaded cantilever beam
of article 413 of Ref. [2]. The problem of a cantilever beam subjected to a
linearly varying load (see art. 23 of Ref. [1]) is solved by letting + = 1. To solve
problems of a beam subjected to a parabolic load it is necessary that o, be of
the form

o,=Yy+Y,2%, (1=0 and 2).

Note that, in general, if the load is of the form g =g, £ the stress o, must be
of the form

o, = SY, (g, (n=ii=2i-1).

As noted before, it will be found that the large number of solutions represented
by (4) and (5) will be subject to Saint-Venant’s Principle.

The problem of an anisotropic beam is no more difficult than that of the
isotropic beam just treated. The generalized Hook’s Law, when the xy plane
is the plane of elastic symmetry (using notation of Ref. [3]), is

€ = U110, 1T A0, + 01 Tgy, €y = A1p0, + A3 0y + Aog Ty 5

ny = a’lG Oy + w26 o'y + a66 Txy
and the third of Eqgs. (1) becomes

2 2 52 2 2
o, 0 o 27, 0°r

g »
a11—8§2‘+(a66+2a12)6x;+“22 ax2y+2a167y7”+2a26ﬁ: . (6)
The reoccurring relations (4) and (5) for this case are
ay ¥;" 2046 V4 p
. — - 2 .
(’b+1)(’b+2) (1/_*_2) +(a66+ a12) YL+2
—2a9 (1 +3) Y 3+ a5(t+3)(2+4) Y, =0, (7)

Ay By — 21500+ (Agg+2015) Yo' —2a,5 Y, +205 Y, = 0,
a1y “(IZ) —2a,6 Yy + (a6 + 2 ay5) Yl” —4ay Yy + 609 Y3 =0.

Eqgs. (7), unlike those of (4) and (5) (for even and odd loads) are completely
coupled, however, they uncouple for an orthotropic beam.

More closed form solutions will be subject to Saint-Venant’s Principle. For
example, since o« and B are coupled the solution for an anisotropic cantilever
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problem of art. 21 of Ref. [1] will not be exact but will only be valid in view
of Saint-Venant’s Principle [3]. Eq. (7) will yield the solutions given in articles
14-16 of Ref. [3] as well as many others.

The boundary value problems solved in Ref. [4] may also be solved by first
specifying the stress in the direction of the load. The analysis of deep beams
treated in Ref. [5] may be solved by first specifying o, (see Fig. 7 of Ref. [5])
in the form

Oy = Z Ifn(y)cosanx'I_ Z Xm(x)cosﬁmy.
n=0 m=0
Let the loaded surface (n=60=const.) in Fig. 1 be a straight line inclined

to the horizontal and hence solve the wedge problems of articles 38, 39, and
45 of Ref. [1] using polar coordinates r and 6. The solutions are

) Y M
(0)719 Trg = _Z ; - (0)’

Y,

gg = 1

i

1

Oy

(1 +2) G+1) 2 r

where Yy, = A,0+B,+A4,sin20+ B,cos 280,
Y, = A;sint0+ B;cosi0+4;,,8in(s+2)0+ B, ,cos(t+2)0, (8)
Ny =c,sinf+c,cos6, My =cysin20+c,cos20+c,

n n ) 7
Z[Y’ +I§] r My Ny
1=0

and the A’s, B’s and C’s are constants of integration. Such solutions are dis-
cussed in art. 45 of Ref. [1]. Note that in this case the solutions for all the
polynomial loads are uncoupled. Let Y;=0 and hence note that N () solves
the problems of a force acting on the end of a wedge described in art. 38 of
Ref. [1]. The function M (6) solves the problem of a wedge subjected to a
concentrated bending moment discussed in art. 39 of Ref. [1]. Y;#0 yields
the solutions of problems of a wedge loaded along the faces (art. 45 of Ref. [1]).
When the material is cylindrically orthotropic or anisotropic, the wedge
problems analogous to (8) may also be solved. Some of these solutions may be
in closed form?!) others must be solved numerically.

The half plane and the wedge problems treated in Ref. [5] as well as the
wedge problems just solved (but having rectangular orthotropy) may also be
treated in the proposed manner by first transforming Eq. (6) (a;5=a.;=0)
into polar coordinates. The integrations (eq. with variable coef.) in the solu-
tions of such problems may prevent closed form solutions.

More problems of plane stress may be solved by assuming the loaded sur-
face of Fig. 1 to be different curves such as a circle for example using polar
and bipolar coordinates [7].

1) Those of Ref. [6] and the all the solutions for orthotropic materials for example.



