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An Energy Solution to the Shear Deformation of Corrugated Plates
Solution par Uénergie pour les déformations de cisaillement de téles

Eine Energielosung fiir die Schubverformung gerippter Bleche

M. R. HORNE R.A.S. RASLAN

M. A., M. Se., Ph. D., Se. D. B. Sc., Ph. D.
Professor of Civil Engineering

University of Manchester, England

1. Introduction

The stiffness and general behaviour of corrugated plate shear panels, Fig. 1,
has been extensively investigated because of the capability of such panels to
withstand considerably larger shear loads without overall buckling as compared
with plane plate shear panels.

Such panels are usually attached to the supporting frame along the bottom
plate of each corrugation, implying that the shear forces R are applied in the
plane of the bottom plates and not in the plane of the shear centres of the
corrugations. This eccentricity causes the corrugations to deform with a
twisting component as shown at a typical cross-section in Fig. 2a.

Thus, a generating line along the corrugation length (length will always
denote the dimension parallel to the corrugations) will not remain straight
and parallel to its original position when deformed as in the case of plane
plates, but will twist in plan about its mid-point. The twisted shape of the
line will depend on the boundary conditions at its ends. A line AA4 at the
mid-width of the top plate will twist to position 4’ A’ as shown by Fig. 4a,
while a line HH at the mid-width of the bottom plate will have the shape H' H’
as shown by Fig. 4c. A line KK at the mid-point of a side plate deforms into
K’ K’ as shown by Fig. 4b.

The twisting of the corrugation cross-section, Fig. 2a, is associated with plate
bending stresses, with the notation of Fig. 5b, the coordinate direction y being
parallel to the corrugations (Fig. 1). The deformation of the generating lines
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AA, HH and KK, Fig. 4, is associated with plate membrane stresses with the
notation of Fig. 5a.

Theoretical solutions have been obtained for trapezoidal [1,2] and semi-
circular [5] corrugations. These solutions are based on the following assump-
tions: a) line A4, Fig. 4a, remains straight after deformation; b) line HH,
Fig. 4c¢, does not deform and remains parallel to its original position and ¢) the
stresses which develop in the middle surface of the plate are, referring to
Fig.5, 7,,, 7,, and M, only. It is shown in the present paper that these assump-
tions lead to an overestimate of the stiffness of the panel. LUTTREL [4] retains
assumptions (b) and (c¢) but allows for the fact that lines 44 do not remain
straight after deformation. He finds the deformation of these generating lines
to be localised within two regions at the ends of the corrugations, extending
into the panel to a certain length, after which lines 44 remain parallel to their
original positions. Within the central region as defined, stresses 7., and 7,
only exist. Luttrell describes the deformed shape of lines A4 as a parabola of
the nth degree where n depends on the panel configuration and the spacing
of the end fasteners. The value of n is obtained experimentally.

The method of solution, presented in the present paper, assumes in-plane
deformation patterns for each of the three plates which form a trapezoidal
corrugation, that is, the top, bottom and two side plates. A general energy
term is then developed and minimized with respect to the coefficients that
exist in the assumed deformation patterns. The deformed shape and the shear
stiffness of a corrugation or a corrugated panel can then be obtained.

2. Definition of Problem

The corrugations consist of top plates of width 26, , bottom plates of width
2 by and side plates of symmetrical inclination 6 as shown in Fig. 2a. The depth
of the corrugations is d and the total length is 2a (Fig. 1). When the panel of
Fig. 1 is shear loaded, a cross section within the length of an intermediate
corrugation (the dotted line E' B'C’ D" E’' B’ as shown by Fig. 1) will twist
to a position £ BC D E B as shown by Fig. 2a. The displacements of the
corrugation corners BC D E could be defined with respect to either set of
components, ug (in the plane of the side plate) and p, (or pp) (perpendicular
to ug) or ugp (or ug) (in the plane of the top or bottom plate) and v, (or vy)
(perpendicular to u, or ug) as shown by Fig. 2b.

