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Stiffened Plates in Uniaxial Compression
Plaques renforcées lors de compression mono-axiale

Versteifte Platten bei einachsigem Zusammendriicken
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currently Visiting Prof., LNEC, Lisbon, Portugal

C.Y. LIAW C. MARSH
Formerly Graduate Student, Dept. of Associate Professor of Civil Engr., Sir
Civil Engr., Univ. of Waterloo, Ontario, George Williams Univ., Montreal, Quebec,
Canada Canada
Introduction

Previous papers [1,2] dealt with the ultimate strength of the plane, rec-
tangular plate loaded in uniaxial compression. A critical review of the litera-
ture was presented along with a possible physical explanation of the build-up
of stresses in the plate in the region of transition from elastic loading, associated
with post-buckling stability, to plastic unloading associated with geometry
change accompanying a kinematic mechanism.

The stiffened plate, whose ultimate strength is to be determined as part of
this investigation, possesses different rigidities in two orthogonal directions;
the load is applied in the stronger direction. Typical examples of this property
are to be found in the longitudinally stiffened or corrugated plate. The physical
behaviour of this element is similar to that of the plane plate described pre-
viously, except for the relative importance of the various stress components
generated. After initial buckling, the transverse membrane stresses are small
in a corrugated plate yet are significant in a stiffened panel. A second point
of difference between the stiffened and unstiffened elements is the nature of
the plastic mechanism which emerges in the former. For a longitudinally
stiffened plate the pattern of plastic buckling will approach a series of simple
columns restrained by transverse membrane action but not by transverse
bending which, in all cases, is small.
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Elastic Loading

1. Assumptions

The investigation involves the elastic behaviour of a stiffened plate, simply
supported along four sides, which is compressed in the stronger direction, i.e.,
the direction of greater rigidity. In considering this problem, the following
assumptions are made:

1. The plate possesses infinite elasticity, in terms of its stress-strain relation-
ship, for the calculation of the loading line and perfect plasticity for pur-
poses of the mechanism.

2. Initial imperfections are neglected.

3. The load is applied uniformly and normal to the top and bottom edges of
the plate.

4. For the buckled plate, each half-wave can be considered as simply supported.

5. The edges are assumed to remain straight.

6. The strains in post-buckling are accurately prescribed by first and second
order terms in the displacements.

2. Buckling Stress

The plate has coordinates as shown in Fig. 1. To establish the buckling
stress, the deflection is assumed to be infinitesimal so that the loads per unit
width, N,, N, , N, are constant and uniform within the plate.

Fig. 1. Coordinate System.

The bending strains at distance z from the neutral axis are

4 4
€x=—'—", €y=

T
Po Py
where 1/p,, 1/p, denote the curvatures of this neutral surface in the xz and y2
planes, respectively. From Hooke’s law

g g O, (o
_ % __ Y - _Y x = @
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where p, and p, are directional values of Poisson’s ratio and E,, E, and G,
represent elastic and shear moduli respectively associated with x and y. It
follows that

2%, %y o, % (1)
px Eil! My Ey ’ P],/ Ey IL‘Z E.’E
The stresses, moments and curvatures are coupled thus:
M,z M,>
o = 5 g, = )
T 1, v 1,
1 Pow o
P ox®’  p,  0y¥
(2)
’w
Yoy = —2 Gwyzma
P w
Mxy= —AfyxyZdA = 2nylxym,

where w is the deflection of the plate. The moment-curvature relationships

become 2o M M
5 = — 4 +f'l‘y Y ,
ox E, 1, E, 1,
Pw My M
- = ——¥Y 4 _@_’ (3
2y? E, 1, "E,1, )
Pw 1
dxdy ) nylxyM“’y'
Solving Eq. (3) leads to
B, I, [(Pw P w
O S (|
E I, [(?w P w
— Py dy &0
My = L=, oy (3y2+’/“”9962)’ )
Pw
Mxy = QnyIxym.
E, I E, I
Writing D, =_——="2 Dy =-—YVv
1 = Fex Moy I_V‘x/“‘y
. (5)
D3 = 'Q_(MxD2+FLyD1)+2nyIwy
and substituting into (4) and differentiating, obtain
2M, & w P w
ox? ! (8:64 +M1’8x28y2)’
*M, 84w+ Mo
oyt~ eyt ez
M 1 Mtw

