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Finite Element Analysis of Skew, Curved Box-Girder Bridge

Calcul ä l'aide des elements finis des ponts courbes, biais ä section en caisson

Berechnung von schiefen, gekrümmten Brücken mit Kastenquerschnitt mit der
Methode der finiten Elemente

R. G. SISODIYA
M. Sc, Graduate Student, Dept. of Civil Engineering, University of Calgary, Calgary,

Alberta, Canada

Y. K. CHEUNG A. GHALI
Ph.D., MICE, Professor of Civil Ph.D., Professor of Civil Engineering,

Engineering, University of Calgary University of Calgary

Introduction

In modern highways, many skew bridges are built, and very often these

bridges are curved in plan. The box section has been favoured by many
designers because of its aesthetic appearance and because of its high torsional
rigidity.

In the past curved box-girders has been treated one-dimensionally as a
curved beam, thus ignoring the distortions of the cross-section, and in many
cases the skew effect as well.

Cheung et al. [1] use the finite strip method to analyse curved box-girder
bridges. In this method, the curved plates should be circular and of constant
width and the bridge should be ended by two radial cross sections. If all these
conditions are satisfied, the finite strip method provides a Solution which can
be conveniently used in practical design, because it requires relatively short
Computer time and small Computer storage.

The present paper deals with finite element analysis of single box-girder
skew bridges curved in any shape. The bridge may be of varying width and
of any support conditions.

The procedure of the analysis and the types of the finite elements used to
idealize the bridge deck is presented in a separate paper [2] which is limited
to skew straight bridges. Results of the analysis of a curved bridge are
presented here and they are compared with the results of experiments on a model 3.
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In the earlier paper [2] we recommended that the webs of the box be
divided into reetangular elements. Here we will show how the ratio of the
sides of the reetangular elements can affect the accuracy of the results.

Finite Element Analysis and Test Results

The general principles of the finite element method and the detailed formulation

of the elements used in this paper can be found in a text by Zienliewicz
and Cheung [4], and shall not be discussed here.
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Fig. 1. Curved box-section bridge model.

Fig. 1 a and b show the plan and the cross section of a bridge model made
of aluminum alloy *) which was analysed by finite elements and tested for
various loading cases. Fig. 2 a and b show the finite element idealization used
for the analysis, in which reetangular elements are used for the webs while
the top and bottom slabs are divided into parallelogram elements. As an
alternative the top and bottom slabs may be divided into triangles as shown
in Fig. 2 c. Both idealizations gave identical results and the Computer time was
shorter with the triangulär elements. However the parallelogram element offers

*) For details of testing procedure see Ref. 3.
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Fig. 2. Finite element idealization.
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Fig. 3. Parallelogram approximations of the elements in top and bottom slabs (Fig. 2b).
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Fig. 4. Deflections, reactions, strains, and stresses due to vertical load P at point A for one span
bridge model (Fig. 1).

The deck is supported at four points B, C, D and E (Fig. lb), and the reactions
are assumed to have vertical component only.
some, advantage in the Interpretation of the results since the stresses as well
as displacements are computed at the same nodal points.
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It is obvious that the top and bottom slabs cannot be divided into elements
which are perfect parallelograms, and thus some approximation is necessary.
The lines of division in Fig. 2 b are actually straight lines parallel to the lines
of supports, and in the other direction they are in fact polygonal lines joining
points on circular arcs. In the calculation of the stiffness matrix and the
stresses in an element such as that in Fig. 3 a, it is approximated into a perfect
parallelogram element as in Fig. 3b.

Some of the results of the analysis and experiment are given in Fig. 4,

which represent the effects of a unit vertical load applied at point A (Fig. lb).
In Fig. 4 a the Variation of the vertical deflection and the strains are plotted

along the centre line of the web, together with a table giving te reactions at
the supports. Two different finite element mesh divisions are used in the
analysis; a coarse mesh corresponding to the idealization shown in Fig. 2a
and b, and a fine mesh obtained by subdividing into two all the elements of
the coarse one in the span direction (except for the elements adjacent to the
end cross-sections). The deflections obtained for the two different meshes are
practically identical. The experimental values for the deflections are somewhat
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Fig. 5. Deflections, reactions and strains due to vertical load P at point G for two span bridge
model (Fig. 1).
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higher on the whole and this has been attributed to the fact that the stiffness
of the model beam has been reduced by the imperfect epoxy bond between
the web and flanges. The contours for the circumferential stress a^ is shown
in Fig. 4d.

The same model was analysed as a continuous bridge over two spans by
introducing the supports at A and F and applying a vertical concentrated
load at G (Fig. lb). The vertical deflections, strains and reactions are plotted
in Fig. 5 for the coarse and fine meshes described above.

The number of node points in the idealized structure in Fig. 2 is 228 requiring
the Solution of 6x228 1368 equations. The time taken by an IBM 360-50

Computer was 24 minutes to calculate the displacements, the reactions and
the stresses due to one loading case, and the time is increased by 2 minutes
for each additional case.