Bending stresses (M, in Fig. 5b) will develop, these being associated with
out of plane deflections w;, wg and wp for the top, side and bottom plate
respectively as shown in Fig. 2a. These bending stresses will be assumed to
have linear distributions between the corner moments (M, M5, M, and M,
in Fig. 2a). This type of bending will be referred to as “portal frame bending’’.

The twisting of a cross section I F G’ J’ I F at the end of the corrugation
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Fig. 1.
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(Fig. 3) will be more restricted due to the boundary conditions. Points H (being
the locations of the plate to frame fasteners) are fixed in the X-direction and
in the present solution will be assumed to be fixed in a direction perpendicular
to the bottom plate.

Due to the difference in the modes of twist between cross sections within
the length (Fig. 2a) and those at the ends of the corrugation (Fig. 3), the top,
side and bottom plates will adopt the shapes shown by Fig. 4, with in-plane
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deflection functions #, (with maximum values at the ends), ug and up (with
zero values at the ends) for the top, side and bottom plate respectively. By
symmetry, u,, ug and ugz will be zero at the mid-length of the corrugations.
Assuming the top, bottom and side plates to be long compared with their
width, these deflections may be regarded as the deflections of the central axes
of these plates considered as “beams’’ bent in their own planes. The membrane
stresses o, (Fig. 5a) are then the “bending stresses’’ of these prismatic “beams’’,
and as in the usual Bernoulli theory of bending may be assumed to vary
linearly between the edges of the plates.

a) b)
Fig. 5.

Because of the difference in the in-plane deflection functions of the different
plates and the existence of the membrane shear stresses (r,, and =, in Fig. 5a),
shear strains y, , yg and y 5 take place in the top, side and bottom plates (Fig. 4).
Finally because of the different ‘““beam bending strains’’ existing at the edges
of the top and bottom plates, the side plates will, in addition to linearly
varying “beam bending stresses’’ o,, also contain an additional mean longi-
tudinal stress o,, with which will be associated an extension function vg in
the Y direction as indicated in Fig. 4b. Such extension functions will not
occur in either the top or bottom plates, as may be seen by reversing the
direction of the overall shear force acting on the panel.

Non-linear membrane stresses ¢, will be induced at large angles of twist
(reference [2]). These are however of significance only for very short panels
and will be ignored. Membrane stresses o, (Fig. 5a) will be neglected because
of the considerable flexibility of the corrugations in this direction. The strain
energy due to bending stresses M, and twisting stresses M, , M, (Fig. 5b)

will be neglected because of the very small value of 2272) and - compared

x 01
with ?yi:. Confirmation of the small size of energy terms assofziated with
twisting stresses M, has been obtained by considering the twisting of the top,
bottom and side plates treated as prismatic beams [6].

Equilibrium equations relating all the effective stresses of Fig. 5 have been
developed and solved [6, 7]. The present paper is devoted to describing the
energy solution, the results of which will be compared with the equilibrium
solution.
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3. Assumptions and Limitations

These are as follows.

. The material is infinitely elastic. ,
. The marginal frame is a hinged parallelogram consisting of rigid members.

The plate is pinned to the frame at the mid-width of each end of each
bottom plate, the end corners of each bottom plate (points F and [ in
Fig. 3) being prevented from up lifting.

No slip takes place due to bearing between the plate and the fasteners.
No overall buckling occurs.

The panel is very wide, consisting of a large number of corrugations, so
that the effect of any particular boundary conditions on the end cor-
rugations may be neglected.

The effect of large deformations is neglected.

4. Method of Solution

The method is to assume modes of deformations for each of the individual

plates (top, side and bottom plate). These should satisfy the boundary con-
ditions, the compatibility condition implied by the integrated behaviour of
the plates and any conditions of symmetry or anti-symmetry. The energy
terms due to the assumed deformations are then obtained and the total strain
energy in one corrugation is obtained after minimizing it with respect to each
of the parameters which appear in the assumed modes of deformation. The
internal strain energy is lastly equated with the work done by the applied
loads to obtain the load corresponding to the deformation state.

2.