Bxﬁggc/y = [D3_§(#xD2+HyD1)] P
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For a stiffened or corrugated plate one can assume p,, u, equal to zero [2]
leading to
>*M, 8 M, &M,
528 2amay T o~ Digat

Mw Mw M*w
-D,%% _2p, 2@
D23y4 D38x28y2 (6)

The equation of equilibrium for plates is given as [2]

M, _*M, &M, &% w & w
0x? _28x3y+ oy? (Q+N””8 2 N”W_‘_ZN’"’@.%'@;/)' (7)

Since the plate under consideration suffers pure compression in the direction
x,q=N,=N,, =0, from which

Hw HPw 2w

38x28y2+D26y4 =_Nx8—xz—' (8)

H*w
D15ﬁ+ 2D

Assuming the plate buckles into m half-waves in the « direction and only one
half-wave in y, then transverse deflection can be represented by

_ mmwx ﬂ '
w = J cos 508 (9)

where a is the half wavelength in the z-direction. Substituting iﬂto (8) leads to
L m b)? a \?
N =) renen )]

™

2 mb 2 a 2
or (Oe)er = 277 [D1 (7) +2D3;+D, (;n_b)] ; (10)

where t'=A4/b, A is the cross-sectional area of the plate and b is the Wldth
This equation can be written in the form

D
O'C,.=K bgtrla
m b\2 D, D,

Values of K are plotted in Fig. 2 against aspect ratio a/b. The intersection of m
and (m+ 1) half waves is at

—g = BYym(m+1),
where B = (1%)1/4.

Assuming m =1, the smallest value of critical stress is obtained when

Lotre
:@=°‘” § =Y

a
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Bb is thus the length of one half wave and the critical stress becomes

2 7
o

or = 3257 [(Dy Do)+ Dy].. (12)

This case is represented by point A4 in Fig. 2.
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Fig. 2. Buckling Coefficients for Simply Supported Stiffened Plate.

13
12 (1 — p2)
¢ is the thickness of plate and p is Poisson’s ratio for the material assumed
independent of direction and having a value of approximately 0.3. Thus

In the case of a stiffened flat plate one may assume I, = , Where

J \14
po (2"

In the case of a corrugated plate

I, = —b—rﬁ =ntre,

A
where N ==
3

and I, =

Yo12(1—p¥)n’
1/2
1.8 (n%) R

where r, is a radius of gyration of the section.
If torsional effects are neglected and p,=p,=0, then, for a long plate, i.e.,
a>Bb, from (10)

leading to B

_2m  EI,  2n*EI,
P SR B (I, | BB
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or Opp = Z;Z—E, (13a)
where A = (()227@2)1/2 = 0.7 —i—f
For a short plate i.e., a <B8b

5 G B e o
where A= ! 2

a \41172 p -
[+ (]
One may conclude that the value of the critical stress for a corrugated or

stiffened flat plate, compressed longitudinally, is given by the following
equations:

7 B
Jor = )2

where A =O.7I;—B for a>Bb
T

and A =;.-7;“~ for a<Bb.

The aspect ratio is

1/2
B=1.38 (77 %) for the corrugated plate,

1/4
=138 ( Ix) for the longitudinally stiffened plate.

3

3. Post-buckling Behaviour

The energy method is used to derive the relationship between load and
central deflection of the plate assumed to buckle in one half wave only. The
deflected shape of the plate is given by the following

T a
w = SGOS—cos—y,
a b

which satisfies the boundary conditions of a simply supported plate, i.e.,
ow Jw

a;t x=0, y=0, (.U=8, E"%":a—y:o,
a Pw
at x——ié, w=ax2 =O,
_+b _82w_0
y=ty =y T
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Since the edges are assumed to be straight, the displacement components
and v in the middle plane of the plate, corresponding to x and y directions,
can be chosen as

2
u = Bsin chos%y-l—ix,'
‘ (14)
v = C’sin2wycosf—x+'
- b a ??/>

where B, C, i, j are coordinate functions. The second part of the expressions
correspond to uniform movement of the boundaries.
The components of strain at the median surface of the plate are

_ou, L{ow)

 Toz " 2\0x)

ov 1/0w\?
A 15
" 9y+2(3y)’ -

_ v ou, el
Voo T 9x T oy T ow oy

The corresponding membrane strain energy is
b2 al2
t

Vir = 3 (noxex-}-ayey—{-Txyyw)dxdy.
—b

/12 —a/?

