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Failure of Arches under Variable Repeated Loading

Fissures des arcs soumis ä des charges variables et repetees

Bruch von Bogen unter variabler Wechsellast

YTJHSHI FUKUMOTO HIROSHI YOSHIDA
Ph. D., Associate Professor of Civil En- M. Sc, Instructor of Civil Engineering,
gineering, Nagoya University, Nagoya, Kanazawa University, Kanazawa, Japan

Japan

Introduction

The reduction of the füll plastic bending moment due to axial thrust on the
cross section may be disregarded in plastic analysis of structures which are
composed of primary bending members, such as general beams and portal
frame structures.

Many papers on the ultimate load calculated by the collapse mechanism
due to plastic deformation of structures and on the shakedown load such that
deflection of structures stabilized under variable repeated loading were
presented previously. According to them, the difference between the shakedown
load and the ultimate load is not much and the ratio of these loads is less than
0.85.

The first studies on the plastic analysis of arches including the effect of
axial thrust on the füll plastic moment were made around 1950. Outstanding
work among these is Onat and Prager's study [1] introduced yield condition
of a cross section for the combination of a bending moment and an axial thrust
using the upper bound and the lower bound theorems is worthy of praise among
them. Besides, Yokoo and Yamagata [2] presented an interesting paper on
the collapse behaviour of arches. Numerous studies are now available on the
ultimate strength of arches [3]. These include experimental studies on modeis.

Nevertheless, there are few studies on the shakedown load and residual
deformation of arch structures under variable moving repeated load beyond
elastic limit [4]. Franciosi, V., Augusti, G. and Saracio, R. [5] calculated the
ultimate load and the shakedown load of a reinforced concrete arch considering

uniformly distributed dead load, live load and the Variation of temperature.
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They derived an approximation using the upper bound theorem and an icono-
graphy. According to numerical results of the computation, the shakedown
load was only 38% of the ultimate load. It is much less than the ratio of the
two loads calculated by considering bending moment only. Thus the axial
thrust can not be ignored in the investigation of the shakedown load.

In this paper, the theoretical analysis of shakedown load of structures
applying a bending moment and an axial thrust is described and the loads are
calculated for two-hinged steel circular arches with "1", box or reetangular
cross sections.

The calculation results are arranged and are compared for the center angles
of arches, the shapes of cross sections and the depths of cross sections as
parameters.

Assumptions and Yield Conditions

The assumptions in the analysis are as follows;

1. The stress-strain diagram of the material is ideally elastoplastic.
2. In the yield conditions, the bending moment and the axial thrust are

considered but not the shear force.
3. There is no premature failure due to buckling or instability.

Using the above assumptions, the yield conditions are given by the following

expressions, by using AFjAw (the ratio of both flange sectional area AF
and web sectional area Aw) and d\dw (the ratio of the height of cross section
of arch rib d and web depth dw) as parameters, when a bending moment and an
axial thrust act on a "I" or a box cross section as shown in Fig. 1.

-oy

> >Af -Aw *Aw TS TJ

L-^-Jpy.,
(a) (b)

Fig. 1.

where,

M
Mp
M

0N̂V-1 + (AFIAW)'
1 <I<iol + (AFjAw)=Ny U'

{(AFjAw)+ 1.0}2

{(dldw)+ 1.0} (AF/AW)+ 1.0 '

_ {(djdw) + \.0}{(AFjAw) + 1.0}
{(dßw) +1.0} (AF/AW) +1.0

(1)

(2)

(»)
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and Mp is the füll plastic moment, Ny Aay is the yield load, A =AF+AW is
the cross sectional area, M is the bending moment, N is the axial thrust and oy
is the yield stress. Equation (1) considers the yield condition for the bending
moment and the axial thrust for the case of neutral axis in the web at the
formation of plastic hinge, and Equation (2) puts yield condition for the case
of neutral axis in the flange into an approximate linear expression.

Yield conditions of Eqs. (1) and (2) for the bending moment and the axial
thrust for the plastic hinge formation (that is, M\MV= 1.0 — (NjNy)2 for
AF\AW= 0.1, namely for reetangular cross section and AF\AW= 1.5, 3.0 for
d\dw= 1.1) are illustrated in Fig. 2.

