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Transverse Shear Deformation in Multicell Box Beam Bridges
Déformations latérales dues au cisaillement des poutres en caisson multicellulaire

Schubverformung in Querrichtung von mehrzelligen Kastentriger-Briicken

J. C. ROBERTSON ) R. P. PAMA
BSc, Research Assistant, University PhD, Research Fellow, University
of Dundee of Dundee

A. R. CUSENS
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Notation

a spacing of webs in box-beam section

b half-width of bridge

c position of load from the support

D,  coupling rigidity per unit length of the bridge

D,  coupling rigidity per unit width of the bridge

D, flexural rigidity per unit width of the bridge

D, flexural rigidity per unit length of the bridge

D,, torsional rigidity per unit width of the bridge

D,, torsional rigidity per unit length of the bridge

E elastic modulus

a shear modulus

h overall depth of bridge

I second moment of area

J torsional second moment

2H total torsional rigidity of the bridge

H, load function

L span of bridge

M, longitudinal bending moment per unit width of the bridge
M, transverse bending moment per unit length of the bridge
M,, torsional moment per unit width of the bridge '
M,, torsional moment per unit length of the bridge
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n harmonic

R, longitudinal reactive force per unit width of the bridge
R, transverse reactive force per unit length of the bridge
Sp  shear stiffness

V.,  longitudinal shear per unit width of the bridge

V,  transverse shear per unit length of the bridge

w total vertical deflection

wy  deflection due to bending

wg  deflection due to shear

y,  distance of station from the load

o torsional parameter
o effective torsional parameter
«,  parameter dependent on the harmonic

n,  dimensionless parameter defining the left hand edge of the bridge
n,  dimensionless parameter defining the right hand edge of the bridge
0 flexural parameter

fs  effective flexural parameter

v shearing strain

Introduction

The box section beam is finding increasing application in bridge construc-
tion. The section is relatively light in weight but strong in torsion and flexure.
A bridge deck which is composed of a multi-cell box section (six or more cells)

Fig. 1. Vierendeel distortion of
multi-cell box beam bridges.

may be analysed as an orthotropic plate by conventional methods [1, 2, 3].
However if the webs or flanges of the box are slender, distortion of the cross-
section is likely to occur in the absence of transverse diaphragms. Fig. 1
illustrates the deformation of the transverse cross-section in the manner of a
vierendeel frame. Such vierendeel distortion will cause an increase in both
deflection and longitudinal moment values in the proximity of concentrated
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loads. MAassONNET and GANDOLFI [4] have drawn attention to this effect and
showed that increases in deformation can be dramatic in the case of shear-
weak sections. They also suggest a semi-empirical approach to the determina-
tion of deflection and moment in practical cases. More recently, SAWKo and
CopPE [5] have also considered shear distortion in box beams using a limited
approach based on the assumption of a plane stress condition in the flanges
of the box.

In a large proportion of practical designs of multi-cell box beam bridge
decks significant shear distortion of the transverse cross-section will not
occur but clearly neglect of this effect in all cases could have serious implica-
tions. In this paper the Huber orthotropic plate equation is modified by the
introduction of an additional parameter to account for shear distortion. The
resulting differential equations are solved by the use of half-range Fourier
series and a general method of analysis is developed for the determination of
deflections, moments and shears in a simply supported multi-cell box-section
bridge deck under concentrated or line loads.

Theoretical Analysis

In addition to the customary assumptions made in the analysis of elastic
plates, the following assumptions are made:
1. The total deflection of the deck is equal to the sum of the deflections due
to bending and shear, i.e.
w=wg+wg, (1)

where w is the total deflection; wy and wg are the deflections due to bending
and shear respectively.

2. The transverse shear is equal to the product of the shear stiffness and
the slope of the shear deformation in the transverse direction
where S is the shear stiffness of the deck. The value of S is explained later
in the section on elastic rigidities of the deck.

3. The curvature of the deck in the longitudinal direction is derived from
the total deflection while for the transverse direction it is derived from the
deflection due to bending only.