For a corrugated or stiffened plate u,=pun,=0, as before, such that

o,=F,e,, o,=HK,e, and 7, =G, v,
b2 al2

; .

and VM=§ [ J (mE,E+E,&+G,,y2,)dxdy. (16)
—b/2 —a/2

The strain energy of bending is

b2 a2 . " .

1 w w w

L 19 o 14D
U (27

and substituting from (4), (5) into the above, leads to

b/2 a2
1 a2w2 82(,02 820) 2
R I L R R o AL A
—b/2 —a/2

The final forms of membrane and bending energy are obtained by substituting
equations (9), (14) and (15) into (16) and (17), separately to yield
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y 2 4
VM=%{7;E [” b(B2 s 2B8)+ab(z+ S 34)]

i°° 73 256 ¢t
E,|" %o+ a e 20 Lapfis 27 s 18
+ b 3V )T 7+256b4 (18)
w2 {a 0 72 (b 5 7184 32 2aB+bC 5
+ Gy [Z(E)B +Z(E)C totab T9 B0 3 ¥p
D, D, 2D,—2@,1,
VB=—— b82[ +2bi+ 3a2b2” ”]. (19)

The work done by the external load is given by
' b/2 '
VE=—b2/g.pulx=a/2dy=-P7’a’ (20)

where p is the applied load per unit width, while P is the total load. The total
energy of the plate may be written as the summation of Vg, V5 and V.

V="Vg+Va+Vy.
In accordance with the theory of Minimum Potential Energy, post-buckling

equilibrium is governed by

oV _ eV _ eV
oB~ 3C ~ @8

=0. (21)
Furthermore, for a virtual displacement, the internal and external works are

identical, i.e., pdu =38 (Vz+ V,,). Differentiating with respect to ¢, leads to

0 oV

From Egs. (21) and (22), the following four equations are obtained

2 2 2 §2

0B 2 2 b 9 3
oV t m2a 292 72 b 32 w2 §2
oV t m2b(i. 48 9 74b (5\3
%=°=§{’7Ew[ a ( 3“5*3) 62 (5)]
2
+E, [”b“(%—féo) 9ma (:) ()

4t 2 aB+bO mt D,
G 3_“° 2 1
+ “’[16 b8 —3” ab 8] + 4 bSK}

0=E nth m? 52 1_p d
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The value of j is derived from the condition that the applied force at two
boundaries is zero, i.e.,

B, = O_jlfgylb/ztdx = tﬂ,/f/ezdx =tH, [ja—i—‘iiceos 22y+ vy F82sm2 by],
such that § = 470 — 7;—2[?; (e)
From (a) and (b)
048 G2, +1.337 B, B, +[4.21 (_2—)2 0B, +3 29(%)2 E,| 6, 5
1.20 G2, +39.47 B, B, +[9.85 (3)2 0B+ 9.85(%)2 )6, °
0.46 G2, +1.33 1 E, B, +[3.29 (2)2 7B, +4.21 (—Z-)2 E,) G, 5
B= L / hll
1.20 G2, +39.4 1 B, B, +[9.85 (2)2 0B+ 9.85(%)2 )6, *

while from (c)

7 =

8B =*D;K 40(_@)2 B 9 =2 a2 a® , B
b

—_ —_ vy _ - 82__ " 2
e " BinE, 36\6) nE, 32a?d 3350 4 E,

5 Guy  4aB+bC G,

802 B, T3 2 B,

Substituting ¢' and B into the expression for ¢ leads to
™D K 8 1
b*tnE, b* 190Gz, +39.47E, B, +9. 85[( ) K, +( )ZEy] G,

b\? a\* E, B
{[an(Y +3.184(g) o ]