Ny 1.0

0.8± >AF_ 0.10.1 AwAw

1.5 Nc^ >r/i.5 0.6

Eq.(l) 3.0 3.0 Eq(l)
Eq.(2)Eq.(2)

Z°±0.4

> > XAF AW

0.2r ~öyj

1.0 -0.8 -0.6 04 0.6 0.8 1.00.4 -0.2 0.2

MP Mp

Fig. 2. Interaction Curves Between Axial Thrust and Bending Moment.

The applicable ranges for Eqs. (1) and (2) are divided by dotted line.
In the following procedures, Eqs. (1) and (2) are used as the yield conditions

and AF\AW is used as parameter because d\dw is approximately 1.1 in general
arches with I-shaped cross sections.

Ultimate Load

The ultimate load of two-hinged circular arch having center angle 2 <f> may
be calculated by lower bound theorem for the condition of uniformly distributed

dead load ocNy/L0 per unit length and a concentrated load acting at d0

where locates at angle 9 from midspan C.
The two hinged arch under unsymmetrical load reaches collapse by the

formation of two plastic hinges. If the plastic hinges form at any two cross
sections, the bending moment and the axial thrust in these sections must satisfy
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the yield condition of Eq. (1) or (2). However, it does not always follow that
statically admissible condition is satisfied in all the cross sections, because the
location of plastic hinges is assumed arbitrarily. Therefore, another assumption
of locations of plastic hinges is necessary to compute the ultimate loads, and
the minimum of these will give the exact ultimate load.

The procedure of analysis of the ultimate load under the loading condition
shown in Fig. 3 are given as follows.

2Lo Fig. 3.

1. Let iA be the angle between RA, the reaction at hinged support A, and the
horizontal and let iA be unknown. The magnitude of the load P is determined
from the equilibrium of hinged support B as follows.

2 sin iA sin </>

B,—,
2 oc sin <f>

¦N„ (4)
sin <f> — sin 6

"*" A sin <j> — sin 6 ^ y '

2. Assume that the plastic hinges are formed at points "a" and "6" where
the angle from midspan C to support B is ifja and the angle from midspan C to
support A is i[fb, respectively. Let the bending moments and axial thrusts at
points "a" and "6" be Ma, Mb and Na, Nb, respectively. Consequently, the
following equations are obtained.

Ma (AaBa + BaNy)L0
Na =GaBA + DaNv,
Mb (AbBa + BbNv)L0.

(5)

Nb =CbBA + DbNv,
(6)

where N is positive for compressive axial force and M is positive if the top
flange of the cross section is in compression, and

Aa sin iA cosec </> (sin <£ + sin ifßa) — cos iA cosec <j> (sin ifja — cos <j>),

Ba —\<x cosec2 (f> (sin cf> + sin if/a),

Ca cos iA cosec if;a — sin iA sin i/ja,

Da a cosec cf> (sin <f> + sin ipa) sin ifja,
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for 9 £ ipa

Aa sin iA cosec </> (sin </> + sin tjja) — cos iA cosec cf> (cos */ra — cos <j>)

— 2 cosec (/> (sin 0a — sin 9) sin i^ sin (/>/(sin (/> — sin 0),

Ba — J a cosec2 </> (sin </> + sin if;a)2 + 2 cosec cf> (sin 0a — sin 9) oc sin cf>l(sin $ — sin 0),

C*a cos iA cos e/ra — sin iA sin ^a + 2 sin i^ sin #/(sin ^ — sin 9) • sin ipa,

i>a a1 cosec <f> (sin </> + sin ifja) sin if;a — 2oc sin <£/(sin (/> — sin 0) • sin </ra,

for 0 ^ <£a

^4Ö sin iA cosec <£ (sin <£ — sin ifja) — cos iA cosec ^ (cos e/f& — cos (/>),

Bh —\ac cosec2 <f) (sin <f> — sin ifjb)2,

Ch cos iA cos 0Ö -f- sin iA sin i/fö,

Dh —oc cosec </> (sin ^» — sin i/jb) sin ^ö.

