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Lateral Buckling of Arches
Flambement latéral des arcs

Seutliches Bogenknicken

S. 0. ASPLUND
Goteborg

Synopsis

For analysis the given arch structure is subdivided by joints into a number of
finite arch segments. Each arch segment is split in one member above the shear-
center and another member below it. The two parts are elastically connected,
at the ends of the segment, by torsion stiffener members between the flanges
of the upper and lower members, and, along the split web, by a bending
resistance member. The elastic properties of each flange in transverse bending,
and of the top and bottom members in Saint-Venant torsion, are given by
the disconnected member stiffness matrix K. Web member deformations b —b’,
b—b" and c—c' will be explained later. Horizontal and rotational external
spring restraints upon the arch joints are defined.

Those specific joint loads and other conditions for which the buckling
safety is sought, are stated. The arch is first analyzed as a stable first or second
order theory structure for the loads stated (pre-analysis), resulting in member
axial thrusts NV and arch moments M.

Thereupon additional degrees of freedom of the joints in lateral buckling
are admitted. Structure stiffness matrices are established, U representing the
stiffness in elastic bending and twist, and W the thrust effect of N and M
and the overturning effects and moment load effects. Eigenvalues equal to
the inverse buckling load are finally solved, and their associated displacement
modes printed. For practical application the method of the paper is comple-
mented by a computer program. Theory and program are verified by applica-
tions to special cases already solved or tested in model by Timoshenko, Stiissi,
Weihermiiller, and Tokarz or reported by Ojalvo.
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Introduction

The subject of lateral buckling of a narrow circular strip was treated by
H. Hencky, Ref. [1], in 1921. S. TiMosHENKO, in his “Theory of Elastic
Stability”’, Ref. [2], investigates by the energy method the same problem.
He adds: ‘... the energy method ... can be applied ... (to) a curved strip
having an I-cross section (but it) ... becomes very complicated’’. Other
investigators into the subject have treated various idealized more or less
simple cases of arches and loadings. Lately more complete solutions seem to
have been undertaken but details have not yet been made available, see
Forosawa, DEMUTS, SAKIMOTO, and NAMITA, in OJAaLvO’s List of References,
Ref. [6].

F. Sttss1, Ref. [3], discusses the problem in a quite general way, using
his “baustatische’’ difference equation method.

For any specific arch problem that occurs in practice (variable shape of
arch, variable restraints ete.) it is still mostly impossible to find in literature
sufficient leads into the design of that arch for adequate buckling safety. The
following paper is aimed at establishing a method that should be fairly general
and yet manageable in practice, so as to help in filling this need.

Structure and its Members

The initial geometry of the arch is defined by locating its joints 0123 in
the xz-plane of a coordinate frame xyz, see Fig. 1.

ELEVATION Fig. 1. Views of arch.

END VIEW
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Each arch-segment is assumed to have an I cross-section with its web
located in a vertical plane. The shear-centers of the segment cross-sections
locate the system lines between the geometric joints. The center of the top
flange is located at a distance of k& above the system line, and the lower flange
at b’ below. The segment depth is thus A+ 54'.

Stiffness properties of all the members are also given beforehand. Thus
also the stiffnesses in transverse (‘‘out-of-plane’’) bending, £ I and E I’, are
specified for both flanges. Similarly GJ and G'J’ are specified for both beam
halves. Stiffness properties for the twist stiffeners and for the bending resistance
of the web are also given.

Pre-Analysis

The arch is loaded by those dead and live vertical and horizontal loads
P and @, for which the lateral stability of the arch is sought. The actual
plane arch is pre-analyzed for these loads by usual first or second order theory
methods. The vertical displacements w of the arch joints, the moments M
and the axial forces N in the members, are thus known before the following
buckling analysis will begin.

The arch is assumed to have a high stability against pure in-plane buckling.
Additional vertical joint displacements w occurring after the initial state, then
can be neglected. Additional horizontal joint displacements u are assumed to
have an even smaller influence.

Degrees of Freedom

The state of lateral buckling displacement of the arch structure is indicated
in Fig. 1. The geometric segment joints move out-of-plane horizontally in the
y-direction by v=[v,v,]T. The upper part of the cross-section rotates by r
about a horizontal axis parallel to Oz, and by ¢ about a vertical axis parallel
to 0z. Both these axes run through the joint. Both rotations r=[r,;7,]7 and
t=[t,1,]7 apply to displacements of the top flange of the arch. Two additional
rotations 7" and ¢’ in the same axes apply to the lower flange. The two flanges
of the arch are thus considered in a way as two separate members. The flanges
are held together because only one sway is prescribed for the joint, namely v
at the geometric web-joint. Two separate angles of rotation ¢ and ¢’ are obtained
for the top and bottom flange. The unequal angles of twist of both flanges
will give rise to separate Saint-Venant torques in either flanges and a bi-
moment torque in the web between the top and bottom flanges.