2 g, G,
36085 ]nExEy

s ()

Substituting the expression for ¢ into Eq. (d) yields a load-deflexion relation-
ship,

x

2
P:-WZDIK—.S—ZEwntb L ;
b b 1.20 G2, +39.47 B, B, +9.85((2) n B, +(5) B,] 6z,
2 2 ’
{[2 81(b) +3. 184() By G ]Gz
a b *qE nkl, (23)
o(%) +13.08(Y) v 5775 G| m, m
a b nE’x . 7]Eac K
b\* a\t( B, \?
[ () +03G) () o e
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4. Analytical Results

a) Zero Transverse Plate Stiffness (Corrugated Plate). If it is assumed that
the elastic modulus in the transverse direction of a corrugated plate is very
small, i.e., K,=0, Eq. (23) reduces to

2812 @, +0.255 0% L 6.47(°) n B
p__mDK_ Eqt® (};) zy T 0-200F + O (5)’7 # s
b b 1.20 G, +9.85 7 (2)2 E,
Taking E,.=E, Gwyzé(l+p) and p = 0.3.
b\2  0.036 [a)\?
: 6.4777(— +M~)+1.06 .
P —”lb)lK—Entb “) o (b (bé). (23a)
0.451(%) 4 9.87

b) Finite Transverse Plate Stiffness (Corrugated Plate). 1f the transverse
membrane stress is not negligible, the value of E, should be determined. It is
assumed that the fold angle for the corrugation, 6, does not change under load.
Then, to find the effective modulus, the problem can be treated as involving
a linearly loaded folded plate (Fig. 3).

o

T

—b - €—=y

A I

| N
A
#J

’ Fig. 3. Corrugated Plate.
(a) DETAILS OF CORRUGATION (b) DEFORMATION OF EDGES

The deformation in the direction of F (the membrane force per unit width) is

kL, FP
=%ty

5

sin%¢.
The strain in the direction of F thus becomes

_F 4 FI? sin>¢  Fcosé A
€ —mcos¢>+ B6 cosg ~ i [1+4(;> tan gb],

such that E, = & e ,
cos? ¢ [l +4 (?) tan? qS]
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t d
t = = i S
bu n=- c08 and /sing %
2
hence Eyz——E%,
2 (@
()

where E is the elastic modulus of the material and 7 is the ratio of developed
to net width. With the value of E, and Eq. (23), it is possible to obtain the
load-deflection equation for the case of small transverse membrane stress for
which the assumption that 0 = constant is valid.

¢) Zero Edge Transverse Stress (Corrugated Plate ). Eq. (23) is derived under
the assumption that the supported edges remain straight and there is a trans-
verse membrane stress distributed along the supported edges. In most test
specimens, however, such as the tube tests, the supported edges are free of
stress if the shear stress is neglected. A modification of Eq. (23) can be made
by assuming the transverse membrane stress obeys the function
2 Teos Y.

b

— 0
O',y = O'yCOS

The coefficient oY, which is the transverse membrane stress at the center of
the plate, can be found from the assumption that the supported edges remain
straight. Therefore, the transverse shortening due to the pure compression at
x=a/2 i.e., the loaded edge, is equal to the transverse shortening at x=0
(Fig. 3b), i. e., the section of maximum lateral deflection. At x=a/2, the total
transverse shortening is
b/2
€==fey Efa cos——dy=
b2

—b/2

2b of

= B,

At =0, the transverse mid-plane length becomes

b/2 b/2 b 0
S=b+fey[x= —b+*—Jvo cos~ =b+ . Fy
—b/2 —b/2
1 dw m\282b
A —(b— dy =|—) —.
w o svantffi) ey
—b/2

Substituting the expressions for ¢ and 8 into the above equation gives

3 3\2
The membrane strain due to the transverse membrane stress in Eq. (18), i.e.,
the term with the coefficient £, should be replaced by the following expression
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b2 a/2 b/2 a2

¢ 5 _m*E,l 3\*
2Ey,[ jaydxdy f J(cos cos—b—) dx dy 5048 ab(b)

