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On the Problem of Edge Disturbances in Lattice Domes
Problémes des perturbations aux bords dans les coupoles a treillis

Zum Randstérungsproblem in den Gitterkuppeln

JAYME MASON

Graduate Professor of Applied Mechanics — Consulting Engineer — Pontificia Universidade
Catolica do Rio de Janeiro, Brazil; Presently Visiting Professor Ruhr-Universitdt Bochum,
Germany

1. Introduction

The analysis of lattice shells has attained a considerable importance in
recent years, particularly in connection with the design of large-span geodesic
domes.

The purpose of the present paper is to present an approximate method of
determining the magnitude of edge disturbances in such shells. Both rotationally
symmetrical and non-symmetrical perturbations are dealt with, by assuming
an analogue model for the structural behaviour of the shell lattice. By an
appropriate reasoning, the constitutive equations of isotropic shell theory can
be replaced by relationships associated with the properties of the lattice
members and dimensions.

The treatment of rotationally symmetric perturbations is performed under
the usual assumption that it is possible to neglect lower order, as compared
to higher order derivatives of shell quantities. In the case of rotationally non-
symmetrical perturbations, the shallow shell theory is used, which is also
mathematically equivalent to the above assumption.

The results obtained in the present paper were part of the studies for the
design of Manaus Dome, a geodesic dome with 300 m in diameter, to be built
in the Amazon jungle in Brazil, by Companhia Tropical de Hoteis. The
architect was Mr. Sérgio Bernardes and the structural engineer Mr. Paulo
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Fragoso. The development of the methods of analysis of the dome structure
was entrusted to the present author.

The examination of the theoretical assumptions and results was entrusted
to Prof. W. ZerNa, at the Ruhr-Universitdt Bochum, Germany.

Following the requirements in the design, only triangular meshes in the
lattice were considered.

2. The Analogue Model

In order to account for the lattice properties in the calculations, we must
supply an analogue model for the bending and the extensional rigidities of
the shell, in terms of the characteristics of the lattice members. We refer to
Fig. 1 for notations. The moment of inertia and the cross section of a bar are
J and F respectively and a is the height of an equilateral triangle.
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A meridional (¢) and parallel (8) coordinate system is used. The stiffness
properties of the lattice model are derived in a simple way, by subjecting the
lattice to unit generalized deformations, as unit changes of curvature and
twist and unit extensions and shears. The contributions of each group of bars
to the shell stress resultants are collected together and the results referred to
the unit length of the lattice plane. We refer to [2] and [3] for detailed demon-
strations. If coupling of in-plane and bending effects is neglected, this analysis
will lead to the following constitutive equations (see Fig. 2b):

My =Dyky+Dke;  My=Dikg+Dfky; Myg=D5ikyy. (1)

g =AN,+ 45Ny @ =diNg+AFNy; ey = A3 Nyo. (2)

In these relationships kg4, kg and kg9 are changes of curvature and twist
respectively and €4, €, €49 the strains of the shell middle surface. The appro-

priate sign for the changes of curvature and twist must be inserted in (1)
according to the circumstances.
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For the coefficients Di, DZ . A‘f; ... 4 zg, following results are found
(Fig. 1):
3EJ 3EJ
D§ =Df == =B+p); Dh=D§ =~ =(1-p);
i (3)
3
D = = = (1+p)
where f o= %l (4)

(G'Jd = Saint Venant’s torsional stiffness of a lattice member; £ J = Bending
stiffness of a lattice member.)

é a ¢ S8a
4

a 0 _ _ . 9 _ °%
dy=45 =35> 4% = 55 (5)

4% =4 = ol /
It can be checked that the coefficients (3) on the one hand and the coefficients
(5) on the other hand, have the same structure as in the theory of isotropic
uniform shells. ’

Nevertheless, the coefficients (3) are not related in a simple way to the
coefficients (5), as in the constitutive equations of the isotropic shell theory,
because in this case we have only two basic elastic constants.

The analogue shell thickness as evaluated by means of (3) is different from
the membrane thickness as determined from (5). In particular, for the case of
double-layer shells, the difference between bending and membrane thickness
is very large and we may be led to considerable errors if we make estimates
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by means of the results from the isotropic shell theory, by using offhand
analogies.