All degrees of freedom in lateral buckling, or the mode in buckling, are
included in the structure displacement vector p=[vTrZ¢L ' T¢'T]T,



4 S. 0. ASPLUND
Member Deformations

For member deformations j are chosen: the sway a,,, the left-hand and
right-hand end-angles b,, and b,,, and the angle of twist ¢,, of the top flange
members, the corresponding primed variables for the bottom flange, the twist
angles by, — by, and b,; —b,; of left-hand and right-hand transverse twist web
stiffeners, and the break-in-angle ¢ —¢’ on the shear-center axis of the web.

Displacement Transformations

The member deformations a depend upon the structure displacements v,
r, and ¢, while @’ depend upon v, 7', and t'. The deformations b and ¢ depend
upon r and ¢, while " and ¢’ depend upon ' and t’, see Fig. 1. Writing as
diagonal matrices

x = diag [z 15 a], z = diag[zg; 215 2a3),
— dj 2 g2 42
s =diag[sy 815 Sasl, 812 = T1p +21p
the cosines and sines of the member slopes are found to be
COSQ = Z19877 » sin @, = 2,874, ete.

Guided by Fig. 1, the displacement transformation £ in (1) can now be
completed.

Qo1 =|-1 1 -Dy Dy Tty Ty Yo (1)
boy S Cor %1
b1o S Cho To
Co1 ~Co Co1 ~Sor Sim "
@1 -1 1 ~Dg, —Dgy Ty ~Tty to
bo1 —So1 Cor by
bio —So1 Cor o
Co1 ~Co1 Co1 =So1 Sm 71
boy —bos ~Sp Cor So1 ~Co1 to
b10—b1o —S1o Cho S1o ~Co |ty ]
| Coi—Co1] | —Co1 Cor —So1 S Co1 —Sor So1 —Sor
or Jor = Eo1 Py

with Coy = cos@qy, So =singy, Doy =hgCoy, D' =hgCop, Ty = hgy Soxs
Ty = ho1 Sor -
Abbreviating, in the case of three arch elements

A=[01 ., B=[-1 ., d=A—-B=[-1 1 (2)
1 1 \ 101
1 -1 0 -1 1

C, 8, h, and k' = diag [Cy; C;5Cs,] ete., would extend (1) into
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where a, b, ¢, a’, b’, ¢’ are columns a = [ay; @, As3]T etc., b*, b*’ columns
b* = [byo bay 03517 ete., and v, 7, t, 7', t' columns v = [y, v; v, v3]7 ete.

Member Stiffness Matrix. Member forces

A disconnected stiffness matrix K transforms the member deformations j
into member forces J acting upon the member ends: K contains the sway
stiffness K! and the transverse bending stiffnesses K of each upper flange
member. KS denotes the Saint-Venant stiffnesses. Primed notations K’, C’,

etc. apply to the lower flange members.

J=Kj, K=

™ 5
¢
Ki,

1
Ccy,
t
Ct,

14 4
K23 023

Chy = — (K +Cpy) S5t s
Ky = (Ko +2Co1 + Kyg) sgit,

KF

KF'

t
Cho

K Web

t
Ch
t

S
KOI
S
K12

S
K 23_]

Cly = —(Con+ Kyp) s5it
K5 = GJy sptt

KF' similarly as K¥

(3)
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KEWeb = ) KI¥ (5)
K%
K%
KR
K%
K%,
Ko
K

L K%

K% holds for web twist, near end, K% for web twist, far end, and K}® for
web bending along arch-segment between flanges.

K and C are the end-stiffness and carry-over stiffness for the top flange in
weak-axis bending of each member. K¢ and C'? are explained in (4).

For uniform (prismatic) members K,, =4 E [,,s73, C,o=K,,/2, and K%,=
G Jyp 813, ete. for direct Saint-Venant torsion of the upper part of the cross
section. Although it would be mostly poor design, an arch can have an abut-
ment with a forked support, permitting a rotation about an axis in the xz-plane
that is perpendicular to the first arch member 01. In this case K, =Cy; =0,
K,0=3 E I, s5t, which also affects (4).