—b/2 —a/2 —b/2 —al2

After replacing this term in Eq. (18), we may obtain B, (, and ¢ from a similar
procedure as used previously. The final results are

w3 5 la) 15 (G ~ ) O

R ST T
enfE- S B,
P B [T (5]
__wDK_ (a5 B, 183.6 (o) 7 B, +22.4 G, 5)2
bPntE, (b) (5) ﬂEx— 97(3)27)11]90_{_11_6(;” (a)

by
21.2(5) n B +2.3 Gw(s)z a,
nk,

and the total applied load is given by

: 7 644()77E’+81G .

p=-"5 —Exntb{0.755(5) " 4 (_)
1 &, 97(7) 1B, +11.6G,,

a

21.2(2)2,7117 +236,, Gzy}§
97( JnE, +1166, k&) b

(23b).

+

d) Zero Edge Transverse Stress ( Stiffened Flat Plate). The previous result,
Eq. (23b), has been derived on the basis of a corrugated plate for which the

transverse membrane stress along the unloaded edge is presumed to be zero.
For a stiffened flat plate, however, B =K =K, G, = WIE—I—W’ nw=0.3 and

Eq. (23b) can be rewritten as
2 4
P=—“€1K—E tb(b) {0755(5—) +——~———~*b-21 [64.4(_6) 7
7 97(5) 7 +4.25 a

b\2 1 2
+3.04 (—) + —17.96 (é) +i0.325]}.
a n a n

(24)
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Plastic Post-buckling

1. Introduction

The mechanism shown in Fig. 4 is assumed to form within a long, plane
plate after the ultimate load is reached. In a rigid-plastic theory, the plate is
assumed to remain plane prior to the attainment of the ultimate load. The
hinge pattern proposed consists of flat planes rotating about particular axes,
some flats moving outward and others inward. All the hinge lines are assumed

SIMPLY

SUPPORTED
b . BOUNDARIES b
1#’%@{/ N/
-]
L
—t __i..s = — .J—S | -
MULTI - TIER BUCKLING SINGLE - TIER BUCKLING
Fig. 4. Plastic Mechanisms. (LONG PLATE) (SHORT PLA'[E)
ASPECT RATIO | > 3 ASPECT RATIO | % 3

to remain straight and triangular segments rotate about their edges. As soon
as the mechanism is formed within the plate the applied load will decrease
with increasing deflexion. It has been assumed that the wave length of a
plastically buckled plate has the same value as the wavelength in elastic
buckling; because of the development of membrane stresses, however, the
longitudinal half wavelength become smaller with increases in lateral deflexion.

Owing to the relative rigidities for the two directions of the stiffened plate,
analytical arguments suggest that the triangular areas adjacent to the unloaded
edges become very narrow. It follows, then, that a mechanism pattern can be

assumed as shown in Fig. 5 and the lateral deflexion of a typical horizontal
my
b
has the distribution shown which is also a cosine function in the transverse

direction. The normal component (z direction) of the transverse membrane
stress is assumed to be specified by

yield line is a function of the form, 6 cos—=. The transverse membrane stress

4 x o Sﬂy@
b oy?’

it
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NORMAL
COMPONENT OF
TRANSVERSE

-3

P QP
<

1>

—~ ASSUMED MEMBRANE

TRANSVERSE STRESS

MEMBRANE

STRESS
£ |
B- Fig. 5. Mechanism for Long

5 Stiffened Plate.
SECTION A-A SECTION B-B

where 7 is the transverse membrane force intensity at x =0, y=0, and the
deflexion w is assumed to be

w = 8(1—2—9—6) cosﬂ/.
a b

2. The Corrugated Section

The buckled plate is treated as an aggregation of strips in the x-direction,
having a cross-section as indicated in Fig. 6. Each strip is treated as an equi-
valent column which buckles into the shape shown in Fig. 6b. Considering one
part of this strip, 4 B, one finds that, in addition to the plastic moment, M,
and applied load P, there is a distribution of lateral load along 4 B which is
actually the normal component, f, of the membrane stress given by