3. Axissymmetric Edge Disturbances

In the sequel, we shall summarize the basic relations for rotationally sym-

metrical edge perturbations [1]. The notation (...)" holds for d% (...).
a) Hquilibrium:
—Nycos¢d +(Nysing)’ —Qysing =0,
Npsing +Nysing  +(Qgsing) =0, (6)
Mycosé +(Mysing) — Q4 Rsing = 0.

b) Strain displacement relations (Fig. 2a)

1, 1 : 1 )
€¢=-?8—(?) —w), €0=§(’U'cot¢—w), X = R(v+u’)> (7)
1
ky=—5x k0=——;%oot¢. (8)

(x = rotation of tangent to the meridian, positive if the center of curvature
is raised.)

By eliminating the displacement components v and w in (7), the equations
of compatibility

X = (4 —¢p) 00’0‘#-0@; (9)

is found. Furthermore, the first two equations of (6) can be combined to yield
Ny=—Qg4cotd; Ny=Qy. (10)

The equilibrium and the compatibility equations for symmetric edge distur-
bances are now readily derived.

The relevant equilibrium equation is the third of (6) and we eliminate the
bending moments by means of the constitutive relations (1), combined with (3)
and (8). The result is

p / B> Qy
x"+[(1+v*)cotd—v*cot ] x +[ —v*—cot?d]x+ D =0 (11)

Db !
where yE=_% _ 1-p . (12)
D$ 3+u

In the compatibility Eq. (9), we eliminate ¢4 and ¢y by means of (2) and
consider thereby (10), so that
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X = —(4%—48) cot?$ Q4+ (45— 4%) cot $ Q' + 45 Q)

13
-(1+cot2¢)Ag’Q¢+Agcot¢Q;. (13)

In the relationships (11) and (13) we have a system of differential equations
in the variables y and @ 4. As soon as these are determined, all other quantities
are easily derived.

In the case of isotropic shells, obviously v*=v, the Poisson ratio, and

A% =L, A$ =7 where h is the shell thickness.
Then, (11) and (13) simplify to
R2
x"+cotdy —(v+cot?d)y+ 2 =0
D}
EhR3
ith 6 _ 7
with Dqs 12 (1=
and Ehyx = Qg+cotd Qg+ (v—cot?d)Qy

which are well known.
By neglecting first order derivatives and functional values as compared to
second order derivatives in (11) and (13), these reduce to

” R2 Q(}S PaYi X
X'+ —5- =05 @g=-"5. _ (14)
D¢ | A¢
)
With the notation 45 = 5
A(,Dd)
2
or, from (3) and (5), k* = ml%)vf . (15)
2 F

Eqgs. (14) are combined to yield
XVHakix=0; QY +4kQy=0. (16)

With the usual coordinate transformation in order to measure the azimuthal
angle from the edge (see Fig. 2a), the solutions of (16) which decrease from
the edge are :

Qg4 = Ce ¥ cos(kw+h),

_2ak2
X="FEF

Ce % v gin (kw + ) (17)

where C and s are amplitude and phase constants respectively. The expressions
for the bending moments are now found right-away by means of the second
of (17), (8) and (1). As a result,
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3 J k2 — ™ 1—p .
—kw — ) -
My=7 55 (B+p)Ce [Vzkcos(kw+¢+ 4) 3+Iucot¢sm(kw+z/x)], (18)
3ch2 1—p = T
—kw | _ —
My = F(3+M)Oe [ cot psin (kw +) + 3+Ml/2kcos(lcw+¢+4)].

The membrane stresses are readily obtained from the first of (17), with (10):

Ny =—Ccotde ™ cos(kw+i),

N9=—Okl/§e—k‘°sin(kw+gb+£—). (19)

We shall now derive some formulas for edge thrusts and edge moments in the
dome (Fig. 3), which are useful in accounting for boundary conditions along
the foundation.

For the case of an edge thrust H (Fig. 3a), the boundary conditions are
My=0and @4 = — H sin ¢, for v = 0 and therefore s =7/4and C' = —Y2 Hsin ¢,.
The stress resultants become now

Qg = —H Y2 sin ¢y e cos (kw +£)

My = 312 RF(3+,L Hsmgboe‘k‘”[]/kamlcw—;,__'_l’ljcothsin (kw+f)], |
(20)
My = —;L T (3+p) Hsingye ko [cothsin (lcw +%) + ;%Zl/ﬁksinkw] ,
Ny = Y2 H sin ¢, cot ¢ e—%« cos (kw +£),
Ny =2Hsindyke* coskw.
r Ar(H) - r AL

Fig. 3.

