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Substructures Analysis of Plate Systems
Calcul des systémes de plaques par la méthode des substructures

Berechnung von Plattensystemen mittels Substrukturen

ROBERT P. McBEAN WILLIAM WEAVER, Jr.
Assistant Professor of Civil Engineering Associate Professor of Structural Engi-
University of Missouri, Columbia, Missouri neering, Stanford University, Stanford,

California
Introduction

Frequently a structure to be analyzed by matrix methods possesses so many
degrees of freedom that it cannot be treated within the core memory of the
computer. In such cases the analyst must resort to the use of auxiliary storage
facilities and accept an inevitable increase in computer time due to relatively
slow access to information. For the substructures method, the structure is
physically partitioned into several units, each of which can be treated in the
available computer core. The books by PRZEMIENIECKI [7] and WEAVER [10]
include extensive descriptions of substructures techniques.. Of interest in this
report is a special procedure which has proved to be very versatile when
applied to plate systems with rectangular boundaries. To illustrate, an assem-
blage of complex finite elements subjected to bending and plane stress is used
herein. This situation is typical of stiffened plate problems [6].

Substructures Analysis

For multistory framed buildings CLouGH et al. [1,2,3] and WEAVER et al.
[11,12] partitioned the stiffness matrix into submatrices defining the action-
displacement relations for joints at a given floor level, those at the level below,
and those coupling the two levels. For planar frames all but the horizontal
displacements at each level are progressively eliminated by matrix condensa-
tion as the analysis proceeds downward from the top story. The horizontal
response due to static or dynamic forcing functions thus involves only one
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degree of freedom per floor level (assuming the floor systems perform as rigid
diaphragms). All nonhorizontal displacements and member stress resultants
are determined by backward substitution.

The similarity between a rectangular plane frame and a discretized rectangu-
lar plate in bending is apparent. The geometric configuration is essentially the
same. Each row of finite elements in a plate is considered to be a substructure,
as are the floor beams and columns of a story in a building frame. There are,
however, important inherent differences. While a multistory building is
restrained only at the base, the plate may be restrained arbitrarily. Further-
more, there is only one degree of freedom per story in the two-dimensional
building model, whereas many lateral (normal to the plate) degrees of freedom
are retained for each row of elements in the plate. Although all displacements
could be eliminated for each substructure in a static analysis, a dynamic
analysis is facilitated by retaining the lateral degrees of freedom.

Elimination Procedure for Rectangular Plates

Fig. 1 illustrates a substructure for a plate subjected to both bending and
plane stress. Conforming bending and linear-strain membrane elements,
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Fig. 1. A typical substructure.
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suggested by FrAELIs de VEUBEKE [4,5], have been used by the first co-author
[6] for the analysis of stiffened plates. That study required a finite element
with 32 nodal displacements, as indicated in Fig. 1.

The elimination proceeds in the X-direction. Each network line in the
Y -direction will be called a bayline. Those nodes lying on bayline ¢, and those
mid-edge nodes in the panel immediately following are considered to be in
section 4 of bayline ¢, as indicated in Fig. 1. The nodes lying on the next
bayline are considered to be in section B of bayline ¢. This identification is
typical for any bayline. The row of plate elements delimited by baylines 7 and
1+ 1 constitutes a substructure. Additional subscript notation is required to
identify several types of displacements, as follows:

W = lateral displacement, referring to all sections in the structure;

A = nonlateral (U,V,0,,0,) displacement associated with section 4 of bay-
line 7;

B = nonlateral (U,V,6,,0,) displacement associated with section B of bay-
line <.

Lower-case subscripts @ and b refer to the corresponding restrained dis-
placements associated with bayline 7. The lower-case subscript w refers to the
restrained lateral displacements of both sections of bayline ¢. It must be
emphasized that upper-case W refers to all free lateral displacements in the
structure, not merely to a section. All displacements of the 4, B, a, b, and w
types are to be eliminated in the analysis. The w-type (restrained) displace-
ments could be included in the @ and b type displacements, but they are con-
sidered separately here for convenience.