= oo (122 [1-22) (7] feos™)" @

The membrane stress at x=0, y =0, can be found by considering the cross-
section of the central corrugation, where, at large deflection, plastic moments

occur at the fold (ridge) due to tension (Fig. 3a) such that
d d
— = 0"
M,=F 5 = T 5

For a section of thickness ¢ under tension, 7°cos$ = 7,/n, the plastic moment

1S:
_ 9| (T°V
MO_ 4 [t (007))]
T\
and 70 =oon2d[—1+]/1+(id)], (26)
~ U]

where o, is the yield stress of the material. Fig. 6a shows the cross-section of
a strip. If A, is the area in compression and 4, is the area in tension, then the
net area for a single strip
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s
Z_ AREA A2 (SHADED)

(a) CROSS SECTION OF CORRUGATED STRIP
[SECTION SS' IN (b)]

PLASTIC
HINGE

CALCULATED NORMAL
COMPONENT OF TRANSVERSE
MEMBRANE STRESS

Fig. 6. Buckled Shape and Membrane
Action in Corrugated Strip.

(b) BUCKLED SHAPE

A=A4,—A4,

2«
and Ay~ 4,=22%

applied load on this strip is

. . . 2 <
t where o is the distance shown. Letting mtzt the

N

P =o0y(4,—-4,) =2txo, or oc=2i00. (27)
The limit moment becomes
d
E'*"OC 1 _ d

where A*=A4,+ A, is the total cross-sectional area of the strip. Substituting
(27) into the above expression

A*d ... P P2
. _ % __ _
M, = 3 oo+ (4 td)4i ito,
and since 4* ~{d
A*d P2
~ - 28
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From the condition of moment equilibrium of strip 4 B.
a2 al2

Pz= M0+8%ffdx—sffxdx.
Substituting Eq. (25) into the above
= a?s 2 Y
_— (1}
Pz= M,+ 24T S(d) (cos b) .

Using expression (28), this equation can be rewritten as
Pz \2 z\ [b P a’s " my\:
(A*Uo) +4(E)(E)(A*Uo)_l A*do'oT S(b) (COST) =

since A*=mnst, z=3 cos%g and setting A*Lo=ﬁ

_ b\(d\.. wy 2 my\?
2 I md_ 0 ZI) =
P +4(d)(b)pcos b 1— 5 td 0T S(b) (cos ; ) 0

and substituting (26) into this equation

_ b\ (o Y
2 —
P +4(d)(b)pcos b

T ey [ (e
i 32§ )8 [V 6 o
o5 o) oo [ o]

where 6* is a modification factor of the plastic buckling equation for the
column.
The total applied load on the plate is given by

(29)

b/2
P =oyqbt[pdy. (30)
—b/2

On substituting the values of 7, a, b, d, ¢ in Eqgs. (29) and (30), a relationship
is obtained between P and 8/b, which is the plastic post-buckling unloading
line. This equation is expressed in non-dimensional form and the parameters

P P 8
Pr = oed M dA—Fareused

3. The Stiffened Flat Plate

A cross-section at a hinge line of the stiffened flat plate is shown in Fig. 7.
A tension area is assumed to develop from the end of the stiffener (shown
cross-hatched). 4 4’ is the neutral axis dividing compression and tension areas.
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In this case, when the stiffeners are equal angles, of thickness equal to the
plane plate, the total applied load over this section is

P= oot (s+2x).
The resisting moment of the hinge section becomes

2 1{P \?
M0=00t{8t+§—1(m—8)}

and using a moment equilibrium equation similar to that used previously,
obtain the load-deflexion relationship

(5_8)24_4(5[_3)2_4{ (t—z)+d;+;i(b)2 i S(COSZbg)} 0. (31)

oyt o/ oot

This equation is not applicable after 4 A’ reaches the corner of the stiffener,
i.e., x <t. For this case, the resisting moment can be considered to be taken
by the stiffener only.

td>
M, =
0= % 5
and the equilibrium equation reduces to
td? a,2 )2 7Y
Pz= — T“S — - 32
Go—5— 9 b) ( cos b ) ( )
L 1° P
T ™ o«
Fig. 7. Section of Stiffened Plate. 4 :;4 A
x
z z*
ﬁs\l\
} x
P
L Fig. 8. Moment Distribution
/1‘M/ M \ Across the Stiffened Plate.