Primed stiffnesses K', ¢', K!', C*', etc. denote magnitudes for the lower
flange.

The end-stiffnesses K and carry-over stiffnesses C ete. can be calculated
for any stiffness variation and can also be reduced for the effect of axial load
that approximately exists at the estimated load when the arch buckles (Berry
or van der Fleet functions). This can be omitted for short segments. The effect
of shear deformations in the flanges can be included.

Boundary Conditions

Thus, to model a fixed arch with prevented out-of-plane displacements it
suffices to nullify vy, 74, &y, 7g, tg and v,, 5, 5, 73, t3 by omitting these compo-
nents of p together with the corresponding columns of E. Prevented warping is
obtained by making K} large. To model a forked support and free warping
at the springings, hinges are introduced by setting K, =0, Cy,,=6 K I/s¢,,
Kio=3E 1/s},, and the corresponding for the lower flange Kg,;, Cy;, K, and
for the opposite spring element 23. Free warping is obtained by setting
K=Kl =0.

Elastic Structure Loads. Structure Restraints

The member forces J call for structure loads of
P=ETKEp. (5)
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The arch-joints, Fig. 2, are sometimes braced by side-springs and by rota-
tional springs. Such springs require structure loads of

V=8,», R=8,r, T=8;t, R'=8,7, and T'=8;t, or P=Sp (6)

Sv2

__—Rigid shafts
of zero length

Joint 2
Sr2
Fig. 2. Spring restraints.

where § are spring constants of obvious magnitudes and dimensions of weight/
length and weight by length. For instance, the end-stiffness of transverse
bracing of the arch may act as a torsion spring, introducing a moment resistance
R=8,r against twisting of the arch about ». When each joint is connected
to a grounded spring, S, is a diagonal. When on the other hand the arch-
joints are connected to another elastic structure, S, will be the full stiffness
matrix of that structure.
We add (5) and (8) into the total elastic structure load

P=Up, U=ETKE+S (7)

Thrust Analysis. Displacement Transformation

Just analyzed member forces J =K j are termed elastic. In the next step
rigid and straight members between hinged joints are assumed. When the
joints displace in buckling, the directions of these rigid bars change. Trans-
verse segment forces are then generated by the member thrusts N and by the
flange thrusts + M (h+A')~! associated to the pre-analyzed arch moments M.

In the elastic analysis, segment deformations 7, namely a, b, ¢, a’. b’, and
¢, b—b', c—c', were used. In the thrust analysis, effort can be saved by
excluding the end angles b and b’ in bending which are zero and the twists ¢
and ¢’ which have no effect. For the remaining sways a and a’ of the flanges,
the displacement transformation will be reduced to

ap | =] 1 Dy, T i 51 (8)
12 =1 1 -Dyy, Dy, Ty, Ty Vg
Qg3 -1 —Dy;, ~Ts A1
o1 1 ' ~Dy, T Ty
a1z -1 1 Di; -Di, Ty, -T3, ty
@3 | L 1 Dg, Tos| |
r1
ry
24

| 4]
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or, condensed,

i=ep, e=[d hCd hSd 0 0 (9)
d 0 0 —h0d —k8d

where C, S, h, and —»A’ are diagonal matrices as in (1).

Axial Foree Thrust

The total axial thrust N+ N’ is first split in two flange thrusts N=5A"n
and N'=hn, where n=(N+N')/(h+L"), that is, the total axial force is
distributed in inverse proportion to the flange distances.

e
2 Sps 3
e d T T
0\1 %3 ThrustN, Thrust N+N’

“Azs Nps — ! o/lot centroid

-, / . -
T Az3 -Az§ X T-A'zs Fig. 3. Thrust stiffness of swayed element.
Thrust N’

The flange thrust N,; has the inclination s;}a,;. For equilibrium, Fig. 3,
a transverse force of —A,;=Nys3la,; is required. The thrust-stiffness
Fy,3 = — Nyys;3 is therefore entered into the upper left-hand diagonal of F

in (10):

I=[A1=Fi=F [a], F=—-[N+M|h+h') 0 sl
i o T v s
Nst= —N(,lsgll 1, ete. (10)
Nyasia
Ny 533
_ Ny s34

When pre-analyzed horizontal joint-loads ¢ are zero: Ny, spl=H xoi, ete.
The complete transformation V' =d7 Fa, a =dv reads for F=diag[00 F,;0]

and v=[001]7.

a=| 1 O|=| O

-1 1 0 0

-1 1| |1 1

-1 1
V] =[1-1 ol=[o7=[ o ]
Ve L -1 0 —Fys Nog 23
Vs L -1 | Fy Fos | ~Nog 533
0

as it should be.
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Similarly the thrust stiffness — N’s™! is entered in the lower right-hand
diagonal of F.