PROBLEMS OF ELASTICITY WITHOUT USE OF THE STRESS FUNCTION 85

The problem of a circular disk or a long cylinder with or without concentric
holes subjected to any loading at the outer surface or the hole may also be
treated in the proposed manner. As a simpler example, consider a disk sub-
jected to any radial load which may be expanded in a Fourier Series as

[e¢]

q(0) = go+ 2 q(n)cosnb. (9)

n=1

o, and oy must be of the form
o, = go+ X f(r)cosn8 and op=go+ X g(r)cosnb
n=1 n=1

and the equations of equilibrium yield

T = Zl%f(rg)drsinnﬁ.

The compatibility equations yield

f=A "+ Agr "+ A2+ A, r "2,

n42 n+2

(10)

n—2 —2

where 4, — A4, are constants of integration which may now be determined
from the boundary condition (9) and the three remaining conditions on the
surface and at the inside surface of the hole. The general case of any radial
and tangential loading may be solved by beginning with a more general
assumption than Eq. (9). Problems treated in this section are solved using
complex variables in chapter 8 of Ref. [8]. The solution (10) may be modified
to:include orthotropic material and hence solve problems of the type indicated
in Ref. [9].

Consider next a body of revolution subjected to an axially symmetrical
load distribution such as the tangential load ¢, shown in Fig. 2.

| » —
\ g qt
n
qt’gong

Fig. 2. A body of revolution subjected to a tangential load.
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Let the body of revolution in Fig. 2 be a cylinder (»=r, £=2) and hence
solve problems of a non-homogeneous (G =G (r)) cylinder of constant cross
section subjected to a tangential load ¢, = Zqi 2t as well as couﬁles applied

i=0
at the ends. The governing equations are

o[~ o[t 0 0
T Ier| - 7 [Tee =
8z[Gr] ET[GT]’ 8r( 7rg) ¥ 22 (ri7g:) = 0.

The stress equations must be of the form

_ 5 i o Y (r* R;)’ 2it1 F(r)
TT¢_ l;()Ri(r)z s Td)z_ Z (’l;+].) - 7'2 s

where R;(r) is to be determined, F (r) is an arbitrary function of integration
and

(t+1)(2+2) R, (’2Ri)',_ FY Rl_
Gr tgns | =% 56| Ta =Y

When @ is constant it can be canceled out of the equations. Note that the
solutions for odd and even polynomial loads are again uncoupled. When R, is
zero and G is constant the elementary torsion formula, for a circular bar
twisted by end couples, results. The problem in the appendix of Ref. [10] may
now be generalized. R;# 0 yields solutions of problems of torsion of certain
nonhomogeneous (as well as homogeneous) cylinders subjected to tangential
surface loads as well as end couples. The solution may be easily extended to
bars of cylindrically orthotropic material.

Consider next the body of revolution of Fig. 2 to be a frustrum of a cone
(n=0,¢é= p) and hence solve problems of conical bars subjected to tangential

load ¢, = Z q;pt as well as twisting couples applied at the ends. The governing
equa,mons—ln spherical coordinates may be derived in the form

0704 0 [ 7 " 070 1o
p—— 7p = sin 89[sin0 3 wTh +2cotf7gy = 2—ap(p Tog)-  (11)

For this type of loading the stresses must be of the form

o4 = 2 F; (0)p", =Z[sm0[ ]Zp +1,)sin®,
i=1 -
where
_ dH,;(0) . _ dP, () @, («)
F,(6) = 70 sin 6, a = cosd, H, () =4, . + B, o -
—1+(24
n = ‘(2 ) and [, = %, C, = const.
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P, (x) and @, («) are the associated Legendre Functions2). The solutions for
all polynomial loads are uncoupled. F(0)#0(C,=0) yields solutions of
problems of torsion of conical bars subjected to tangential polynomial surface
loads as well as end couples. 1
The function I, (F;(0)=0) corresponds to Fopple’s problem [12] of a
conical bar subjected to end couples3). ,
The Fopple problem?) may also be solved when the bar material is ortho-

tropic such that
a,, Cr
Tqu=Gqu7qu’ Trég = UrdVre> o = G:ﬁz.

Transforming the governing compatibility equation and the stresses into
spherical coordinates yields

Trg = TpeSING , 7,4 = TpgC088 for 794 =0,
o (7 or 2
_ 2 O [Tpd) _ pd 9 —
(1—o)p cos()ap( p) sin 6 70 acos@ae(fpd,cotﬁ) 0. (13)

The equilibrium Eq. (11) gives 7,4 = K/p? where K must be evaluated from
(13). The solution is

_ Csind
Tod = p3[1—(1 —a)cos?6]%2
q Cr? Crz
and hence e L L

The constant C is evaluated in terms of the applied torques 7' as

37T
2 2 tan? B8 )
(0)12 " (x+tan2B)1/2  (x+ tan? 3)3/2]

C=-

o]

This problem is one of several throughout this manuscript which is solved
by first equating one stress to zero and then solving for the remaining stresses.
These solutions correspond to problems where the continuum is subjected to
concentrated loads.