3. The yield condition must satisfy Eq. (1) or (2), according as the axial
thrusts are smaller or larger than 1/(1+^1^/^4^), respectively. On the other
hand, the magnitudes of these axial thrusts are decided by the locations of the
concentrated load. As shown in Fig. 3, the axial thrust at point "6" is always
larger than that at point "a" when the location of P is nearer to support B
from the center of the span. Therefore, three cases are possible as to the location
of the neutral axis of the cross section. That is,

ar J5a) neutral axes in web at points 'V and "&'

b) neutral axes in web at point 'V and in flange at point "6",
c) both neutral axes in flange at points "a" and "6".

The yield condition, Eq. (1) or (2) has to be satisfied by substituting Eqs.
(5) and (6) at points 'V and "6" depending on the location of the neutral
axis.

4. It can be known from the condition NjNy ^ \f{\ + (AFfAw)} using N
obtained in items a), b) and c) whether the assumed locations of neutral axes in
cross sections are correct or not, where jV is the actual thrust at point "a" or
"6" calculated from item a), b) or c).

5. P is determined by substituting Eq. (4) to valid RA and iA determined
hitherto.

6. Ultimate load P is derived under the assumption that the plastic hinges
form at the arbitrarily assumed points "a" and "6". But it does not always
follow that a atatically admissible condition is obtained. To obtain a statically
admissible condition, the minimum value of P must be determined for all
the combinations of ifja and iftb. Then, the minimum value of P is the ultimate
load under the given load location.

7. The ultimate load P is given as the minimum value of P derived by



20 YUHSHI FUKUMOTO - HIROSHI YOSHIDA

repeating the above mentioned sequences (1) to (6) under varying load location
of0to<£.

The numerical results of the above analysis are summarized at the end of
this paper.

Shakedown Load

Shakedown loading is shown in Fig. 4. When a concentrated load, P 0.1442

Ny moves in the arch having the center angle 2</>= 120° as shown in Fig. 4(a)
and the arch rib of which cross section has d/dw= 1.1 and AF\AW=1.5. The
influence lines of elastic bending moment and axial force due to P 0.1442 Ny
at points "a" and "b" are shown by the curves 1 and 3 in Fig. 4(a) and (b),

P-0I442N»3b
0 10

V

\0 05
Ne + NRo

Nb+N»

6.82' 31 64

lo

IM./MpI+MN./N,?
IM.+M»./MH + K«N« + /NtJ0 5

IM»/MH + K(N»/Ny

(d)/
Fig. 4. Shake-down Loadmg.

respectively, where Max, Mbx and Nax, Nbx are the bending moments and the
axial thrusts at points "a" and "6", respectively and the bending moment
and the axial thrust in Figs. 4(b) and (c) are nondimensionalized by Mp and

Ny, respectively. The values of the right term of the yield condition, \MaJMp\
+ k(NaxjNy)2 and \MbxjMp\+k(NbxjNy)2 are indicated by the cuves 1 and 3

in Fig. 4 (d). When at first the load is at support B, Max and Nax are zero. As
the load moves further, Max and Nax increase and when the load reaches point
x1, \MaxjMp\ -\-k(NaxjNy)2 attains a value of 1.0. After the load passes xx, the
rotation of plastic hinge at "a'
rotation of plastic hinge at iCa'

begins. When the load passes point 'V, the
' becomes the maximum. Even if the load is
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removed at this point, there are residual bending moment and axial thrust due
to plastic deformation.

Therefore, as the load passes through the point "a", residual bending
moment Mra and residual axial thrust Nra in addition to elastic bending
moment Max and elastic axial thrust Nax appear at point "a". The curves 2

and 4 in Figs. 4(b) and (c) show respectively the influence lines of bending
moments and those of axial thrusts at points "a" and "fe" considering the
effects of residual bending moments and axial thrusts. And the combination
of them, \(Max + Mra)lMp\+k(Nhx + Nrb)lNy)2, is shown by the curve 2 in
Fig. 4(d). This value never exceed 1.0 hereafter. On the other hand, the bending