Moment Thrusts

A bending moment M applied to an I-beam arch-segment of depth A +2’
induces a thrust of M (A+A")~! in the top flange and an equally large pull or
negative thrust in the bottom flange.

Accordingly, M (h+h')! is added to N and subtracted from N’ in the two
diagonal blocks of F in (10).

Thrust Stiffness Matrix

The disconnected thrust stiffness-matrix F is now complete and can be
used in forming the structural stiffness matrix of thrust action

W = el Fet Wov (11)

The overturning effect W’ will be next explained.

Overturning Effects

At times some of the vertical loads on an arch are applied upon seats at
heights z above the center of the arch joints, Fig. 4. If these part-loads are P,
a rotation of the joint by r must be balanced by joint moments of R = — Pzr.
These add to the thrust stiffness W by a tilting moment — Pz which can be
entered in proper sign and position in the matrix We? in (11). Also horizontal
loads can be applied to the joints in such a way that balancing moments of
T = — Quxt are needed that are handled similarly.

stabilizing load Va=Pj3 v} /q5

V3 V3
Joint 3 on arch
l——Orlg pos. of Py
Arch hanger

\: Non sway point

VL

Roadway slab

R l /Seot of P,

r2
22
- Joint 2
Ro=-P, 2572 ,

r2

Slope v/g4y

Fig. 4. Overturning load P,. Fig. 5. Changing direction of buckling loads.

At times the directions of the vertical loads (for instance the hanger pulls
in an arch) are changed during the buckling progress, Fig. 5. This can be
accounted for by adding a stabilizing horizontal load at the joint that is
proportional to the hanger load P’ and to v": V'=(P’/¢9’)v’. Obviously P’[g’
should be added into Wev.
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Finally We’ are added to eZ Fe in (11).

In other instances an overhead non-sway roadway is supported by columns
standing on the arch. In such a case a column load of P and a sway of v will
produce an unbalancing force of V = —(P[g)v which is subtracted in (12),
for example.

— -

V] =[-Plg 1[w] or P=Wop. (12
R Pz -AM
T AM —Qux
R —P'Z -AM
T’ AM -Qz |

— = - . -

~

i e N

T
~

Moment Loads

To introduce a stepwise moment diagram into the arch, as was done in
(10), external moment loads 4 M must be introduced at the joints equal to
the step in moment there. When the structure displaces by r, ¢, Fig. 6, these
external moment loads yield cross-components of 7'= —4 Mrand R= -4 M¢
that must be observed. Half or other part 4 M’ of this moment load can be
transmitted by the lower arch members governed by the displacements ' and
t’, and yielding 7= -4 M'r" and R'= —4 M't’ which is added in (12).

AM
~N 1 \
[
L am- Re-ap
i
“AM

/2 Pull AM-~ \‘

Fig. 6. Response of moment load on arch.

Buckling Condition

The equilibrium conditions for the joints can now be collected into
(U+AW)p=P (13)
A multiplier A is introduced for increasing all the pre-analyzed arch loads and

results, including thrusts N and M/(h+4’) etc., by a common factor. In (13),
further, all the structure loads V, R, T, R’, T" applied during buckling should
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Intervals DX, DZ
Arch depths h, h'
l

Displacement transfor-

™

mations E and e

|

\Iﬁsconnected elastic stiffness matrixﬁK/_

1
Congruence transformation ETKE
l

Interacting stiffness matrix S
(or restraint spring constants)

|

Structure elastic stiffness U=BIKE+S

\»Disconnected thrust stiffness matrix F/

1

Congruence transf eTFe

\ﬁwerturning effects WOV/
l =

Structure thrust stiffness'W:elFe+Wov

|
(U+X W)p = O
l

Switch
T
Find highest X\ and its mode Find a1l X and
p by iteration all p by "NROOT"

]

[«

Buckling safety I/\
Assccilated mode p

Fig. 7. Flow chart.
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be zero. Then (13) has in general only the trivial solution p=0. However, for
certain discrete values of A, the eigenvalues, non-trivial solutions p exist.

Eigenvalues and associated modes of buckling are thus solved by the
equation

(U+AW)p =0 (14)

U and W are symmetric matrices, U representing the elastic stiffness and W
the thrust stiffness of the structure. The magnification factor A increases all
applied arch loads until the arch buckles. Therefore A is also the buckling
safety of the given loaded arch.

