Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 30 (1970)

Artikel: Continuous girders with distributed live load
Autor: Dyrbye, Claés
DOI: https://doi.org/10.5169/seals-23575

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-23575
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Continuous Girders with Distributed Live Load
Picces continues soumises & une charge répartie en mouvement

Durcklaufbalken mit verteilter Verkehrslast

CLAES DYRBYE
Denmark

1. Introduction

During the last years, the problems of moving loads on continuous beams
have been examined by different authors, see Ref. [1-5]. In these papers, it is
a general assumption, that the load is moving slowly which means that dynamic
effects are not taken into account.

The main problem in the investigations mentioned has been the determina-
tion of the maximum value of a single force, which can traverse the beam
repeatedly without causing incremental collapse. It has been found for a single
load, that the shakedown load is in most cases only 249, less than the collapse
load, however the author has found [4] that in some cases it may be 7-89,
less than the collapse load.

The difference between the shakedown load and the collapse load is much
greater for uniformly distributed live loads. This has been proofed in the
author’s thesis [4] with the assumption, that the live load can be located over
a continuous section of arbitrary length. These results will be repeated here
and will be supplied with informations of the shakedown load when the demand
for continuity of the live load is given up.

2. Basic Assumptions and Notations

We shall assume, that the beams are of double-symmetric, constant cross-
section, and that the axis of the beams are horizontal.

The moment-curvature relation is assumed to be an idealized elastic-plastic
curve (Fig. 1) and the influence of shear-forces upon this curve is neglected.
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Fig. 1. Idealized moment-curvature diagram.

The total curvature « can be taken as the sum of an elastic part «¢ and a
plastic part «?
K = K+ KP. (1)

The bending moment is called M and the full plastic moment is called u. The
flexibility is called B, and we then have the following relations:

k¢ = BM, (2)
1] < g, (3)
d«? 20 for M =p, (4)
dx? =0 for |[M|<up, (5)
d«? =0 for M =—p. (6)

For mild steel beams, these assumptions seem to form a reasonable basis for
the calculation of both the collapse load and the shake-down load.

From the assumption of constant cross-section follows, that u and B have
constant values along the beam.

In the following we shall consider beams over 2, 3 and 4 spans. The total
length is called L and the length of the first span is called A L. The beams over
3 and 4 spans are supposed to be symmetrical.

The dead load per unit of length is called ¢ and the live load is called p.
It is convenient to express the loads by dimensionless quantities y and ¢
defined as

_9lL?
L2
y=L= (8)
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3. Collapse Load

In cases, where an end-span is critical, the collapse-mechanism has two
hinges located as shown on Fig. 2. The value of ¢, which corresponds to
collapse is then

6+412
¢c = A2 -7 (9)
T A S ¥ S
AL M
Fig. 2. End-span collapse mechanism. Fig. 3. Intermediate span collapse mechanism.

If an intermediate span is critical, the collapse mechanism has 3 hinges as
shown on Fig. 3. Let the length of the span be A, L, then the value of  cor-
responding to collapse will be

16
l/’c A_z_ : (10)
For beams over 3 or 4 spans we shall take the smaller of the values obtained
from the formulas (9) and (10).

For a 3-span beam, Fig. 4, where both end- -spans are A L, we find A, =1—2),

which means, that ¢, is to be found

from (9) if A>—}—tl/i_ = 0.315,
2+4Y2

from (10) if A< -T2 _ 0.315.
244Y2

A ”é,”é,”éy”é,»%”én,ém

AL (1-2)0)L ($-L (30t AL
he— e H————*—————*————*—————l
Fig. 4. Symmetrical 3-span beam. Fig. 5. Symmetrical 4-span beam.

For a 4-span beam, where both of the end spans, Fig. 5, are AL and the 2
intermediate spans are of equal length, A, =% —A. This means that i, is to be
found

2
from (9) if A>M— = 0.230,
34
.
from (10) if A< ";iﬁ = 0.230.

Values of ¢, i.e. i, corresponding to y=0, are shown as functions of A on
Figs. 8, 13 and 18.
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4., Shakedown Load

The shakedown load is defined as the maximum value of the live load for
which it is possible to find a system of residual moments with the characteristic
that the numerical value of the bending moments nowhere exceeds the full
plastic moment, regardless of the location of the load on the structure.

We shall denote the bending moment over support no. ¢ corresponding to
a unit load intensity in span no. j by m;[j] L? (span no. j is between the sup-
ports no. j—1 and %).