QD

2 '
5> (3)

Thus, b, Fr
02w

by = (4)
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It follows from this assumption that the longitudinal and transverse bending
moments are

2 2
sz_[l) 0 w+D8 wB]’

5
xaxz 1 ayg ( )

Pwg ot w

M =—[Dya—y2—+D2W]. (6)
The twisting moments in the two orthogonal directions x and y are obtained

from the shearing strain

Pw 1 ( 0 Vy)

”zaxay_ﬁgﬁ (7)

From Eq. (2) this may be expressed as

__( Pw  Pwg)  Pwg
Y= \ozoy odxoyl  owoy

(8)

Hence the shearing strain is a function of the deformation due to bending
only and the twisting moments become

PFwg
Mwy—‘ Dwa— xyaxgyy (9)
0% w
Myx=—'Dyx'y"—"—Dyxm%. (10)

(My +aa—h:y-dy) X
m/ ’ ( Mx+ aa“:" dx)
OMyx ‘}
dy w) vy

V: —

(Vy+ 3y dy)

Fig. 2. Free-body diagram of an element of the deck.

(Myx +

From these moment-curvature relationships, the shearing and reactive
forces (see Fig. 2) may be shown to be
Pwg

oM, oM, & w
v, _( R I )_ - [DmWJr(DyﬁDI)W], (11)

(oM, oM,)\ B wg Pw Bwg
Yy _( oy  ox ) - [Dﬂ ay3 +Dzaxzag]+pwax2ay]’ (12)
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oM,\ 2w Pwg
oM 3w P w 3w
— yry _ B B
R, = (Vy+ T2 ) = [Dy P +D28x28y+(D“’+Dw)8x28y]' (14)

Consideration of the equilibrium of the vertical forces and the summation
of moments in the two orthogonal directions leads to the usual equation for
elastic plates

*eM, @M, *M, &*M,
— == e— . 1
Gat T oy? + dxdy odxdy p(@y) (1)

In terms of the deflections w and wy this equation may be expressed as

ot w twg otw *twg

DxW+(D1+Dx,,+Dw)5—5G§5?+ 25270 T Do 5y =p(x,y). (16)

It is apparent from this expression that if wz=w, the equation reduces to
the HUBER orthotropic plate equation [6].
The slopes in the transverse direction may be expressed as

ow Jdwp OJwg
— . 1
oy oy * oy (17)

From Eqgs. (2) and (12),
cw oJwg V

=B, v 18)
by ~ ay " Sy (1)
ow oJwg 1 PR wg Pw Pwg
_— e B . 1
ot oy oy Sg [Dy oy +D28x28y+D‘“’3x28y (19)

The equation may be re-arranged into the form

3 3 3
Bzw—s 00p p S W, p, W Cwp _ . (20)
y

s B oy v oy 28x26y+ Wox2oy

Thus, the three original basic assumptions result in two simultaneous differen-
tial Egs. (16) and (20) in w and wy. If the load and deflections are expressed
in half-range Fourier sine series, for the nth harmonic of the series the contri-
butions to the total and bending deflections may be written as

w, = W, sine,z, (21)
nw
where s (23)

and L is the span of the deck.
The complete solution may be split into homogeneous and particular parts.
For the homogeneous part, the following ordinary differential equations are
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obtained if Eqs. (21) and (22) are substituted into Egs. (16) and (20), with
p(x,y) set to zero:

azw, a: Wy, d* Wg,
ol D, W, —a2 Dy——" I —ag(D1+Dx,y+Dyx)T?/2i+Dy dyf =0, (24
aw, dWg, a2 Wy, aw, ., dWg,
SB dy "'SB dy +Dy dy3 _OC,L 2 dy —OC,any dy = O. (25)
Using the operator notation
am
mo_ 26
Dm= o5 (26)
these two equations may be expressed in matrix form as follows
ap D, —o2 Dy D? 1 —a2 (D, +D y D, )D2+D DY | [ W, | 0]
---------------------------------- il IRl I . (27)
SyD—-a2D,D ; —(Sp+e:D, )D+D,D* || Wy, | | 0

For a non-trivial solution, the determinant of Eq. (27) must be zero, hence
{(=8gD, D%+ (o D, D, + a2 Dy Sp+oapf Dy D, + a2 Sg(Dy+ D,y +D,,)