In calculating the total strain energy, the following terms are introduced:

. Due to bending stresses:

U, is the strain energy due to the plate bending stresses M, (Fig. 3).

Due to membrane stresses:

U, is the strain energy due to that part of the stresses o, (Fig. 3) which
cause the extension vg in the side plates (Fig. 4b).

U, is the strain energy due to the linearly varying stresses o, in the top
plate associated with its bending as a “beam’’ in its own plane.

U, is the strain energy due to the linearly varying stresses o, in the bottom
plate.

U, is the strain energy due to the linearly varying stresses o, in the side plates.
U, is the strain energy due to shear strains y, in the top plate.
U, is the strain energy due to shear strains yz in the bottom plate.

U, is the strain energy due to shear strains yg in the side plates.
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5. Modes of Deformation

Denotong by u,, up and ug the in-plane deflection of the centre lines of
the top, bottom and side plate respectively at any point along 0Y (Fig. 4),
expressions for these deflections, consistent with the boundary conditions will
be assumed as follows,

a .

Up = coy+cl;sm%y, (1)
a .

Up = cz;sm%g, (2)
a .

Ug = 03;sm%—y, (3)

where ¢,, ¢,, ¢, and c; are constant coefficients and a is half the panel length.
The shear strains y,, yp and yg at any point along 0 ¥ will be assumed as:

Y

Yr = “0+°‘1005_a*’ (4)
YB = “2‘*‘“3005%%: (5)
')/S = a4+a5OOSZTa—y (6)

and the extension of the side plate in direction 0 Y as
vg = e(l—cos%‘?!), (7)

where oy, oy, oy, a3, a,, a5 and e are constant for a particular corrugation.

6. Energy due to Plate Bending Stresses

Referring to Fig. 2a, let b, bz and bg be half the width of the top, bottom
and side plates respectively; ¢,, é5 and ¢g the clockwise chord rotation of
the top, bottom and side plates; 0, 85, 0, and 8, the clockwise rotations at
points E, B, C and D respectively and My, My, M, and My the clockwise
moments acting on £ B, BC, CD and D K respectively at points B, C, D and
E. Let d be the depth of the corrugation, ¢ the projection of the side plate
width on the horizontal and ¢ the uniform thickness of the plate.

Assuming I and F as fixed points (Fig. 3) and making use of the symmetry of
deformation about axes 0 Y through the mid-width of the top and bottom
plate, the following relation exists:

bpdpt+cdg+brpdp =0. (8)
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Introducing the term: _
¢, =bpdp—brdr (9)

and solving Eqs. (8) and (9) for ¢5 and ¢,
c c
$p =%(¢e—¢s) and ¢y = —m(%"'ﬁbs)-

Assuming a unit length along 0 Y, the following slope-deflection relations for
the ‘“portal frame bending’’ of the corrugations may be written:

b b
0B~3§(2MB+M +¢B—3—ls)( 2My—Mc)+ by,
b by
90"318)(2MC+M +¢s—§ﬁ( 2Mo—Mp)+¢r,
b, b (10)
919_3D(2MD+M0 +¢T=§E( 2M,—My) )+ s,
bg
O =£(2ME+MD)+¢S *ﬁ( 2Mpy—Mp)+dg,
where D = Tz(—?—ipT) is the flexural rigidity of the plate, £ being Young’s

modulus and p Poisson’s ratio.
Due to symmetry of deformations M, = — Mz and M;, = — M and hence
by rearranging Egs. (10).

2bp+c

(b +2b3) M-+ bs Mo = 3 D5 04— 0 ¢e), oy

26T+c

bSMB+(bT+2bs)Mc=—3D( bs+ 26, ‘f’e) (12)

The quantities ¢g and ¢, may be expressed in terms of the in-plane deflec-
tions up, up and ug by considering components of deflections at points B
and C (Fig. 2b).