Further we introduce M7 as the sum of bending moments over support
no. ¢ from dead load and residual moment.

2-Span Beam

It is most convenient to start with the loading conditions decisive for the
negative moment over the intermediate support, Fig. 6.

Span no.1 no.2
(g+p)
0 1 2
- AL L

Fig. 6. Loading decisive for bending moment at support no. 1.

We shall take the residual moment to that value, which will give M, = —p
with the loading shown on Fig. 6, i.e.

M +my [(1p L2 4my (21 p L2 = —p. (11)

In order to find the most unfavourable conditions for positive moments, the
live load is removed from span no. 2, see Fig. 7.

g+p g

s S

Fig. 7. Loading decisive for maximum bending moment.

We find
My = M7 +my[1]p L? = —p—m, [2]p L*. (12)

The last expression was found by use of (11). Next the reaction R, at support
no. 0 is calculated

M
R0=%(g+p))\L+)TL1. (13)
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Finally, we have the maximum bending moment equal to the full plastic
moment u,
R}

S(ptg) M (14)

From (12), (13) and (14) we get a quadratic equation in p, and we notice, that
p must be equal to the shakedown load. Here it is convenient to find ¢, (value
of ¢ corresponding to the shakedown load). As m,[j] depends only upon A,
), will depend upon A and .

The correct solution for i, is given as formula (2.1.3.2-9) in Ref. [4], but
it is shown, that this may be substituted by the much easier formula

64412
o1 =280 (-0 (S ). (15)
We deduce from (15) that corresponding to y =0 we find ¢, =1, as
6+412

e [1-2.89 (1 =04 2 (16)

d th 1 A2 (17)
a en o~ - —v].
" ’ _¢S°( 6+4V2y)

The formulas (15)—(17) should be used only for A= 1. Values of i, and i},

(collapse load corresponding to y=0) are shown on Fig. 8 as functions of A.
In this case, the two-span beam, it should however be more convenient to

express the values in terms of the longest span instead of the total length.

4’“

Fig. 8. 2-span beam. ., and 5, as functions of A.
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This is easily done by quantities ' and o’ defined as

P =N, (18)
Y =Ay. (19)

(15), (16) and (17) may then be rewritten
gy =[1—-2.89(1-N)*][(6+4V2)—y'], (20)
Plo=[1—2.89(1—2)4](6+4V2), (21)
b =dh(1-2s). (22)

o Will have the constant value (6 + 4 V2); ¥s0 is shown on Fig. 9. It follows
from Figs. 8 and 9 that the difference between i, and i, is greatest for A=1,
in which case we find /i, =0.819.

¥A

W;Esokﬁ

10+

! 1 ! ° 1 = A

0.5 0.6 0.7 0.8 09 1.0

Fig. 9. 2-span beam. 5, and ¢, as functions of A.

3-Span Beam

For the 3-span beam shown on Fig. 4 the residual moment over support
no. 1 is found when the live load is in spans 1 and 2, see Fig. 10. We thus find

M +my [1]p L24+my [2]p L2 = —p (23)

and due to the symmetry
Mg = MY (24)
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0 1 2 3;

AL (1-22)L AL

e " - ]
[ t T bt |

Fig. 10. Loading decisive for bending moment at support no. 1.

The investigations for positive moments become more difficult than was the
case for the 2-span beam.

Here it will be easiest to start with the case, that the intermediate span
(no. 2) is decisive for the positive moments. The live load must be placed in
span 2 only, see Fig. 11.

Peg

gEFHIHH'ﬂ]];T HI} lz 3g
”%’;AL 5‘ (-291 AL %7

Fig. 11. Loading decisive for maximum bending moment in the mid-span.

The bending moments over the supports 1 and 2 are
M,=M,=—p—m,[2]pL? (25)

and the maximum bending moment is found at the center of the span. It must
be equal to u when p corresponds to the shakedown load, and thus we find

M,+3(@+p) (1 =222 L2 = p. (26)

It is not very difficult to find ¢, from (25) and (269, but as the exact formula is
somewhat difficult we shall replace it by the more convenient and very accurate

o (18609 (253 ). (27)
which holds good for A> 0.25, see ref. 4, and smaller values of A don’t seem to
be of practical importance.

We also have to consider the case that an end span, say span no. 1, becomes
decisive for positive moments. In the author’s thesis [4] this was treated only
under the assumption of a continuous live load, but we shall here also consider
the case, where the live load can act in non-adjecent spans. Figures and
formulas which assume continuity are indexed ¢ whereas figures and formulas
corresponding to the assumption of discontinuity are indexed d.