At a typical bayline in the forward-elimination process the action-dis-
placement relation, in partitioned form, can be written as follows:

[ Ky Kip Kaw Ko Kap Kaw || Doy F,
KBB KBW KBa KBb KBw DB FB
Kyw Kwoa Kyy Ky | | Dy _ Fy (1)
Kaa Kab Kaw -Da Fa .
Symmetric K., K, D, F,
3 Ko | LDy | | F,

The subscripts of the stiffness submatrices identify their association with
the six displacement types. In an effort to give an uncluttered appearance,
matrix symbols are not used in Eq. (1), but each item represents a submatrix.
Expanding Eq. (1) produces:

Ky Dy+K g Dp+K 3y Dyy+ Fyg = Fy, (2)
Kiyg D+ Kgg D+ Ky Dy + Fgg = Fg, (3)
Ky D 4+ K'gyy D+ Kypyy Dy + Fypg = By, (4)
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Ky D4+ K, Dg+ Ky Dy + F,y = F,, (5)
Ky D4+ K, D+ Kby Dy + By = |, (6)
KtAwDA-*_KthDB_*'K%VwDW'{_Fws =Fwﬂ (7)

in which the superscript ¢ denotes transposition.
Equivalent generalized forces, associated with the specified displacements,
appear in Eqgs. (2), (3), and (4). They carry the following definitions:

Fiuo =Kyy Do+ K 4, Dy+ Ky, D, (8)
Fps = K, D+ Ky, Dy+Kp, D,, (9)
Fys = Kypy Do+ Kypry Dy + Ky, D, (10)

F,, k., and F, in Eqgs. (5), (6), and (7) are similarly defined. It is convenient
to abbreviate the subsequent development by the substitutions:
F;i =F, —F4s, (11)
{B = Fp — Fgs, (12)
Fy = Fy — Fyps. (13)

The six vectors to be determined in Eqs. (2) through (7) are the unrestrained
displacements D ,, Dy, and Dy, and the generalized nodal restraint forces
F,, F,, and F,.

Solve for D, in Eq. (2):

D,=K341" (F,—K 5 Dy—K 4y Dy). (14)

By substitution of Eq. (14) into Eqs. (3) and (4), D, is eliminated. The
resulting equations are: \

K3p Dg+ K3y Dy, = Fyf, (15)

K3ty D+ Ky Dy, = F, (16)

in which, K¥p =Kpp —Kiyp KL K 45, (17)
K¥w = Kgy — K45 K34 K 4w, (18)

Kiyw = Kyw — Klyw K34 K aw (19)

P =Fy —KipKiLF,, (20)

Ep =Fy —KiyywKi4F, (21)

are the condensed stiffness and load matrices.

The displacements of type B for the current bayline become displacements
of type A for the following bayline. In the process, matrix K%z assumes the
role of initializing matrix K , , for the following bayline, where it is augmented
by the contributions from that bayline. The initialization is accomplished
simply by shifting the contents of K¥; into matrix K ,, at the end of an
elimination step. A similar treatment applies to the load vectors.
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The elimination (or condensation) procedure is performed for every bayline
in the plate. At the last bayline section B is undefined, and section 4 contains
only those nodes along this last bayline. Therefore, the vector of lateral dis-
placements can be directly determined from

The nonlateral displacements can be calculated by backward substitution,
beginning at the last bayline and working toward the first. Displacements D ,
for the last bayline are found from Eq. (14) with Dz =0. These displacements
D , become the Dy for the next bayline. This simple procedure is repeated for
each bayline until all displacements have been determined.

During the backward-substitution phase, the generalized restraint forces
F,, F,,and F, are found directly from Eqgs. (5), (6), and (7) as the displacement
vectors D, and Dy become available. If any loads are directly applied to the
restraints, then their contribution must be included in the final reactions.
Such direct contributions occur when the consistent load vector for a distrib-
uted or concentrated load on a finite element is calculated and assigned to the
restrained nodes. The generalized forces so calculated are useful for checking
overall equilibrium, although they are not of interest themselves because they
represent fictitious forces. If desired, the stress resultants can be described in
terms of these nodal forces.