— a8 Dy (Dy+ Dy + Dy 1 D+ [~ D, S — ﬁbpxpy]p}[g,’n ] - [g]. (28)
Bn

For simplicity, the following substitutions are made:

2H*= (D1+Dzy+Dyx)’ (29)
P2 = SB(D2+2H*)+a%[Dny_D2(D1+Dyx)]a (31)
and the operator equation may be written as
(P, D%+02 P, D3+ PD)}[W ] [0]. (33)
Wsn 0

The absence of the term in D° implies that the total deflection function is of

the form
w = wg+wg+c (= constant).

For this to be compatible with Eq. (1), the constant ¢ must be zero which
implies that the power of the operator equation may be reduced by one, thus

{PD4+a2PD2+a4P3}[W ] [O]. (34)
Wsn 0
Consider now an ordinary differential equation of the type
a* W azw,
P — dy4 ah Py ——" dy? “+ut PB,W,=0 (35)
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and assume a solution of the form
W, = 4 e, (36)

where A is an arbitrary constant. Upon substitution into Eq. (35), the charac-
teristic equation is obtained as

P, (o 8)* + 02 Py (o, )2 +oh Py = 0. (37)

The roots may be evaluated by quadratic formula and the expression for the
quantity s of the roots may be obtained as

oV GR) CE-(B
*i]/(zPl)i (52) - () 59)
The four roots are -+ («,s;), +(,Ss), —(x,8;) and —(«,S,). This may be

generally represented as + o, s; so that j will have values of 1 and 2 only.
Introducing a parameter «, such that

o2
(Dmy+Dyx+D1+D)+—Fﬂ“[D D _D2(D1+Dyw)]
2]/D D (1+°‘"D“‘)

the quantity s; of the root may be simplified as

4 P) —

B

Upon inspection of Kq. (40) it becomes apparent that another parameter
is identified as
b 1“‘/1% (1
LYy D,

These parameters «, and 0, are the equivalents of the torsional and flexural
parameter « and 6 originally by MaAssoNNET [2] for use in the conventional
orthotropic plate theory. It follows that

2 7
°‘ Sl; W). (41)

lim o, = L 42
SB'—)OOaS 2]/D D * (42)

and lim 6, = I/—— (43)
Sp—>w

Clearly the parameters «, and 6, vary with the harmonic hence a generalized
notation will be employed in the solution.
Solution of the Orthotropic Plate Equation

Consider a bridge deck of span L and width 2b as an orthotropic plate
simply supported along the ends x =0 and x = L. The complete solution of the



176 J. C. ROBERTSON - R. P. PAMA - A. R. CUSENS

non-homogeneous Eq. (16) may be obtained by adding the homogeneous and
particular parts of the solution,

w=wh+wP. (44)

The letters £ and p will be used as superscript or subscript as appropriate to
denote the quantities associated with the homogeneous and particular parts
respectively. w? is the particular part of the solution obtained by considering
the effect of the loading. This does not in general satisfy all the boundary
conditions. w", the homogeneous part is added to give the complete solution.
The homogeneous part has to satisfy the equation without the lateral load
p(z,y) but with the boundary forces acting on it.

Homogeneous Solution

The roots of the characteristic equation may be real or complex and exist
in pairs denoted by +(«,s;) and —(e«,s;) where j has values 1 and 2. The
amplitude of the deflection function may be written as

2

wh — Z (A;_Le—a”s,-yh+A§}+2e+o¢nsy~yh)’ (45)
j=1
2

w% — Z (B?e—a,,sjyh+B;,L+2e+ansj-yh). (46)

~,
[a—y

For the homogeneous solution, the distance of the reference station measured
transversely from the longitudinal centre line of the deck is denoted by y,,.
Stations to the right of the centre line are considered positive and those to
the left as negative.