The loading corresponding to maximum bending moment in span no. 1 is
shown on Fig. 12.

The moment over support no. 1 is in case of continuity

My, = M7 +m[1]p L? = —p—m,[2] p L? (28¢)
and in case of discontinuity

My = MY +m, [1]p L2 +m, [3]p L? = —p—my [2] p L2 +m, [3] p L2. (28d)
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0 1 zé 3é
o (1-20L , AL i
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1
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Fig. 12¢. Loading decisive for maximum bending moment in span no. 1. Continuity case.

Pg. lmmﬁml [H g
0 1 X 2 ) 3

AL (1-20 L , AL

[ e

Fig. 12d. Loading decisive for maximum bending moment in span no. 1. Discontinuity case.’

From now, we proceed like in the treatment of the 2-span beam, which means
that we can again deduct the formulas (13) and (14)

The value of p corresponding to shakedown is then found from formulas
(28), (13) and (14). In the case of continuity, the shakedown load is (see
Ref. [4])

(29¢)

¢Sg2.55>\(6+4‘/§—y),

)\2

In the case of discontinuity of the live load, we obtain as a reasonable good
approximation

6+4y2 ) (294)

Py (13.93 12 — 20 X3) (T_V
The approximations (29) should not be used for A> 0.35.
120 U’
1o}

100

discontinuous

80 .
continuous

70

60

1 L
025 030 035 A

Fig. 13. 3-span beam. . and i; corresponding to y=0]as functions of A.
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The smaller of the values of ¢, found from (27) or (29) shall be used. Cor-
responding to y=0 we find the dependence between ¢, and A as illustrated
in Fig. 13.

4-Span Beam

The residual moment over support no. 1 is found with live load in spans
1 and 2 if continuity is assumed (Fig. 14c). If we don’t assume continuity,
the live load shall act in spans 1, 2 and 4 (Fig. 14d).

o L oy
0 ! 2 £ 8,

AL

AL (F-ME (3L

Fig. 14c. Loading decisive for bending moment at support no. 1. Continuity case.

e-s [T I o e T e
’EQW AL ‘_' (F-ML 2__ +-ML ié” AL "A?

s

[

Fig. 14d. Loading decisive for bending moment at support no. 1. Discontinuity case.

The residual moment in point 1 is thus found from (30c¢) or (30d)
M{ +my [1]p L2 +my [2]p L? = —p, (30¢)
My +mq [ p L24+mq [2]p L24+my[4]p L? = —p. (30d)

Due to symmetry
Mg = MY. (31)

The residual moment in point 2 is found with live load in spans 2 and 3, see
Fig. 15.

MG +my[2]p L2+my[3]p L2 = —p. (32)
o [T iHHHHJHWHWITTmmmm

% 3,

AL GeIL (——R)L AL

Fig. 15. Loading decisive for bending moment at support no. 2.

If the end-span is most dangerous with respect to positive moments, the live
load must be placed in span 1 (Fig. 16¢) or in spans 1 and 3 (Fig. 16d).
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g IR —e
0 L 3 > L -

AL L (-1 Al

Fig. 16c. Loading decisive for maximum bending moment in span no. 1. Continuity case.

pe

1
- AL L ¢-2L 2 (f-nL ‘: AL >

f—

Fig. 16d. Loading decisive for maximum bending moment in span no. 1. Discontinuity case.

The moment over support no. 1 is
My, = M{+my[1]p L2 = —p—my [2]p L2, (33¢)

My =M{+m [1]pL2—m[3]p L2 = —pu—m[2]p L2 +m, [3] p L*— 3d

—my [4]p L2. (83d)
As before, the reaction in point 0 is given by (13), and the shakedown value
of the live load is found from (14). When the live load is continuous, it is found
from (33¢), (13) and (14), and its value is found to be expressed by

(34c)

o e [140.184 (3 — )2 — 41 (3 — )] (M—y),

A2

P2 [1—-0.1(3—A)+0.093 (3 —A)2—44 (3 —A)4] (%@—y). (34d)

(34c) is taken from Ref. [4].
If an intermediate span, say span 2, is most dangerous for positive moments,
the live load must act in span 2 (Fig. 17¢) or in spans 2 and 4 (Fig. 17d).

Fig. 17c. Loading decisive for maximum bending moment in span no. 2. Continuity case.