Resolving at point B along the side plate:

Ug = UpsSinf —vgcosd = upsinl — ¢z by cosb (13)

and at point C: , ,
Ug = UpsSin —vpcosl = upsin @+ ¢, by cosb. (14)

Resolving perpendicular to the side plate; at point B:

Pp = ugcost+vgsinb (15)
and at point C:

Pr = Upcosf+vpsinb. : (16)
Since ¢ =Lz PB | (17)

2bg
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then from Eqs. (13) through (16):

bs = ﬁ%u—B, (18)
ng:_uTtang—uSsecO’ (19)
by = uBtaan—B—;:Ssecﬁ. (20)
Substituting from (19) and (20\) into (9): |
go= "I 2y 20, (21)
whence, substituting for ¢4 and ¢, into (11) and (12):
My = 1 (= 05) + Gus— 6 (up )] (22)
MC=%[K(uT—uB)—HuS+H1(uT+uB)], (23)
where: F = (2+%§)(2+Z_:)—1,
O
oYt )
a — 2;5[26‘21—;—61,_55], (24)
o]
@ =#[M—5],
V7 2d| by by

The energy per corrugation due to ‘“portal frame bending’’ is:
a S

1
0

0

where the bending stresses M, about axes y (Fig. 5) are assumed to very
linearly between the corner points of the corrugation and s is the length along
the perimeter of the corrugation (2b,+2bz+4bg). This leads to:



60 M. R. HORNE - R. A. S. RASLAN

C 1 [4b 2b 2
U, = 2f__[_?)_AS(M%+MBMC+M2,)+-§!(M2C)+§bBM%] dy. (25)

Substituting for Mz and M, from Egs. (22) and (23) into (25):

2D [
U1 = ——3bf§f[%w%+p2w§+p3w§+q1w1w2+q2w1w3+g3w2w3]dy, (26)
0

where: Wy = Up—Ug, Wy = Ug, Wy = Up+Up (27)
-, p1=J2(2+§§i —2;5{+K2(2+%)’
02(2+%§)+2HG+H2(2+%)
P2 = 72 )
63(2+42) +26, B, + H(2+77)
s = 72 >
JG(2+%)+JH_GK—HK(2+§—T-) (28)
g =2 s — s/
—J Gy (24+22) — T Hy+ Gy K + K H,y (2+57)
gy =2 2 )
-GGy (2+2) - GH, — Gy H,— HH, (2+2)
q; =2 7z .

Substituting for #,, g and ug from Egs. (1), (2) and (3) and integrating
Eq. (26):

2Da3
U,= -——‘l—[p4(c§7r2+60001+ 1.5¢3)+ 1.5 psc3+ 1.5 p,c3
9172bg (29)
+3pg(2¢ycatc1C)+ 1.5 cocs4+ 1.5 pg(cic5+2¢4¢35)],
where, Ps = P1+P3+9qs, Ps = P1+P3—142,; Pe = P3s— P15 (30)
P7 =931, Ps = q11+9q5.-

7. Energy due to Membrane Stresses

Energy due to extension in direction 0 Y of side plates (U,):
If vg is the extension function in direction 0 ¥ of the side plate as given
by Eq. (7), then the total strain energy due to extension of a side plate is

a

2Etb dvg\?
177 — s s
10, = f(dy) dy. (31)

—a
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substituting form Eq. (7), this becomes
%U2=772E’t(%)a2. (32)

Energy due to “beam’’ bending of the top, bottom and side plates (U;, U,
and Uj):

If uyp, up and ug are the in-plane deflection functions of the top, bottom
and side plate respectively, then:

2 3 [

0, = B1i20n f( o) ay, (33)

_ Et(2bp) d?upg)?
U,= Tf ("d_yz_) dy , (34)

Et(2bg) f” d2ug)?