The relationships between the arbitrary constants in Eq. (45) and (46) may
be established from the conditional Eq. (25) if these deflection functions are
substituted into it, thus :

(SB - “?z Dz) ( — %, S; A;’ e nSiVn) (SB — a% Dz) (an 8; A;t+2e+ans,-yh)
_[SB_Dy“%'gag +°‘%ny](—0%8]- B;.te—cxnsiyh) (47)

—[8z—D,ols? 42D, J(e,s; B;PH etonsivn) = 0,

Collecting all terms which are functions of e—*:%% and equating them to
zero, an equation is obtained relating the arbitrary constants A% and B},

(SB_"‘2 Dz)
ho— Ah n
B] AJ (SB_D 0628-4-0(%1):”1).

yonT)

(48)
The same relationship may be shown to exist between B , and 4%, , if all
terms containing et*»% ¥ are collected and equated to zero.

: B B (Sz—a2 D,)
Setting W, Ay Ar,  (Sp—D,ois;+oiD,,)

(49)
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the deflection functions for the homogeneous part may be written as follows:

© 2

wh = Zl sin o, @ .Zl (Ale—onsivny Al , etonsivn), (50)
n= j=
o 2

wh = 21 sin o, @ '21 FW; (Al e—onsivn Ak , etonsivn), (51)
n= i=

It may be shown from Eq. (49) that the

f.a 3
BJ _ B7+2 =1 (52)

lim FW, = =
Sp—>x oAy Al

and the bending deflection is equal to the total deflection of the deck.

Particular Solution

~ An infinitely wide bridge deck, as seen in Fig. 3 under the action of a line
load expressed in sinusoidal form, will be used in evaluating the deflection

X

LR N
o +— —_
L
NN

AN < AN N W ) ) N Y Vy

Fig. 3. Coordinate axis for infinitely wide bridge deck.

function w?. For the particular part, the deflections may be expressed as

g 2
wP = 3 sina,x ) (AYe Vs + AP , etonsivp), (53)
n=1 =1
@ 2
wh = 21 sin a, © '21(B§? e~nSVp 4 BY , eTonsitp), (54)
n= j=

where the arbitrary constants are identified by the superscript p. The trans-
verse distance of the station from the load is denoted by y, . To preserve the
symmetry of the system, an absolute value will be used for y, thus an adjust-
ment in sign is necessary for anti-symmetric quantities such as R, for example.
This will be fully explained later.
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For the deflection function and its derivates to vanish at distances far from
the load, the positive pairs of the roots o, s; will be discarded and the remaining
expressions are simplified to the forms

0 2

wP = 3 sina,x D) AP et (55)
n=1 j=1
© 2

wh = > sina,x > Bf e %nsivp, (56)
n=1 j=1

Since the same conditional equation applies to the homogeneous and parti-
cular solutions, the arbitrary constants B} and AY are related in the same way
as Bl and A, and hence the particular parts of the deflection functions may
also be written in terms of the factor ¥ W,

© 2

wP = 3 sine,x D) AV e o sivp, (57)
n=1 j=1
@ . 2

wh = lem aanlFW;-Af’ e~ %nSiUp (58)
n= j=

The two arbitrary constants (47_; and Af_,) are obtained from the two
boundary conditions under the load, namely:

1. For each harmonic, the slope of the bending deflection in the transverse
direction is zero,

D
ie. (9 ”’B) (59)
3:’/ Yp=0

and by substitution of Eq. (58)
> FWs; A? = 0. (60)
i=1

2. The reactive force under the load is equal to half the load. If the applied
load is expressed in half-range Fourier sine series, then for each harmonic

H, .
(R;})W=0 =——5 sine,®, (61)
where H, is a load function which may be derived for any form of load. This
boundary condition may be expressed in terms of the deflection functions as
follows:

o2 wp o3 wP B wP H, .
o [Dy oy + Dy, + D) ox2dy +D28x28y] = - sina,® (62)
2 .

or 2 AV D, s F W, —(D,,+D,,)ads; FW,—D,ad s;] = ——g@. (63)
i=1

For simplicity, the term inside the bracket of Eq. (63) may be replaced by
FR,, thus

FRW-Z[Dya%S?Fu/;-—(ny—I—Dyx)oc%stVV;-—D20€%S]'] (64)

~and the two arbitrary constants are determined accordingly.
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Complete Solution