The load is taken by the flat plate portion of the section and the stress will be

less than the yield stress, i.e., 13’=Stoe where o, is the elastic stress. When
r=t
: d?
StO’OZ* = MO or 2¥ = ﬁ
Therefore, when the deflexion of this section is less than Z*, the load-deflexion
relation will be given by Eq. (31). For z <¢, the appropriate load deflexion
relation is given by Eq. (32). Fig. 8 gives the moment distribution across the
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plate. The total applied load on the plate is
y*ﬁ/ b/QP
=2} = 21 —
P 2f8dy+ f de,
y*

where P and P’ are given by Eqgs. (31) and (32).

Experimental

1. Corrugated Cylinders

Tubes of square cross-section (Fig. 9) were tested under uniform edge com-
pression to determine the behaviour of a simply supported plate subjected to
inplane compression. The tubes were fabricated from 575-H 34 aluminum alloy
with a tensile stress-strain relationship shown in Fig. 10. The yield stress
obtained from a 0.29, strain offset was taken to be 32.0 ksi.

STRESS (ksi)

¥ i | 1 |
O 02 04 06 08 |0

I L I /
NEEEEN / STRAIN (%)
1 | t |
! E | ) [ WP Fig. 10. Stress-Strain Relationship 575-H 34
bl AN Aluminum Alloy.
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HEREEE ~TRIANGULAR
i e CHANNEL
! 1 1
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: | } : —
1L
! I | |
!
q _J//L—‘\LJ,/J/——~

T S

1 1 1 i

Fig. 9. Tube with Corrugated Walls. Fig. 11. Cross-Section of Corrugation.

Two different cross-sections of corrugation were used (Fig. 11) and Table 1
gives the properties of these two cross-sections. Seven tubes with cross-section I
and four tubes with cross-section II were fabricated from corrugated sheets.
Small tolerances on the dimensions were specified to ensure uniform loading
on the horizontal edges during testing.
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Table 1. Details of Corrugated Test Specimens

Corrugated Cross-Section I Corrugated Cross-Section 11
t = 0.067 in. 0.032 in,
s = 0.906 in. 0.488 in.
d = 0.407 in. 0.220 in.
R = 0.112 in. 0.100 in.
Areafunit width = 0.087 in?/in 0.040 in?/in
I;/unit width = 11.25 x 10~% in%/in 1.56 x 10~* in%/in
Radius of Gyration = 0.114 in. 0.0625 in.
Iy/unit width = 0.213 x 10~* in%/in 0.025 x 10~4/in%/in

In order to ensure hinged boundary conditions at the loaded ends, round
bars and triangular channels were used to distribute the load in all the type 1
tubes. A comparison between the analytical and the experimental results did
not produce good correlation for short tubes. This is attributed to the triangular
channels which did not produce a satisfactory edge condition. On the other
hand, the long tubes, whose sides buckled into more than two half waves
showed a closer correlation between test and theory. The conclusion to be
drawn from this result is that the simply supported boundary condition may
be obtained by considering a one half wavelength of a long sheet as a simply
supported plate. In all the tests performed, the loads were applied by a 200%
Riehle Screw Gear Machine possessing two rigid flat platens. The resulting
buckling pattern supported the view that the load was applied uniformly
along the tube edges.

Four dial gauges were placed on each of the four sheets of a tube to measure
the lateral deflexion of the centre line, i.e., z-axis. If the plates of the tube
buckled into one half wave, as they did for a single case, the maximum deflexion

525k L = 30" m =4
al e o aq o
< TRANSVERSE STRESS b ox 248 L 0033
a. AT EDGE (Eg.23) d = 022 R, =195
R o0l . NO TRANSVERSE B * 278 bA=13
o STRESS AT
| EDGE (Eq.23t) © EXPERIMENTAL RESULTS
2 LOADING LINES
=
o |5 NO TRANSVERSE STRESS
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b
i
=
a |0 o UNLOADING LINE
e) o] W
b4 o

055

o
g | ] i

0-05 olo o5
NON-DIMENSIONAL CENTRAL DEFLECTION 38/b

Fig. 12. Load-Deflexion Behaviour of the Corrugated Plate (Type 1I).
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was found by assuming that the buckled shape was a cosine curve. For other
tests, in which there was more than one half wave as many dial gauges were
moved to the positions of maximum deflexion as half-waves at the time they
were noticed.