moment and the axial thrust at point "fe" are zero when the load is at the
support B, the absolute values of Mbx and Nbx and their combination, \Mbx/Mp\
+ k (Nbx/Ny) also increase with moving of the load. When the load reaches point
"a", residual bending moment Mbr and residual thrust Nbr due to the plastic
deformation at point "a" appear at point "fe" in addition to elastic bending
moment Mbx and elastic axial thrust Nbx. As the load passes through this
point "a", their combination becomes \(Mbx + Mrb)IMp\ + k[(Nbx + Nrb)INy]2
and this value becomes 1.0 when the load passes point x2, and a plastic hinge is
formed at point "b". But after the load passes this point x2, the value decreases

immediately and the plastic deformation at point "fe" does not remain. If the
load is slightly greater than P 0.1442P2/ the plastic deformation would yield
at point "6". With further moving of the load, \(Mbx + Mrb)IMp\ + k[(Nbx
+ Nrb)/Ny]2 decreases. It increases again along curve 3, and when the load

passes through point "xB", \(Max + Mra)IMp\ + k([Nbx + Nrb)INy]2 becomes
1.0 and it would exceed 1.0 at point "fe". However, according to the residual
deformation at point "a", the combination of bending moment and axial
thrust \(Mbx + Mra)IMp\ + k[(Nbx + Nrb)INy]2 is less than 1.0 as shown by
curve 4 in Fig. 4(d). Therefore, a plastic hinge does not form at point "6".
For the first cycle of loading, the Variation of the bending moment, the axial

Ny

um i ui uim rfTTim

2Lo

rrmTT imiiHii

yb

2L

Fig. 5. Fig. 6.
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thrust and their combination follow the direction of the arrow as shown in
Figs. 4 (b), (c) and (d). After the second cycle of the moving load, their variations
follow along the heavy line as shown by curves 2 and 4 in Figs. 4 (b), (c) and
(d) and the plastic hinges form instantaneously but plastic deformation does not
increase. Thus, after the second cycle of loading, the arch behaves elastically
under the moving load P 0.14:4:2 Ny. This is called shakedown and the
corresponding load P 0.1442 iV^ is a shakedown load.

The method of obtaining the shakedown load by lower bound theory will
be described below.

Let the elastic bending moment and the elastic axial thrust at point "a"
under a concentrated load and uniformly distributed load as shown in Fig. 5

be Ma and Na, respectively.

Ma (AMa P + BMa Ny)L0,
Na=ANaP + BNaNy.

(7)

Also, let the elastic bending moment and the elastic axial thrust at point "6"
under the loading condition as shown in Fig. 6 be Mb and Nb, respectively,

Mb (AMbP + BMbNv)L0,
Nb=ANbP + BybNy,

(S>

where,

AMa (sin <f> — sin 9a)j2 sin <j> • cosec <f> (sin <f> + sin ifsa) — Aa cosec <j> (cos i/ja — cos <f>),

BMa oc cosec <f> (sin cf> + sin ipa) — Ba cosec cf>) (cos ifja — cos <f>)

— \ol cosec2 <j> (sin <f> + sin ifja)2,

ANa Aa cos ifja - (sin <f> - sin 0J/2 sin c/>a • sin if*a,

BNa Ba cos ipa — (sin </> + sin 0a)/2 sin </> sin ipa + oc cosec c/> (sin <j> + sin ipa) sin ifja,

AMa (sin cf> + sin 0a)/2 sin </> * cosec </> (sin <f> — sin i/ja) — Aa cosec <f> (cos ifja — cos <f>),

BMa oc cosec cf> (sin </> — sin ifja) — Ba cosec <j> (cos i/ja — cos <f>)

— Ja cosec2 cf> (sin </> — sin ifja)2,

ANa Aa COS 0a + (sin 0 + SÜ1 9a)j2 SH1 <f> • sin lfja

BNa Ba cos ifja + a sin if*a — oc cosec (f> sin ifja (sin <j> — sin ijja),

AMb (sin cf> — sin 9b)/2 sin </> • cosec (f> (sin </> — sin ijjb) — Ab cosec </> (cos ^ö — cos </>),

i?MÖ a cosec (/> (sin </> — sin i/jb) — J5a cosec </> (cos j/>& — cos </>)

— Ja cosec2 c/> (sin </> — sin 0&)2,

.4^, Ab cos 0Ö + (sin <j> — sin 0ö)/2 sin cf> • sin ^ö,
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BNb Ba cos i/jö + oc sin ifjb — a cosec </> sin ifjb (sin </> — sin if;b),