The complete solutions for w and wy are obtained by adding the homo-
geneous and particular solutions:

o 2
— 1 D ,—0y 8 hp— i h i
vo= nzl S, szl [AJ e~ ]yp‘l_AJ' e om s yh+A7'+2 etond], (65)
o 2
— : D p—ay8; h p— j h 85
Wp = nZl Sin oc,nszl FW;[AY e=nsi¥ 4 Al e=nsivn + Al etensiva], (66)

Both deflection functions are symmetrical and it is therefore convenient to
use the notation SY; for the function inside the bracket of Egs. (65) and (66),

so that
SYj — (A;-) e—ocns,-y,,_}_A;p e~ Si¥n +A;~‘+2 e+onsivn) (67)

It must be emphasized here that the term SY; is a function of the number of
the harmonic, the value of j and also the transverse positions of both the
load and the reference station. The deflection functions may be simply written
as

© 2
w = Y sine, x> SY;, (68)
n=1 j=1
@ 2
wyp = ) sine, x> FW;SY,. (69) °
n=1 i=1

The distance y,, of the station from the load is an absolute value as already
mentioned in the derivation of the particular solution. This means that for a
symmetrical function such as w, the contribution of the particular part
AY e~xnsi¥r requires no change of sign. However, for antisymmetrical functions
such as M,,, M., V,and R, it is necessary to consider the particular part as

R yx
K AY emsith,

where K has the value of +1 if the station is to the right of the load and —1
if it is situated to the left.
Consider the anti-symmetric reactive force £, such that

o 2
R,= > sin anx‘z (FR,; K A? e—onsivs
' - 70)
+FR1/7 A;’ e_ansfyh+FRyj+2 A;l+2 e+ansfyh). (

The quantity F R, ., may be obtained from the expression for F R, by
replacing s; by —s;. It then becomes apparent that

This change of sign is consistent for all anti-symmetric functions mentioned
earlier on since each is dependent on an odd power of the root «, s;. Thus, the
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term inside the bracket of Eq. (70) may be replaced by a simple notation
ASY; so that

ASY;=FR,;(KA} e~onsiVp 4 Al e—onsivp — AR ) etonsivy), (72)
With these notations SY; and A §Y;, the deflections, moments, twists, shears
and reactive forces may be expressed in an abbreviated form.
Boundary Conditions

The four arbitrary constants of the homogeneous solution are obtained
from the boundary conditions at the edges of the deck. If the deck is elastically

AX AX
El
- Load
A 6 a _EI
/ GJ
L
[ -+ XXX < <y > Yp
_zp e 9b h b — Yh
; b b——

Fig. 4. Coordinate axes.

restrained by edge beams of flexural rigidity £/ and torsional rigidity GJ
as shown in Fig. 4, the boundary conditions may be written as

[ (0% wP ot wh
By + B ==81|(520) 4 (G5) ] 09

ot wp
). ol
p="20

(
0 —_— (aizlg’;)yhzb] . (1)
(

) p="2b

(BYypmmop + (BYyepy = + 1

(M)

+

(%
(M2)y i+ (MD)yy = +GT (
[E2=

2b+(Mh) b=—GJ

Yp=1:
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{(FR,;+of EI) [APemPitAleP] —(FR,—atBEI)Al ef} =0, (77)

<,
ot

{((FRy,;+oi EI) [APemBit Ab ePi|—(F R, —at EI) Abef}y =0, (78)

(FM,;—ods;GJ)[AP e mPBit Abe Pl +(FM,;+a3s;GJ) Al e} =0, (79)

n°j

<,
ooy

e |\'Mm EMN e

-
I
—

{(FM,;—o3s;GJ)[AP emPit Al ye P+ (FM,;+ads;GJ)AlePi} =0, (80)

where B; = o, 8;b (81)
and FM,; = (Dyo2 —D,als? FW,). (82)

Thus the four arbitrary constants are determined by solving these four equa-
tions simultaneously. With the deflections w and wz known, the bending and
twisting moments, shearing and reactive forces are determined by successive
differentiation. These are summarized as follows:

Deflection
Total: w = i sin o, Z SY;. (83)
Bending: wp = Z.o sin o, @ Z FW,(8Y;). (84)
Longitudinal Bending Moment:
M, =3 sinocnxzzllFijSYj. (85)
oy o
Transverse Bending Moment:
M, = é sin oc,nxéleMw SY;. (86)
Transverse Twisting Moment:
. M, = ni:olcos%xjgl rm,,ASY;. (87)
Longitudinal Twisting Moment:
M, = nijlcos anxélFMmA SY,. (88)
Longitudinal Shearing Force:
Vv, = ZCOSa xz Fv,SY,. (89)
=1

Transverse Shearing Force:

[9) 2
V, = 3 sina,2z) FV,48Y,. (90)
n=1 j=1
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Longitudinal Reactive Force:

o] 2
R, = > cosa,x > FR,;SY,. (91)
n=1 j=1
Transverse Reactive Force:
© 2
R, = ) sina,x) FR,;ASY,. (92)
n=1 j

j=1

The quantities F R,; and FM  have been defined earlier and the rest are
given as follows:

FM, = (2D,—a2s?D, FW,), (93)
FM,,;=—D,, o s; FW,, (94)
FM,; =D,2s; F W, (95)
FV,; =D,o3—(D,+D,)ods>FW, (96)
FR,; =D,a—(Dy+D,,+D,,)es?FW,, (97)
FV,; =(D,s?—D,,s;)a3 FW,—D,ods;. (98)

Elastic Rigidities of the Deck

Considering a multicell box-beam bridge deck without intermediate dia-
phragms (see Fig. 6), the flexural rigidities, D, and D, in the longitudinal and
transverse directions respectively, may be defined in terms of moment per
unit curvature and are independent of the value of the shearing rigidity Sj.
For the calculation of D, , the second moment of area of the longitudinal section
is taken in the usual way. This value is expressed per unit width and then
multiplied by the value of Young’s modulus to give the flexural rigidity D, .
The corresponding flexural rigidity in the transverse direction is obtained
from the top and bottom flanges of the deck.

The torsional rigidity D,, is obtained by considering the shear flow in the
multicell structure. For decks where webs and flanges are relatively small as
compared with the dimensions of the deck, Wittrick’s equation [7] may be
used. For decks with six or more cells, the torsional rigidity may be obtained
by neglecting the net shear flow through the internal webs since these are
generally small; the effective shear flow is taken along the flanges and outer-
most webs. Thus Bredt’s single-cell formula [8] may be used. The torsional
rigidity is expressed per unit width and D, is taken as one-half of this quantity.
If the deck is closed at the ends by diaphragms, then a similar approach may
be used to calculate D, in the longitudinal direction.

The coupling rigidities D; and D, are both taken as Poisson’s ratio times
the contribution to D, from the flanges.
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The shear stiffness Sz may be obtained by considering a transverse slice
of the deck of unit width subjected to equal and opposite shearing forces ¥, ;
and V,, at the ends as shown in Fig. 5. This isolated slice may be considered
as a frame with points of contraflexure in the flanges midway between the

Fig. 5. Assumed frame deformation
(Holmberg).

webs. HoLMBERG [9] has shown that for such a frame the shear stiffness Sy
may be simplified to the form
1

ah a?[3h(I1+I) +als)
12EI3 12E[12h11]2+al3 (11+Iz)]

SB:

It will be appreciated that the assumptions involved in Holmberg’s analysis
are not completely realistic. However, in comparisons with more accurate
analyses involving the use of computer programs for vierendeel frameworks,
Holmberg’s method has been found to give safe values for a range of web
and flange dimensions. It is adopted here as a simple and conservative pro-
cedure for assessing shear stiffness.

Discussion of Results

In order to show the effect of vierendeel distortion on the load distribution
characteristics of the deck, a twelve cell box-beam bridge deck is taken as an
example. The dimensions are shown in Fig. 6 and the elastic rigidities in flexure,
torsion and shear are calculated in the appendix.