The stresses, or stress resultants, are also calculated during the back-
substitution phase. A detailed computer algorithm is available from the first
co-author on request.

Vibrational Analysis

When a lumped-mass approach is considered adequate for a free-vibration
study, d’Alembert’s principle gives

My Dy + Ky Dy = 0, (23)

where M, is a diagonal mass matrix. For harmonic motion with circular
frequency p, Eq. (23) becomes the eigenvalue problem:

K%y Dy, = p? My, Dy, (24)

where Dy, denotes the vector of peak amplitudes (mode shape).

The condensed stiffness matrix K3}, can be obtained by the forward-
elimination process described above for static analysis. This array, together
with the diagonal mass matrix, may then be used to determine the natural
frequencies and the associated mode shapes for the plate.
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Numerical Example

A computer program based on the substructures approach has been applied
to the analysis of both stiffened and unstiffened plates. For purposes of illustra-
tion, the static and free-vibration analysis of a square, simply-supported plate
subjected only to bending is presented here (see Fig. 2).

Fig. 2. Square, simply-supported plate (N = 2).

The conforming quadrilateral element with mid-edge nodes [5] is used to
idealize the plate. Associated with each corner node are a translation and two
rotations; associated with each mid-edge node is a normal slope. The letter N
denotes the number of square elements along half the side of the plate. For
example, N =2 means that four elements are used to represent one-quarter
of the plate, as shown in Fig. 2.

For a uniform load ¢, the maximum deflection is given in Table 1, in terms
of a coefficient «, where
axq L*

D

Wmax = (25)

The symbol D in Eq. (25) represents the flexural rigidity, and L is the side
length of the plate.

Table 1. Maximum Deflection of a Square, Simply-Supported Plate under Uniform Load

Maximum Deflection Coefficient o
N
Consistent Load Lumped Load
1 0.0040824 0.0027189
2 0.0040624 0.0036870
4 0.0040617 0.0039663
6 0.0040615 0.0040189
Exact[8] 0.004062 0.004062

Usually the bending moments are of greater interest to the structural
engineer than are the deflections. The convergence characteristics for the
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bending moment M, along the centreline are given in Table 2, in terms of
a coefficient 8, where:
M,, =BqL> (26)

Table 2. Moment M . on Centreline of a Square, Simply-Supported Plate under Uniform Load

Moment Coefficient 8
z|L
N=1 N=2 N=4 Exact [8]
0.0 0.01036 0.00400 0.00117 0.0
0.02591
0.125 0.02560 0.02488
0.04201 0.03968
Gzl 0.04019 0.03940 004591
0.04637
0.375 0.04622 | 0.04582
0.500 0.05616 0.04933 0.04830 ‘ 0.04789

Two values of B are given for the intermediate values of /L to show the
moment discontinuity to be expected at the node. The moment variation is
linear between the nodes, and follows the exact curve [8] very closely.

From the static load analysis the condensed stiffness matrix K, is avail-
able. For N =1 and N =2 respectively:

Ky =[2.1049], (27)
My, =10.0625] (28)
52.1821 Symmetric
—19.1298  26.0910
and K = : (29)

—19.1298 2.0763  26.0910
2.0763 —9.5649 —9.5649 13.0455

70.0625 0 0 0
0 0.03125 0 0

My =1o o 0.03125 0 ' (30)
0 0 0 0.015625

Assumed for this example are a plate length of 1.0, a flexural rigidity D of
0.091575, and a mass per unit area of 1.0. With the lumped-mass approach
the lowest natural frequency is found to be 0.9236 cps for N =1, and 0.9501 cps
for N=2. The exact solution, given by TimosHENKO and Youwna [9] is
0.9506 cps.