Aa =\ [sin2 </> — sin2 9a — 2 cos </> (cf> sin 0 — 0a sin 0a + cos </> — cos 9a)

— y (sin2 </> — sin2 0a)]/[</> — 3 sin ^ cos <j> + 2<]> cos2 <f)-\-y(<f> + sin ^ cos <£)],

2?a - [4/3 • sin3 (/> + (/> cos <f> — 2<f) sin2 </> cos </> — sin </> cos2 (f> + 2y(<f> cos2 </> — J </>

— £sin <£ cos (f>)]l[<f> — 3 sin <£ cos <f> + 2<f> cos2 <£ + y (</> + sin <£ cos </>)],

^6 =4 tsin2 4> ~~ sul2 ^& — 2 cos <f> (</> sin </> — 0b sin ö6 + cos <f> — cos 06)

— y (sin2 <£ — sin2 #6)]/[<£ — 3 sin </> cos <f> + 2j> cos2 <£ + y (<£ + sin ^> cos <f>)],

12{1 + (^Mtf)} 1

y

8

3 [1 + h{(d/dw) -1}2 (^/^) +1 8 WdJ2'

djL0.

(9)

On the other hand, the residual reaction due to the residual deformation
are only a horizontal reaction Hn as shown in Fig. 7. Then the residual bending

HR

Mrc Mrc

Nrc Nrc

Fig. 7.

moments MRa,MRb and residual axial thrusts NRa,NRb at points "a" and
"fe" are given by

MBa - COseC 0 (C0S 0a- C°S 0) #tf L0 >

NRa HR COS if;a,

MRb — cosec <£ (cos ifjb — cos </>) HR L0,
NRb HR cos ipb.

(10)

(11)

Now, if plastic hinges are formed at points "a" and "fe", the sum of the
elastic bending moment and the residual bending moment and the sum of the
elastic axial thrust and the residual axial thrust at points "a" and "6",
respectively, must satisfy the yield condition of Eq. (1) or (2).

When P is on the right half of the span, the axial thrust at point "6" is
always larger than that at point "a". Therefore, the location of neutral axis
of cross section at the yield hinge formation is divided into three cases.
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a) Neutral axes in web at points "a" and "6"

The yield condition Eq. (1) must be satisfied at points "a" and "fe",
respectively. Therefore, applying Eqs. (7), (10) and Eqs. (8), (11) to Eq. (1),
respectively, the following expressions are obtained.

(AMaP + BMaNy)L0 + MRa hlANaP + BNaNy + NRa\2
lVLp \ IV y I

(AMb P + BMbNy) L0 + Mm IANbP + BNbNy + Nm\2
±

Mp \ Ny J

(12)

Using the following symbols;

p n H* n mp z \j \ (AFjAw) + l

(14)

Eq. (12) can be rewritten as,

a1Q + b1R + c1 1.00-k(ANaQ + Bcosifja + BNa)2,

a2Q + b2R + c2=1.00-k (ANb Q + Rcosif;b + BNb)2,

where,

ai amJ^ 8, fex cosec (f> (cos ifja — cos <^>)/A 8,

a2 —AMbjXh, fe2 cosec cf) (cos ifsb —cos </>)IA8, (15)

Q and R can be determined from Eqs. (14).

b) Neutral axes in web at point "a" and in flange at point "6"

The yield condition Eq. (1) and (2) must be satisfied at points "a" and "fe",
respectively. Therefore, by substituting Eqs. (7) and (10) into Eq. (1), and
Eqs. (8) and (10) to Eq. (2) and combining with Eqs. (13) and (15);

a1Q + b1R + c1 1.00-k(ANaQ + Rcosi/ja + BNa),

a2Q + b2R + c2 k'{1.00-(ANbQ + Rcosi/ja + BNb)}

are obtained. Q and R can be determined from Eqs. (16).

c) Both neutral axes in flange at points "a" and "fe"