Let again the body of revolution of Fig. 2 be a uniform cylinder subjected

n

to loads g = Zqi 2z instead of the tangential loads ¢, shown. Starting with
i=0
the assumption

n
0, = 'Zo Z;(z)rt

2) A table of these functions is given on page 133 of Ref. [11].
3) See also Ref. [1] p. 345 and Ref. [8] p. 104.
4) As well as those corresponding to solution (12).



88 J. L. KRAHULA

the problem of the symmetrically loaded circular plate discussed in art. 133 of
Ref. [1] may be generalized to include additional (¢> 0) polynomial loading
conditions. This problem will not be pursued further but consider the special
case when Z,(z)=0. The governing equations, in cylindrical coordinates yield
Trs = Cj.(Z): Gy =0, Zi(z) =0, Zy +alj+—I{V')’+

o, = [K—=(1+v) @13 (Inr—3)+3(Z,— &)+ Zy[r?,

o, =[K—(14+v) G153 (nr+3)+3(Z,+ G')—Zy/r*.

2-v)G@' =0,

These equations solve approximately the problem of a solid circular plate,
subjected to a concentrated load P at the center and supported by shear loads
at the circular edges, as follows:

. 2 2
Let G(z)=63|:1_(§):|3 C3=E—Pi—, K =0 and Trz = 3P I:l—(f)]:

Swcer c

so that 7, is zero on the upper and the lower surfaces of the plate (Fig. 202
Ref. [1]). The equations for Z; and Z, may be integrated to give

2(1—v)cy2®

Zy=cz and Z,=— 302

For thin plates Z, may be neglected since Z3/r2 is small in comparison to z.
The constant ¢, may be evaluated from the boundary condition o,=0 at
r=a and hence

_3(14v) Pz, 1 3Pz r

;
These equations agree with Eqs. (90)—(91) of Ref. [13] obtained by using the
theory for bending of thin plates.

Other problems of two dimensional elasticity for isotropic or certain aniso-
tropic material may be solved?) using the procedure enunciated. The examples
treated are ample proof that it is not always best to solve two dimensional
problems of elasticity by first introducing a stress function.
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Summary

Solutions of two-dimensional problems of elasticity are developed without
first expressing the governing equations in terms of a stress function. This
method uses coordinates such that a loaded surface coincides with a curve
parallel to one of the coordinate axis, which leads to an expression for one of
the stresses. The equations of elasticity may then often be solved for the
remaining stresses if only in view of Saint-Venant’s Principle. Closed form
solutions may be obtained more readily by this method rather than by the
stress function method. This method applies to homogeneous, non-homo-
geneous, isotropic and anisotropic materials whenever integration of the
equations permits a solution.

Résumé

On résoud des problemes d’élasticité bidimensionnels sans d’abord employer
d’équations avec fonctions de tension. Cette méthode emploie des coordonnées
ou la surface de poids appliqué coincide avec une courbe paralléle & 1'un des
axes coordonnés, ce qui méne & la formule d’une des tensions. Souvent on
peut ainsi résoudre 1’équation d’élasticité pour les autres tensions en se servant
du principe de Saint-Venant. Cette méthode permet plus facilement d’arriver
& des solutions exactes que celle employant une fonction de tension. La méthode
est valable pour des matériaux homogénes, non-homogenes, isotropes et
anisotropes dans tous les cas ou il existe une solution pour 1’équation différen-
tielle.
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Zusammenfassung

Es werden Losungen von zweidimensionalen Elastizitdtsproblemen ent-
wickelt, wobei man nicht erst die zugehorigen Gleichungen in Form einer
Spannungsfunktion auszudriicken braucht. Bei der Losung werden Koordina-
ten in der Weise beniitzt, dass eine Belastungsfliche mit einer Kurve zusam-
menfillt, welche parallel zu einer der Koordinatenachsen verlduft; dies fiihrt
dann zu einem Ausdruck fiir eine der Spannungen. Unter Benutzung des
Saint-Venant-Prinzips kénnen dann atich die Gleichungen fiir die anderen
Spannungen gel6st werden. Mit dieser Methode kann man eher zu geschlosse-
nen Losungen gelangen als mit der Spannungsfunktions-Methode.
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