1, = —2\278)

b= 250 [ () o 135)
where Lzll;ﬂf represents the second moment of area of the top plate about the

axis of bending and similarly for the bottom and side plates.
Substituting from Eqgs. (1), (2) and (3), Egs. (33), (34) and (35) lead to:

2 3
U, = %(E ZbT) &2, (36)
=2 (Kt b3
U4=—3~( a B)C% (37)
2 3
and U, = %(E;bs) c2. (38)

Energy due to shear strains in the plates (U ¢, Uy and Ug):
If y,, yp and yg are the shear strains in the top, bottom and side plate
respectively, then:

~ " ‘
U6=~2~(2th)j"'y§,dy, (39)
—a
Zv a
Uy =2 (2by0) 3 dy. (40)
N X a
'21‘Us=_2’(2bst_)f‘)’§'d3/a (41)

where N is the shear modulus of the plate material.
Substituting from Eqs. (4), (5) and (6) into (39), (40) and (41) and putting

E
N=2(l+p)
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Etaby( , of '
6 1+p (“(H“?), | (42)
7 1+p (0‘2 “2—) (43)
: Et 2
and 1U; = ] fﬁs (ai +%) . (44)

8. Compatibility Conditions

The condition is that the total shear displacement as between successive
corrugations in direction 0 ¥ should be equal to the sum of the deformations
of the different plate elements in the same direction.

Referring to Fig. 4 and denoting by 4, the relative displacement, in direc-
tion 0 Y, between the centre of the side plate and that of the top plate and by
Ay the relative displacement between the centre of the side plate and that of
- the bottom plate, 4, and 4; may be expressed as follows:

7 dug
du du
wnd =) ) o

Substituting from Eqs. (1) through (7):

A 5 bT(co+clcoszg+a0+alcos7—T~y)
a a (45)
+bg <c3 cosﬂ+a4+ascosﬂ) +e (1 —cosz‘y)
a a a
and Ap = bB(02 cosw—a?i+a2+oc3cos%y)
(46)

Y Y Y
+bg (c3eos7+a4+ascos7) —e(l -—cos;).

Grouping terms which have coefficients of unity and terms which have coeffi-

cients of cos’—raﬂ in both sides of Eqgs. (45) and (46), the following relations are

obtained:
Ap =e+cybyp+ogby+a,bg, (47)
0 =—e+cbpto,bp+egbg+ogbg, (48)
dp =—e+aybp+o,bg, (49)
0 =e+Cbpt+oagby+cgbg+ogbg. (50)

The shear deformation per corrugation is 4 where 4=2(4,+4}g), so by
adding Eqs. (47) and (49) and rearranging: ’
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60=2—i);—‘d0—0625;—2d45;. (51)
Eqgs. (48) and (50) can be written as follows:
e b b
oy =E—01—C3£_a555’ (52)
(xa — —:-—e—c bS bs (53)

—C3 > —ag.
2 3 5
bg b by

Egs. (51) through (53) enable the parameters ¢,, o; and «3 to be calculated in
terms of the other unknown parameters which appear in the right hand side
of the equations.

9. Solution by Minimisation of Total Strain Energy

The total strain energy of one corrugation is obtained by adding the indi-
vidual terms (Egs. (29), (32), (43), (36), (37), (38), (42), (43) and (44) ) as follows:

This energy term (U) is a function of the eleven unknown coefficients —¢,, ¢,
Co» Cg, 0> Oy 5 %as g, %y, 5 and e, and by making use of Eqgs. (51) through (53)
the number of unknowns is reduced to eight. Each of the eight unknowns has
a value which minimizes U. The minimisation of Eq. (54) with respect to the
unknowns ¢;, ¢,, C3, €, oy, %, oy and oy, results in eight simultaneous linear
equations. These, together with Eqgs. (51) through (53), allow the determina-
tion of the eleven deformation parameters giving rise to the shear deflection
4 per corrugation.

Eq. (54) is therefore differentiated with respect to the eight independent
unknowns, the variation of the energy terms with respect to the dependent

unknowns ¢,, «; and «3 being allowed for by the introduction of terms g% =—1
(Eq. (1)) ete.
Equating the differentials to zero:
(8 pym)co+ (3pym' b)) ¢y + (3 pgm)ca+ (1.5 pgm)cy+ (m"bp)ay =0, (55)
(6 pgm) co+ (3 pgm) cy + (3 psm~+m' b%) cy+ (1.5 p;m) cg—(m”" bp) az3 =0, (56)
(83 psm)co+ (1.5 pgm) ¢y + (1.5 p;m) s+ (3 pym+2m' bE) ¢, (57)
—(m"bg)ay—(m"bg)og = 0,