The yield condition Eq. (2) must be satisfied at both points "a" and "6".
By substituting Eqs. (7), (16) and Eqs. (15), (11) into Eq. (2), respectively and
using Eqs. (13) and (15);

a1Q + b1R + c1 kf{1.00-(ANaQ + Rcosi[ia + BNa)},

a2Q + b2R + c2 k,{1.00-(ANbQ + Rcosifjb + BNb)}
}

are obtained. Q and R can be determined from Eqs. (17).
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Locations of the neutral axes of cross-sections "a" and "6" at plastic
hinges are in the web or in the flange can be found from the conditions of
N/Ny^ 1/(1+AF/AW) where N's are the actual thrusts at points "a" and "fe"
and they are calculated from Q and R determined in a) to c), respectively. If
they coincide with the assumed ones, Q and R become the true values. P is thus
determined from the valid Q and R using Eq. (13).

Above is the shakedown load obtained under an assumption that a plastic
hinge is formed at point "a" under the combination of uniformly distributed
load and a concentrated load at point da as shown in Fig. 5 and the other plastic
hinge is formed at point "fe" under the combination of uniformly distributed
load and a concentrated load at point i(db\ However, it does not always follow
that the statically admissible condition is fulfilled. In order that it is always,
the minimum value of P must be determined for every combination of ipa and

Hitherto, it is considered that the concentrated load is located at the points
rotated by angle 9a and 9b from midspan C to support B, respectively. Since a
concentrated load could be applied at any arbitrary points, the shakedown
load, which is taken into account of moving of a concentrated load is the
minimum value for every combination of 9a and 9b varying from —<j>to<f>,

respectively.
The numerical results are summarized at the end of this paper.

Alternating Plasticity Load

When a cross section is subjected to alternating plasticity, fracture may
occur after a few hundred applications of loads. If the maximum fiber stress at
a point on a cross section under a loading condition is omax and the minimum

p
Ny

aLo
llllllllll llilUllillilillllltllllllll

c
1 ""^l0oL^^

A \ « / B >F^\ -*Ö5eJ ^^m
^^"^\ *5r

0

2Lo

mm

2Lo

Fig. 8. Fig. 9.
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fiber stress at the same point under the load condition is amin, alternating plasticity

failure occurs at such a section if the following condition is satisfied.

(Jmax-°min 2ay (1S)

Let the positive bending moment at point "a" under a loading condition as
shown in Fig. 8 be Mx and the negative bending moment at point "a" under a

loading condition as shown in Fig. 9 be M2, and let the axial thrusts under those
conditions be N1 and N2, respectively, then by applying the positive and negative

fiber stress on the section "a" to Eq. (18)

(M1-M2)^-(N1-N2)

.(M1-M2)^-(N1-N2)

^2Ny,
(19)

>2N„

are obtained, where I is the moment of inertia of the cross section.

Introducing M1, M2, Nj_ and N2 into Eqs. (7) and (8), the terms referring to
the uniformly distributed load vanish and Eq. (19) can be arranged as follows:

I (¦A-Ma~AMb)ri — (ANa — ANb)\P^2Ny,
\-(AMa-AMb)r,-(ANa-ANb)\P^2Ny,

where; __ 2{(AFIAw) + l}(d/dw)2
1 ([l + H(dldw)-l}]2(AFIAw) + i)8-

The smaller value of P determined from Eqs. (20) is the alternating plasticity
failure occurs at point "a".

As point "a" is assumed arbitrarily, the minimum value of P under Variation
of \fja from zero to (f> is the alternating plasticity load under the assumption
that the loading conditions as shown in Figs. 8 and 9 act alternatingly.

Now, this alternating plasticity load was obtained under the loading condition

that a concentrated load is located at point "a" with angle 9a from
midspan C to support A and at point with angle 9b to support B. Since a
concentrated load may be located arbitrarily, the alternating plasticity load,
considering any combinations of 9a and 9b varying from zero to </>, respectively.

The numerical results on alternating load are summarized at the end of this

paper.