In Figs. 12 to 19, the experimental results together with the theoretical
elastic (Eqs. (23), (23a) and (23b)) and plastic (Eq. (30)) post-buckling curves

< TRANSVERSE STRESS L = 30" m=3
. AT EDGE (Eq.23) " "
2.5 \ b = 358 t = 0-012
—~NO TRANSVERSE STRESS d = 022" P.=138
AT EDGE (Eg. 23 b) B =278 bA= 162
_ NO TRANSVERSE STRESS
20l \IN PLATE (Eg. 23a) © EXPERIMENTAL RESULTS

LOADING LINES

NON-DIMENSIONAL LOAD P /P,

[ | !
0-05 oto 015
NON - DIMENSIONAL CENTRAL DEFLECTION 8/b

Fig. 13. Load-Deflexion Behaviour of the Corrugated Plate (Type II).
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o O
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0-05 O-10 015
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Fig. 14. Load-Deflexion Behaviour of the Corrugated Plate (Type II).
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were plotted on load-deflexion diagrams. The elastic post-buckling curves
represent three cases:

1. Eq. (23) — using the value of K, derived, this equation is based on the
assumption that the plate has straight supported edges and a variation in

membrane

n
o

n
(@)

NON - DIMENSIONAL LOAD P/P,,

stress along the edges.

NO TRANSVERSE STRESS

TRANSVERSE STRESS AT EDGE (Eg.23b) L2z oomosl
AT EDGE (Eg.23) b = 83I3 t = 00865
d = 0-407" R, = 44k
— B=265 b/d = 22-4
©  OEXPERMENTAL RESULTS

LOADING LINES
o]

o

NO TRANSVERSE
STRESS IN PLATE (Eg.23.a)

UNLOADING LINE

]

| | I

0-05 O10 015
NON - DIMENSIONAL CENTRAL DEFLECTION &/b

Fig. 15. Load-Deflexion Behaviour of the Corrugated Plate (Type I).
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Fig. 16. Load-Deflexion Behaviour of the Corrugated Plate (Type I).
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2. Eq. (23a) — no transverse membrane stress exists in corrugated plates.
3. Eq. (23b) — edges are straight and free of transverse stress.

It is found that Eq. (23b) gives the best agreement between theory and
experiment. In the case of short plates, m <3, the experimental results gave
a higher value of load than the theoretical upper bound for the elastic loading
path as obtained by Eq. (23b). This apparent paradox is due to the short
tubes not satisfying the simply supported boundary condition at the loaded
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Fig. 17. Load-Deflexion Behaviour of the Corrugated Plate (Type I).
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Fig. 18. Load-Deflexion Behaviour of the Corrugated Plate (Type I).
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Fig. 19. Load-Deflexion Behaviour of the Corrugated Plate (Type I).

edges. For these cases, there was only one half-wave formed and the condition
at the loaded edges was partly fixed, rather than simply supported, leading
to a higher critical load. For the remaining tubes, i.e., where more than two
half-waves formed, the simply supported edge condition was closely approxi-
mated and hence good agreement with theory was obtained.

For the plastic-post-buckling curves shown, it is observed that, for the
same load, experimental results give slightly larger deflexion than those
obtained theoretically.

2. Corrugated Plate

A 30" x2.48" tube, with thirty-four strain gauges attached to one of its
four sheets, was tested. The strain gauges were distributed in a region as shown
in Fig. 20, which was presumed to be one of the largest lateral deflexions.
Gauges were also placed along one edge of a given sheet near a supported edge,
five on each of the inside and outside faces; these gauges were oriented to
determine the transverse membrane stress along the supported edge. Ten
gauges were positioned along the centre line of the plate, y =0, five on each
face, inside and outside, of the sheet; these were used to measure the longi-
tudinal strain. Six additional gauges, three on each face, were <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>