If the complete stiffness matrix were used to find the natural frequencies,
then the order of the eigenvalue problem to be solved would be 5 by 5, 20 by
20, and 80 by 80 for N =1, 2, and 4 respectively instead of the reduced orders
of i by 1, 4 by 4, and 16 by 16. The reduction of order is even more dramatic
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for the case of eccentrically-stiffened plates where in-plane displacements in
the « and y directions must be considered at every node. The original orders
of the eigenvalue problem would then be 5 by 5, 52 by 52, and 200 by 200 for
N =1, 2, and 4 respectively. Thus, the eigenvalue problem to be solved is of
much lower order when all but the lateral degrees of freedom have been
eliminated. Because the elimination is done in a row-by-row manner, large
numbers of nodal displacements do not create a great problem.

It should be noted that only the symmetric modes of vibration can be
obtained when one-quarter of the plate is used, and a number of elements
sufficient to represent all desired mode shapes must be specified.

Conclusions

A substructures approach to the static and dynamic analysis of plate
systems has been described. The order of the set of equations to be solved
at any stage is relatively low; so a large core capacity in a digital computer is
not required. Specified support displacements are easily considered in the
general treatment presented. A great advantage of this substructures technique
is that a lumped-mass, free-vibration analysis, involving only the lateral
degrees of freedom in the plate, may be performed with little extra effort once
a static analysis has generated the reduced stiffness matrix. This advantage
would be sacrificed if all of the degrees of freedom in each substructure were
eliminated. It should be noted that no information need be transferred to
auxiliary storage if the analyst is concerned only with natural frequencies and
mode shapes. The appropriate segments of the computer program can simply
be by-passed. Results for an example of a simply-supported square plate
compare closely with known exact solutions [8].
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Summary

A substructures approach to the static and dynamic matrix analysis of
rectangular plate systems is described. For each substructure the nodal dis-
placement vector is partitioned to consider both unconstrained and constrained
displacements in the plane of the plate and perpendicular to it. The order of
the set of simultaneous equations to be solved for any substructure is relatively
low; so a large capacity computer core is not required. Furthermore, by reten-
tion of only the lateral degrees of freedom, a lumped-mass, free-vibration
analysis may be performed with little effort once a static analysis has generated
the reduced stiffness matrix. The static and free-vibration behaviour of a
square, simply-supported plate is presented to illustrate the technique.

Résumé

Les auteurs décrivent une méthode des substructures pour le calcul matri-
ciel, statique et dynamique, des systémes de plaques rectangulaires. Pour
chaque substructure, on sépare le vecteur des déplacements en déplacements
forcés et déplacements libres, dans le plan de la plaque et dans la direction
perpendiculaire. Le nombre des équations simultanées a résoudre pour chaque
substructure étant relativement limité, on peut donc renoncer a I'usage d’un
ordinateur de grande capacité. De plus, en ne retenant que les déplacements
perpendiculaires & la plaque, on peut effectuer aisément une analyse des vibra-
tions libres, une fois que ’on dispose de la matrice de rigidité réduite. Pour
illustrer cette technique, on décrit le comportement statique et les vibrations
libres d’une plaque carrée simplement supportée.
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Zusammenfassung

Die Berechnung der statischen und dynamischen Matrizen fiir rechteckige
Plattensysteme mittels Substrukturen wird beschrieben. In jeder Substruktur
ist der Vektor, der die Knotenverschiebungen darstellt, in zwei Komponenten
unterteilt, die sowohl die erzwungenen als auch die freien Verschiebungen in
der Plattenebene sowie die senkrecht dazu darstellen. Die Anzahl der fiir jede
Substruktur zu l6senden simultanen Gleichungen ist verhaltnisméBig gering,
so daf} ein relativ kleiner Digitalrechner benutzt werden kann. Da nur die
Freiheitsgrade normal zur Plattenebene verwendet werden, ist eine einfache
Analyse der freien Schwingungen mittels konzentrierter Punktmassen moglich,
die eine durch statische Analyse berechnete reduzierte Steif heitsmatrix beniitzt.
Als Beispiel sind das statische Verhalten und die freien Schwingungen einer
quadratischen, frei unterstiitzten Platte dargestellt.



	Substructures analysis of plate systems