The results are expressed in terms of distribution coefficients for deflection
and moment. These coefficients were obtained by dividing individual values
of deflection or longitudinal moment by their mean value as obtained from
simple beam theory. For convenience the transverse bending moment is
expressed in terms of the mean longitudinal moment. Using these elastic
rigidities, the deck was analyzed with and without shear deformation and the
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Fig. 6. Design example.
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Fig. 7. Distribution coefficients for deflection.
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results for central and two eccentric positions of concentrated load at midspan
are shown in Figs. 7, 8 and 9. The values of deflection, longitudinal and trans-
verse bending moment were computed using nine harmonics of the series.
For the shear stiffness S5, Holmberg’s equation was used. From these figures
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Fig. 8. Distribution coefficients for longitudinal moment.

it is apparent that the effect of vierendeel distortion on the deck is highly
localized under the load. The peak values of the distribution coefficients for
longitudinal moment vary from two to three times the corresponding values
obtained using the conventional orthotropic plate theory, depending on the
eccentricity of the load. A more realistic comparison may be made by con-
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Fig. 9. Distribution coefficients for transverse moment.

sidering the areas under the curves. With the load at stations 0, /2 and b,
the percentage increases in the moment carried by the beams under these loads
with the inclusion of the shear correction are 150, 126 and 869, respectively.
This indicates the magnitude of the shear deformation effect and the necessity
for taking account of it in design, especially when the webs of the multi-cell
box beam bridge deck are fairly thin. '

The presence of shear deformation decreases the peak value of transverse
moment as shown in Fig. 9. This is to be expected as the shear stiffness Sg
has the effect of reducing the overall rigidity of the deck in the transverse
direction leading to a decrease of transverse moment.

The effect of shear stiffness on the load distribution characteristics of the

io
9
gl |
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| i I .
6 ||
Kw
5
“ \ f\mh shear deformation
\/
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2
(P tional Orthotropic. Plate Theory |
i (S'IG) :
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Sg x Emm2/mm.

Fig. 10. Relation between peak value of distribution coefficient and shear stiffness.
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deck is shown in Fig. 10. To illustrate this effect on the example bridge deck,
values of S, are plotted against the distribution coefficients for deflection.
The load is placed at the edge to produce the peak value of distribution coeffi-
cient. For convenience the first harmonic only was considered. From this
figure it appears that rapid increases in the value of X ,,,,,, occur at low values
of 85. As the shear stiffness is increased the distribution coefficient approaches
the value obtained from conventional orthotropic plate theory.

10 ]

2.0
.
91— $=0.3 |
1.8 / E mm?2
4 X ——
- - " / mm
Sg=0.3 _| 4
16 7 E mm? //
X mm 7 / $5=0.5
14 e L56=0.5 | / g=0-
7 -
12 e /,/ Sp= 10 6 )
©, > / .
*10 /'/, Dt sg=20 | Fs 5 y A A Sp=1.0 —
//// Pl - 4 /I 7
084 7 ~ $8°5.0 4 7 A
94 Se-10.0 ,/ e S5 =2.0
= — 8=10.01
o L 3 A v /// | |
A e a $p 100 A L —
= . 2 JalliGa 15750
04 m— §5- © — ' 7 4/,/ | _{— Sg=10.0
” —] Sg=100
o2} | p=100_|
sB= @
o ) [ [
1 2 3 49 5 6 I 2 3 . 49 5 6
Harmonics, N Harmonics, N
Fig. 11. Variation of flexural parameter 0 Fig. 12. Variation of torsional parameter os
with the harmonic. with the harmoniec.

Figs. 11 and 12 are included to illustrate the effect of the number of har-
monics on the values of the flexural and torsional parameters 6, and «, (Eqgs.
(39) and (41)). It is shown in the theoretical analysis that the parameters o,
and 6, are functions of the harmonics. This makes it a difficult, if not impossible,
task to reproduce the results in the form of design curves for the benefit of
designers who do not have ready access to a digital computer. This can only
be a practical proposition if distribution coefficients are obtained from the
first harmonic of the series only. Experience has shown that up to nine har-
monics are required in order to obtain accurate results with an analysis
including shear deformation, especially for the values of moments and shears.