(6psm’)e+(m")oay—(m")az =0, (58)
(—27m2pym)cy— (6 pym)cy— (6 pgm)cy—(3pgm)cy+(2bpm") oy = 0, (59)

(—2772}94771l2)c(,—(6104m!)—1z cl—(fipﬁmb—B Cy— 3p8m91—? g

+(2bgm")ay = 0, (60)
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| b
(—2w2p4m—s Co— 6p4mis €y — (ipsmﬁg Co— 3pgmiq Cg
by by byl by

o +(2bgm") ey = 0, (61)
_a3+2d5 = 0’ (62)
where: m_@f ,_2 2(Et) . Hia
' Bt i e S vt
Eqgs. (51), (52) and (53) can be written as:
)= ) ermr e =0
c,+c¢ e+oay+a 0, 63
! 3(61' bp 1o by (63)
by 2by\ 4
Co+a0+a2(b )+0C4(bT) “_'2—[)1',’ (64)
bs 1 bs
Co+C3 (bB) (bB)6+oc3+oc5 (bB) 0. (65)

All terms between brackets in Eqgs. (55) through (65) are constants for given
corrugation length, configuration and material properties and these equations
are sufficient to determine the unknown constants. Putting 4=1 in Eq. (64),
the equations are readily solved and the constants derived corresponding to
unit deflection per corrugation. By substituting into Eq. (54) the total strain
energy stored in one corrugation for a unit deflection per corrugation is then
obtained. ,

If E, is the energy stored in one corrugation due to unit shear deflection
per corrugation, then the energy U due to shear deflection 4 per corrugation is

U = E, 4

If a shear deflection per corrugatlon of 4 is produced by a shear force F, then
U is also given by

U=}FA4.
Hence 4 =ﬁ;' | (66)

The shear deflection in n corrugations due to shear force is 4, =n4d.

10. Modes of Deformation and Relative Importance of the Energy Terms

It is of interest to consider the influence of various factors on the behaviour
of corrugated shear panels. The factors that are here considered are

‘1. the length of the panel,
2. the configuration of the corrugation,
3. the thickness of the plate.
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The main variation in the deflected shape may be followed by considering
the deflection of the centre lines of the top, side and bottom plates (u,, ug
and up in Fig. 4). The relative magnitudes of the energy terms may be con-
veniently expressed by quoting the ratios U,/U where U is the total energy
and the U, (¢=1 to 8) are the various components already defined.

1. The Effect of Panel Length

Fig. 6 shows the effect of change in length (2a) of the panel on the contri-
bution of the different energy terms of Eq. (54) to the total stored energy.

Note that the vertical scale (%

When the panel is short, the overwhelmingly dominant energy term is that
due to “portal frame bending’’ (U,). Eq. (54) is thus effectively reduced to
U=U,. It appears also from Fig. 11, which shows the deflections u,, ug and

) is logarithmic.
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up for the same panel for different lengths under a shear load of one ton, that
at relatively short lengths (e.g. 50 ins) u, is almost linear, while vz and ug
are very small compared with u,. The deflection expressions of Egs. (1), (2)
and (3) may thus be simplified to the form

Up = Co¥Y; Up=ug=0~0.

Under this condition, this method of solution agrees with the assumptions
made by BryaN [2] and McKENzIE [5].

When the length increases, energy terms due to membrane stresses have
more effect. Fig. 6 shows that energy terms U,, U;, U, and U first increase in
importance with increasing panel length. At the same time (Fig. 11) the top
plate acquires a non-linear shape (see u; for 2a = 100 in. and 400 in.) and
deflections of the side and bottom plates (ug and uz) become relatively larger.
For long panels (Fig. 6) the influence of energies U,, U;, U, and U, again
falls due to the decrease in the beam-type bending stiffness of the individual
plates. The effect, of ignoring these energies is demonstrated in Fig. 7 which
shows that their contribution reaches a maximum of 129, of the total energy
for a certain panel length.
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When the panel becomes long, the only contributors to the strain energy
thus become the ‘‘portal frame bending’’ and the shear strain, and Eq. (54)

may be reduced to

U= U1+U6+ U7+U8'

When the length approaches extremely large values, Fig. 6, U, loses impor-
tance and the panel behaves in a manner similar to that of a plane plate panel.