U has to be invertible and W is generally singular. Eq. (14) can then be

transformed into
(U W+1A)p =0 (15)

and solved for the reciprocal eigenvalues 1/A and buckling modes p for instance
by the Fortran NROOT subroutine or simply by an iterated vector procedure.

Program

Following the course of exposition used in this paper, a straightforward
flow-chart is traced in Fig. 7. It was coded in a special matrix language for
IBM 1130. For use with for instance IBM/360, their MATLAN matrix language
should instead be useful.

Verifications. Conclusions

The theory and programming described is verified in Table 1 by a number
of parallel applications to special analyses and model tests reported in litera-

Table 1. Verifications of Theory

Sup- Cross-  No. of Buckl. load Refe-
Test ports sect. elem. cale. corr. rences
Straight beam in z-direction Fork I 4 292 278 Euler 2
Same, in y-direction Fork I 4 292 278 Euler 2
Same, in y-direction Fix I 4 1350 1110 Euler 4
Straight beam. Constant moment Fork I 6 44 43 2,5
Same. Triang. mom. Bend. stiff web Fork I 6 41 39 2,5
Same. Normal web Fork I 6 39 39 .
Same. Stiff web. High load Fork I 6 27.6 26 2,5
Same. Low load Fork I 6 61 60 2,5
Parabolic arch f/l=0,3, Stussi, model Fix Rect. 6 4.47 4.45 3
Arch f[1=0,5, Ojalvo Fix Rect. 6 2.92 2.84 6
Arch f/1=0,5, Ojalvo Fix Rect. 6 2.95 2.84 6
Arch f/1=0,3, Weihermiiller, model Fix 1 6 0.300 0.2864 4



LATERAL BUCKLING OF ARCHES 13

ture. Considering the small number of arch-segments (4 and 6) used, the
agreement with more or less exact other results seems rather fair. No proper
disagreement has appeared. TokARZ lately has performed a series of tests on
the buckling of arches. Fifteen of the buckling loads were verified by the above
theory, Ref. [7, discussion], and the agreement seemed fair.

Therefore the conclusion could be ventured that the proposed theory yields
fairly correct results in all cases to which it is applicable also when no verifica-
tion by other methods is obtainable.

A workable elastic theory is often a prerequisite for an inelastic buckling
analysis, and it seems possible that the theory and programming given could
serve also in a study of inelastic stability.

Symbols
A,a Member sway couple and sway
B,b Member end-moments and end-angles
C,c Member torsion and twist, carry-over stiffnesses, cosine
d Difference operator
E,e Displacement transforms, elastic modulus
F,f Thrust stiffness, rise of arch
G,g Shear modulus, hanger length
h, b Distance of flanges to shear-center
J,9 Member forces and deformations
K.,k Elastic stiffness, Saint-Venant stiffness
I Length of arch span
M, AM Segment moment, moment load
N,N'’ Axial thrust
P,p Vertical load on joint, or load displacement
Q Horizontal load on joint
R,r, R',r" Horizontal moment on joint and rotation
S,s Spring constants, length of segment, sine
T,t,T',t" Vertical rotation moment of joint and rotation
U Structure elastic stiffness
V,v Out-of-plane load, displacement
W, w Structure thrust stiffness, vertical arch deflection
Wov Overturning effects
x,Y,%2 Orthogonal coordinates or coordinate differences
1/A Buckling safety

Exponent 7' denotes transposition

Notation is not fully consistent. Ambiguities are explained also in the text.
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Summary

A general case of laterally buckling arch is analyzed by finite elements.
The analysis is programmed for numerical work. Results of programme runs
for special types of arches verify buckling loads already solved analytically
in literature or obtained by experiments on arches.

Résumé

Un cas général de flambement latéral d’un arc est étudié par la méthode
des éléments finis. L’analyse est programmée pour un calcul numérique. Les
résultats de programmation pour des types spéciaux d’arcs coincident avec
les charges de flambement préalablement obtenues analytiquement dans la
littérature ou calculées & partir d’expériences faites sur des arcs.

Zusammenfassung

Es wird ein allgemeiner Fall von seitlichen Bogenknicken mittels endlicher
Elemente analysiert. Die Analyse ist fiir numerische Durchfiithrung program-
miert. Die Ergebnisse von Programmierungen fiir spezielle Bogentypen besté-
tigen die bereits rechnerisch in der Literatur ermittelten oder die durch Ver-
suche an Bogen erhaltenen Knickkrifte.
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