Conclusions

A theoretical analysis has been presented for determining the effect of
vierendeel distortion on the load distribution characteristics of multicell box
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beam bridges. It has been shown that this effect is somewhat localized in the
vicinity of the load. Large increases in the peak values of longitudinal moment
occur under the load as a direct consequence of vierendeel distortion, with an
accompanying decrease in the transverse bending moment of the deck.
Approximately, the increases in the peak values of deflection and longitudinal
moment are inversely proportional to the shear stiffness of the deck. When
Sp is infinitely large the values correspond with results from conventional
orthotropic plate theory.

The flexural and torsional parameters have each been shown to be a func-
tion of the harmonics. The use of a digital computer is imperative for an
accurate solution.
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Appendix: Illustrative Example

The dimensions of the bridge deck are shown in Fig. 6. For the purpose of
calculating the elastic rigidities of the deck in flexure and torsion, the value
of Poisson’s Ratio is taken as 0.15. The elastic rigidities are determined as
follows:

D, %(12003—%X9003)E = 89.325 X 108 £ mm*/mm,
D, = 1—12(12()03 9003) £ = 83.25 X 108 £ mm?*/mm,
D, =D,=vD,=0.15x83.25x 105 E = 12.49 x 10 E mm*/mm,
2
% ; ;A = o 151§04((11220%%1X2Ti%)50 2) = 63.06 X 10° £ mm*/mm,
150 100

G X 4 (14850 X 1050)2

14850 1050
2><15000( 1890 w24 20 2)

2H =(D,,+D,,+D,+D,) =154.54 X 108 E mm*/mm.

D, = = 66.50 X 10 £ mm*/mm,

Using Holmberg’s formula, the shear stiffness is obtained as

Sz = 0.834 £ mm?/mm.



TRANSVERSE SHEAR DEFORMATION IN MULTICELL BOX BEAM BRIDGES 189

For the conventional orthotropic plate theory the parameters « and 8 are as

follows:
H 154.54

YD,D,  239.325x 83.25

= 0.896,

oL =

b 4/1)90 12100 */89.325
_— —_— = = .41 .
6 Ll D, ~ 2x15000 | 83.25 0.410
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Summary

A theoretical analysis is presented for the analysis of multicell rectangular
box beam bridges, without intermediate diaphragms, which considers the
effect of Vierendeel distortion of the deck. The solution is expressed in Fourier
Half-Range Sine Series and as such it is limited to simply supported bridge
decks. The edges may be free or elastically restrained by edge beams of known
elastic rigidities in flexure and torsion. The equations for deflection, moments
and shears are derived and an illustrative example is included to show the
effect of Vierendeel distortion on the load distribution characteristics of the
deck. Comparison is made with conventional orthotropic plate theory.
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Résumé

On présente une analyse théorique applicable au calcul des ponts en caisson
multicellulaire sans entretoises, avec 'influence de ’effet de Vierendeel sur la
chaussée. La solution est donnée sous forme de séries de Fourier et elle est
limitée au cas des plaques simplement supportées. Les bords peuvent étre
libres, ou partiellement encastrés par des entretoises extrémes de rigidités
flexionnelle et torsionnelle connues. On établit les équations pour les fleches,
les moments et les efforts tranchants; a I’aide d’un exemple, on montre ’effet
de Vierendeel sur la répartition des charges sur la chaussée. On compare les
résultats avec la théorie conventionnelle des plaques orthotropes.

Zusammenfassung

Es wird eine theoretische Analyse fiir die Berechnung mehrzelliger Kasten-
trager-Briicken, ohne Querscheiben, unter Beachtung der Vierendeelwirkung
der Fahrbahn durchgefiihrt. Die Losung wird in Fourier-Reihen ausgedriickt
und ist auf einfach gelagerte Fahrbahnplatten begrenzt. Die Rédnder kénnen
frei oder durch Endtriger von bekannter Steifigkeit hinsichtlich Biegung und
Torsion eingespannt sein. Die Gleichungen fiir Durchbiegung, Momente und
Schub werden abgeleitet, und an einem Beispiel wird die Vierendeelwirkung
auf die Lastverteilungscharakteristiken der Fahrbahn gezeigt. Zudem wird
ein Vergleich mit der konventionellen orthotropen Plattentheorie angestellt.
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