In summary, the length of a panel has a great effect on its behaviour as a
shear panel. Accordingly, shear panels can be classified, within the practical

range, into three different groups depending on their lengths:

1. Short panels, in which the only contribution to their shear deformation is
from the ‘“‘portal frame bending’’.
2. Medium length panels, in which all types of stresses included in the analysis
result in deformation which contribute significantly to the flexibility of the

panel.

3. Long panels, in which the “portal frame bending’’ and direct shear deforma-
tion are the main contributors to panel flexibility.
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Fig. 7 defines, for the particular corrugation, the regions corresponding to
the previous grouping. It is to be mentioned, however, that the range of lengths
for each region depends also on the panel configuration and the plate thickness.

2. The Effect of the Configuration of the Corrugation

Fig. 8 shows that any increase in the corrugation depth decreases the effect
of the energies due to shear strain in the plate and increases the relative con-
tributions of the other energies. Increasing the width of the top plate (Fig. 9)
has a similar effect. In general, any change in configuration that increases
flexibility in “portal frame bending’’ has the effect of causing a decrease in
the relative importance of direct shear flexibility.
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3. The Effect of Plate Thickness

The effect of an increase in the plate thickness on the relative importance
of energy terms is similar to the effect of increasing the length of the panel
(see Fig. 10).

11. Evaluation of the Analysis

Extensive experimental work has been performed [6] to check the presented
analysis. Fair agreement has been observed between the analysis and the
experimental results for panels of medium lengths. The panels tested having
and conditions similar to those assumed in the analysis.

A comparison between results obtained from an equilibrium method [6, 7]
and the above energy method is given in Figs. 11 and 12. It is seen from Fig. 12
that the energy method predicts the greater flexibility for short panels. This
may be attributed to the neglect of some energy terms among which is the
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energy due to torsion of the side plates; this is likely to have a marked effect
at short lengths [2]. In case of long panels the energy method predicts stiffer
results than the equilibrium method, the reason being that the energy method
restricts the deformation of the different plates to the deformation patterns
it assumes. The actual deformation, as predicted more closely by the finite
difference method (Fig. 11), is in the case of long panels, localized at the ends
of the corrugations and diminishes rapidly within the length of the panel.

For medium length panels, Figs. 11 and 12 show that the two methods are
in reasonable agreement.
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Summary

An energy solution is given for the shear rigidity of plates with trapezoidal
corrugations retained within rigid edge members connected to the corrugations
on one face only of the panel. Allowance is made for the fact that the cor-
rugations twist with a non-linear shape. The relative importance of energy
terms due to the various components of membrane and bending stresses is
investigated for corrugations of various proportions.

Résumé

On présente une solution par la méthode de 1’énergie pour la résistance au
cisaillement de toéles & raidisseurs trapézoidales, qui se trouvent entre des
bords rigides et lesquelles sont reliés seulement d’un c6té du champ avec les
raidisseurs. Les raidisseurs se tordant d’une maniére non-linéaire, il y a une
tolérance. On analyse aussi pour des raidisseurs & proportions différentes
I'importance relative des conditions d’énergie & la suite des différentes compo-
santes dues a la sollicitation de membrane et de flexion.
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Zusammenfassung

Es wird eine Energielosung fiir die Schubsteifigkeit von Blechen mit trapez-
féormigen Rippen gegeben, die innerhalb starrer Kantenglieder liegt, welche
mit den Rippen nur auf einer Seite des Feldes verbunden sind. Eine Toleranz
besteht infolge der Tatsache, dass sich die Rippen nach einer nichtlinearen
Form verdrehen. Die relative Bedeutung von Energiebedingungen infolge der
verschiedenen Komponenten der Membran- und Biegebeanspruchungen wird
fiir Rippen verschiedener Ausmasse untersucht.
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