Numerical Results and Discussions

The numerical results of the ultimate load, shakedown load and alternating
plasticity load calculated by the above mentioned methods are shown below
and the comparisons are made among them. The parameters used for the
computation are d/L0 0.02, 0.05 and 0.10, djdw= 1.1 and AF\AW 0.1, 1.5 and
3.0, where d is the height of arch rib section, L0 half length of span, dw the
depth of web of arch rib, AF the total sectional area of both flanges and Aw
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is sectional area of the web. The half center angle of arches cf> varies from 10

degrees to 90 degrees and the pitch is 10 degrees. As on general arch sections
djdw is considered to be in the ränge 1.10 to 1.14, 1.1 is used as d\dw hereupon.
AFjAw 0.1 indicates a reetangular cross section when d\dw is 1.1. And as on
general arch sections the ränge of AF\AW is considered to be in the ränge from
1.0 to 3.0, 1.5 and 3.0 are used as AF\AW. As for uniformly distributed loads
(w ocNyIL0), 0.02, 0.05 and 0.10 are used as oc for djL0= 0.02, 0.05 and 0.10,
respectively.

1. Ultimate Load

a) Ultimate load. The ultimate load due to a concentrated, uniform and
combined loadings are shown in Figs. 10, 11 and 12, respectively. The values are
nondimensionalized by Ny(=Auy). The numerical results neglecting axial
thrusts are also shown by dotted lines in the figures. As these figures show, the
effect of axial thrust is small for <f> 80° to 90° and is particularly insignificance
when d/L0 and AF\AW are small.

But when cf> is small, particularly when d/L0 and AF\AW are large, its effect
cannot be disregarded. Particularly, for an ultimate load due to the uniformly
distributed or combined load, the effect becomes predominant. These figures
show only for the case where neutral axes at plastic hinges are in web.

0.2

o.i

Fig. 10. Ultimate Load
(Concentrated Loading).
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Numerical results are summarized in Tables 1 and 2 together with the shakedown

load.
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Fig. 13. Critical Bending Moment and Axial^Thrust at Hinge "a" Under Concentrated Loading.
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b) Bending moment and axial thrust at a plastic hinge. The magnitudes of bending

moments and axial thrusts at plastic hinges "a" and "6" at the collapse of
arches due to a concentrated and combined loadings are shown in Figs. 13, 14,
15 and 16, respectively. From these figures also, it is clear that axial thrusts
increase and bending moments descrease as <f> descreases. This tendency is
remarkable for uniformly distributed load.
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Fig 15. Critical Bending Moment and Axial Thrust at Hinge "a" Under Combined Loading.
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c) Location of plastic hinges. The locations of plastic hinges at the collapse of
arches due to a concentrated and combined loadings are shown in Tables 3

and 4, respectively. The locations of plastic hinges are almost constant, not so
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Fig. 17. Critical Bending Moment and Axial Thrust at Hinge "a" Under Shake-down Loading
(Combined).
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Fig. 18. Critical Bending Moment and Axial Thrust at Hinge "6" Under Shake-down Loading
(Combined).
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largely influenced by variations in d/L0 and AF\AW. The difference between
the locations of plastic hinges for axial thrust considered and neglected is less
than a few percent of half span length L0.
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Fig. 19. Residual Moment at Hinge *V.
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Fig. 20. Residual Thrust at Hinge "a".
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2. Shakedown Load

35

a) Shakedown load. Shakedown loads due to a concentrated and combined
loadings are indicated on the lower line in Tables 1 and 2 together with the
ultimate load.
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Table 8. Alternative Plasticity Load (Locations of Load)
(Degree)