When the finer mesh described above was used, the number of node points
and equations became 420 and 2520 respectively. Because of the large number
of equations and the short word length (32 bits) of the Computer, double
precision had to be used in the equation solving routines.
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Fig. 6. Variation of stress o* (lb./in.2) as defined in Fig. 4d due to seif weight of specific weight* of 1 lb./in.3.
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To analyse the bridge model for load representing its own weight, the
weight of each element is distributed equally to the four corner nodes (Fig. 2 b).
The Variation of stress o% along the span of the beam at the intersection of the
web and the top slab (points A and B in Fig. 2 a) are shown in Fig. 6 a. In
Fig. 6b, we give the Variation of ag on Section C-C (see Fig. 2b).

Accuracy of In-Plane Reetangular Element for Beam Problems

As previously mentioned, the agreement between the experimental and

analytical deflections in Fig. 4a is not entirely satisfactory, and originally the
discrepancies were suspected to be due to the mesh division used for the web,
which has a 1:4 aspect ratio for the elements used in the coarse mesh, and
a 1:2 aspect ratio in the fine mesh.

In order to obtain further Information on the adequaey of the mesh divi-
sions, the simply-supported beam in Fig. 7 a was analysed using reetangular
elements (Fig. 7b) with b a, 2 a and 4 a respectively for three different cases.
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Fig. 7. Simply supported beam.

CROSS-SECTION

The deflection at centre and stresses at Section A-A in Fig. 7 are compared
with known values from beam theory (including shear deformation for Poisson's
ratio 0) in Table 1.

It is indeed surprising to note that the reetangular element which has
been widely used in two-dimensional elasticity problems gives such poor
results in beam analysis when the ratio of the sides ajb is smaller than unity,
and that the deterioration in accuracy when the aspect ratio changes from
1:1 to 1:4 can be so drastic.

However, the above drawback of the in-plane reetangular element does not
have such an important effect on the analysis of box sections, since the longi-
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Table 1. Central Deflection and Maximum Stresses in a Test Problem (See Fig. 7)

Half
Span

Length
L/2

Ratio
a : b

Deflection at Mid-Span
in terms of P/Et

Maximum Stresses at Section A-A
in terms of P/t d

F.E.M.

Beam
Theory

Including
Shear

Deformation [5]

F.E.M.
Results as a
Percentage
of the Beam

TheoryResult

F.E.M. Beam
Theory

F.E.M.
Results as a
Percentage
of the Beam

TheoryResult

2d
4d
Sd

1 : 1

1 : 2

1 : 4

16.62

88.38

340.58

18.19

132.59

1033.29

91.4%
66.7%
33.0%

4.00
6.00
5.94

4.5

9

18

88.7%
66.7%
33.0%

tudinal forces are mainly resisted by the top and bottom slabs. This is con-
firmed by only a small improvement of the results achieved by the use of the
finer mesh described earlier (see Fig. 4a and b) for the curved box-girder
bridge.

Conclusion

The finite element method can be economically used to replace model
testing for the analysis of curved skew box-girder bridges. More research is
needed to develop elements which permit the use of smaller number of equations

and to reduce Computing time and programming effort, before the method
can be widely accepted by bridge designers.

It is suggest that reetangular elements be used for the webs and either
parallelogram or triangulär element for the top and bottom slabs. In practice,
the support of a skew bridge lie on parallel lines, and curved bridges have

large radii of curvature such that it is often possible to approximate the top
and bottom slabs as assemblage of parallelograms. The triangulär element can
be used in any general case.
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Notation

E Young's Modulus
L span length
P load
R reaction
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a, b sides of a reetangular element
d depth of a beam
t thickness of an element
w vertical deflection
|, 7] skew coordinates for a parallelogram element
a stresses
e strains
x, y, z axes
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Summary

Box-girder bridges having one or two spans and with curved layout and
skew supports are analysed by the finite element method. The results of
analysis is verified by tests on an aluminum bridge model.

The type of elements used to idealize the bridge are described and the
effect of their choice on the accuracy of the analysis is discussed.

Resume

On presente le calcul par la methode des elements finis des ponts ä une ou
deux travees, presentant un axe courbe et des appuis biais, avec une section
en caisson ferme. On a verifie les resultats du calcul ä l'aide d'essais sur des

modeles de ponts en aluminium.
Le present article decrit le type des elements utilises et etudie Pincidence

du choix de la forme des elements sur l'exactitude du calcul.

Zusammenfassung

Kastenförmige Brücken über eine oder zwei Spannweiten mit gekrümmter
Achse und schiefer Lagerung werden mittels der Methode der finiten Elemente
gerechnet. Die Ergebnisse der Berechnung werden durch Versuche an einem
Aluminium-Brückenmodell bestätigt.

Die Art der verwendeten Elemente zur Idealisierung der Brücke werden
beschrieben und die Auswirkung ihrer Wahl auf die Genauigkeit der Rechnung

diskutiert.
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