1 N
%7 X 1 ) 2 3 i 4

L (¥-ML (F-0L

Fig. 17d. Loading decisive for maximum bending moment in span no. 2. Discbntinuity case.
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The moments in points 1 and 2 are )

My = MY +my[2]p L = —p—my [1]p L2,

My = M7 +my[2]p L2 +my [3]p L? = —p—my [1]p L2 +m, [3] p L
—my [4]p L?,

My = MY +my (2] p L? = —p—m,y[3]p L?,

My = MY +m,[2]p L +my[4]p L2 = —p—my[3]1p L2 +-my[4]p L2

The shearing force in the left end of span 2 is given by

_2(M,—-M,)

Q2.1 *m"‘%(l"i‘g) (3—A) L

and as the maximum of positive moment shall be x, we finally find

M + Q%l =/J‘
27 2(p+yg)

200}

continuous

discontinuous

100

50

A

0

I —

1 1 1 1 ;] 1
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 18. 4-span beam. i, and ; corresponding to y=0 as functions of A.

11

(35¢)

(35d)

(36¢)
(36d)

(37)

(38)
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If the live load is continuous, the shakedown load is found from (35¢), (36¢),
(37) and (38). If the live load cand act in separate spans, the shakedown load
is found from (35d), (36d), (37) and (38).

We find the approximate formulas

e = (0.642 4+ 2.56 A — 9.69 12) ((Tg;x)é—y), (39¢)
s = (0.674 4+ 2.34 1 — 9.80 X2) ((1—_6;—/\)5—,/). (39d)

(39c¢) is taken from Ref. [4].

The smaller of the values from (34) or (39) is to be used. A graphical repre-
sentation of ¢, is given in Fig. 18.

If y =0, i.e. when the dead load is negligeable compared to the shakedown
value of the live load, we find for A=0.230 that ,=158.0 when the live load
is continuous and ¢ =152.3 when the live load is discontinuous. As ¢,=220.0
we find ,/i,=0.718 for continuous load and ,/i,=0.693 for discontinuous
load.

Conclusion

The results obtained show, that for some girders the shakedown value of a
distributed loading may be smaller when the demand for continuity is can-
celled. However, it does not give a great difference, and it seems questionable,
if it is reasonable to take this into account in static calculations. This is a
question dealing with the probability of the different load conditions and it
must be judged for individual structures, what conditions they should be
calculated for.

It has often been mentioned, that the difference between collapse-load and
shakedown load is so small, that it would be unnecessary to investigate for
incremental collapse. For a distributed live load the shakedown load may be
appreciably less than the collapse load and it seems to be hazardous not to
take this into account.
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Summary

For continuous beams with constant cross-section and an idealized moment-
curvature relation, the shakedown value of uniformly distributed loading is
calculated.

The results are presented as simple formulas for beams with 2, 3 and 4
spans with the limitations, that only beams with symmetrical spans are con-
sidered in the case of beams with 3 and 4 spans.

It is found, that the shakedown load may be 309, below the collapse load
with certain relations between spanlengths, that are within the practical
ranges.

Résumé

Considerant des poutres continues a inertie constante et de comportement
parfaitement élastoplastique, 1’auteur détermine la charge uniforme de
stabilisation.

Pour des poutres & 2, 3 et 4 travées, les resultats sont presentés sous forme
d’expressions simples; toutefois dans les cas des poutres a 3 et 4 travées, seule
des groupes de travées symétriques sont considérés.

L’auteur démontre qu’a condition de respecter certains rapports limites
entre les longueurs des travées — restant & ’'intérieur du domaine pratique —
la charge uniforme de stabilisation sera jusqu’a 30 9, inférieure & la charge
uniforme d’adaptation plastique.

Zusammenfassung

Fiir kontinuierliche Balken mit konstantem Querschnitt und idealisierter
Moment-Kriimmungs-Beziehung sind die Stabilisierungswerte einer gleich-
méaflig verteilten Belastung gefunden worden.

Fiir Balken mit 2, 3 oder 4 Feldern sind die gefundenen Werte als einfache
Formeln gegeben; fiir Balken mit 3 oder 4 Feldern sind nur die Fille mit
symmetrischen Feldweiten behandelt worden.

Man hat herausgefunden, daB3 die Stabilisierungslast in den ungiinstigsten
Fillen bis zu 309, weniger als die gewohnliche plastische Bruchlast betrégt,
wenn man spezielle Verhéltnisse zwischen den Spannweiten hat, die innerhalb
des Gebietes praktischer Konstruktionen liegen.
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