dJL0 AFjAw <A

<t>

10° 20° 30° 40° 50° 60° 70° 80° 90°

0.1 a
b

5.66
3.34

11.08
6.82

16.34
10.15

21.19
13.30

25.48
16.62

29.29
19.12

32.17
21.25

33.88
23.10

33.86
24.95

0.02 1.5 a
b

5.73
3.15

11.19
6.63

16.40
9.94

21.25
13.08

25.45
16.85

29.27
19.30

32.17
21.45

33.93
23.26

33.87
25.14

3.0 a
b

5.79
3.10

11.21
6.59

16.40
9.88

21.30
13.02

25.42
16.94

29.27
19.39

32.17
21.53

33.93
23.36

33.91
25.17

0.1 a
b

5.73
3.15

11.21
6.59

16.40
9.91

21.30
12.99

25.39
17.01

29.23
19.49

32.19
21.59

33.92
23.41

33.91
25.25

0.05 1.5 a
b

5.91
2.94

11.42
6.18

16.61
9.40

21.46
12.49

25.27
17.62

29.17
20.07

32.16
22.14

33.94
23.93

34.04
25.68

3.0 a
b

5.99
2.81

11.50
6.06

16.67
9.29

21.49
12.37

25.21
17.83

29.12
20.25

32.15
22.31

34.00
24.08

34.07
25.82

0.1 a
b

5.80
3.21

11.36
6.32

16.56
9.54

21.43
12.58

25.21
17.74

29.10
20.19

32.15
22.21

33.94
23.99

34.00
25.75

0.10 1.5 a
b

1.65
9.90

11.70
5.75

16.89
8.81

21.66
11.78

24.85
19.25

28.92
21.50

32.09
23.47

34.01
25.12

34.24
26.68

3.0 a
b

8.51
9.90

11.77
5.60

16.98
8.60

21.77
11.52

24.78
19.70

28.87
21.94

32.06
23.86

34.05
25.41

34.31
26.96

4. Comparison of the Three Loads

The shakedown load is always less than the ultimate load but it is not less

than 96% of the ultimate load in the ränge considered.
The ratio of shakedown load and ultimate load is minimum at (f> 30° to 50°

and for a concentrated load only is maximum at </> 90°.
The ultimate load and the shakedown load for a concentrated load and the

combined load are shown in Figs. 23 and 24, respectively. The alternating
plasticity loads are also shown by chained lines in these figures.

From these figures, it is found that the alternative plasticity load is almost
less than the corresponding shakedown load and the difference between the
two loads becomes obvious against the uniformly distributed load coefficient oc.

Conclusions

This paper presents the theroretical analysis of the minimum static collapse
load, shakedown load and alternative plasticity load of two-hinged circular
steel arches under a concentrated load, uniformly distributed load and their
combined load. The corresponding loads are calculated using center angle of
arches, span length, cross sectional properties as parameters. Cross sectional
shapes of arch ribs are reetangular, box or / section with double symmetric
axes.
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Flg. 23. Fig. 24.

Main conclusions obtained from the results of this study are as follows.

1. The ultimate load and shakedown load are compared numerically in
Tables 1 and 2. The difference between the loads is about 5% at the most and
can be neglected.

2. The plastic hinges "a" and "6" due to ultimate load are located nearer
the center of the span than the plastic hinges "a" and "6" due to shakedown
load.

3. The alternating bending moment due to variable repeated load yield a
section "a" (Table 8) and the arches collapse due to alternating plasticity
yielding at the cross section by alternating bending moment. This alternating
plasticity loads are less than the shakedown load for the ränge of given arch
properties and the differences of both loads are shown in Figs. 23 and 24. Both
loads for the combined load considered uniformly distributed dead load become
nearly equal but the consideration for both ultimate and alternative loads may
be required for the plastic analysis of arches.
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Summary

The theoretical analysis of shakedown load of structures applying a bending
moment and an axial thrust is described and the loads are calculated for two
hinged steel circular arches with /, box or reetangular cross sections. The
calculated results for concentrated, uniformly distributed and their combined
loadings are compared for the minimum static collapse load, shakedown load
and alternative plasticity load.

Resume

On presente une analyse theorique de structures soumises ä une charge de

stabilisation (shakedown load) et entrainant un moment de flexion et un
effort axial. Les charges sont calculees pour des arcs circulaires en acier ä
deux articulations et de section rectangulaire, en caisson ou en I. Les resultats
trouves pour des charges concentrees, uniformement reparties ou leurs com-
binaisons sont comparees pour la charge de rupture statique minimale, pour
la charge de stabilisation (shakedown load) et pour la charge de plasticite
alternative.

Zusammenfassung

Die theoretische Berechnung der "shake-down"-Last von Tragwerken mit
Biegemoment und Horizontalschub wird vorgelegt und für einen stählernen
Zweigelenk-Kreisbogen mit T-, Kasten- oder Rechteckquerschnitt berechnet.
Die Ergebnisse für konzentrierte, gleichförmig verteilte und kombinierte
Belastung werden mit jenen für die minimale statische Trag-, "shake-down"-
und die entsprechende plastische Last verglichen.
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