For the edge displacement, 4, (H)= Rsin ¢, €j(,_q and, on account of (17) we
find
2 H sin ¢ a k? 2asin?¢, Rk H
Xy =~—"—fFp Aoy = b :

(21)
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In the case of an edge moment (Fig. 3b), M 4= M and @,4=0, for =0 so that

0, =4 MRF
¢ 3k3J (3+p)

My~ Me* (sinkw+coskw),

ekegink w,

My = MeFe [%cot¢coskw+ ;;“(cos kag—&-sinkw)] ,
7

(22)
Ny = ——% %cotqﬂ‘kwsinkw,
Ny = % FJ% e~ *o(cos k w —sin k w)

and Xon = —g k—ﬂ% ; Arisny = % g%_% : (23)

A simple control may be obtained for the above results, by using the reci-
procity principle. According to this principle, |x|=|d4,ap| for H=M =1, so
that we must have
2a k? 4 a R?
F 3k J(3+p)’

If we substitute here k& from (15), we conclude in fact that this is an identity
and both sides will reduce to

2v2 a R
3 VB+p)JF

4. Non-symmetrical Edge Disturbances

The treatment of non-symmetrical edge disturbances by accounting for
the analogue model of the lattice structure is associated with considerable
difficulties. Therefore an approximate analysis must be attempted.

It has been shown elsewhere [5] that the usual mathematical simplification
of neglecting lower order derivatives in edge perturbation problems in shells
of revolution is equivalent to the assumptions of the theory of shallow shells.
The mathematical equivalence is parﬁicularly apparent in a tensor presenta-
tion of the theory.

Therefore, the shallow shell theory with an obvious modification for the
analogue lattice model will be used here. WrLassow [4] has shown that the
equations of the shallow shell theory, in the case of unloaded isotropic uniform
shells are
EhR3

1
e _D2a—0- D2
gV -TRw=0: TRt

V22w =0, (24)



R4 JAYME MASON

where @ and w are well known stress and normal displacement functions.
F2(...) and V,2(...) are certain operators in surface coordinates. The first
equation is the compatibility equation and the second, the equation of equi-
librium.

If we follow the derivation of (24) and observe the new expressions for the
bending and the membrane coefficients (3) and (5) of the lattice model, we
come to the conclusion that (24) must be modified to

3EJ
" p2p2 2., 2 2720, —
EFV P2O—Piw=0; VEd+"= " (3+p) 7202w =0. (25)

for lattice domes.
In spherical coordinates, with the notations(...) = d_d?ﬁf (...)and (...)" = dilo (...),

the operator I? is written as
1 1
2 —_ " 2 2 2
V(...)—Rz[(...)+cot¢ .) +cossectd(...) Jand P2(...) = RV(...).
The membrane stresses are derived from the stress function through

1
N, = 7 (cossec?® " +cotdD@’); Ny= bz @”
| (26)
§0 (cossecp D" — cos ¢ cossec?p D).

For the bending moments, we use again (1), along with (3), with the formulas

1 ” 1 .. ’
kd = — kg = —ﬁ(cossecngw +cot pw’)
(27)

kgo = R2 cossec ¢ (W' —cotdw’)

for the changes of curvature and twist.

We shall next obtain an approximate solution of Egs. (25)
By expressing w and ® as w=P22F; d= E—F V2 F in terms of an auxiliary
function F, the first of (25) is satisfied 1dentlcally. By observing that

Vi2(...)= I% 2(...), the second equation reduces to

8 F
2172 ___ =
vy w+3(3+,u)R2Jw 0 (28)

where now V2(...)=(...)"+coté(...) +cossec?d(...)" . (29)

After integrating (28), we determine @ from the first of (25) which now may
be written as

V%(Vz@—ﬂzzw)= . (30)
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EF

By putting 7245——07 Rw =1y (31)

we see that V2 = 0. (32)

Thus, we first integrate (32) and substitute the result in (31), so that
72@:%ERw+¢. (33)

The integration of (33) yields finally the stress function @. The differential
Eq. (28) can be replaced by two second order differential equations

F2r2w+pw =0 (34)
with W=+iR 3‘(38+1;)J. (35)

For real particular solutions, we need only to account for one sign in (35).
We assume the Fourier expansions

w=Yw,cosnl; D=3 cosnl; =D, cosnd (36)
n=1 n=1 n=1
and then, from (34), we conclude that
w,, + cot dw), + (u—mn?cossec?p)w, =0. (37)

We now make a simplifying assumption, in order to avoid complicate func-
tions of mathematical physics in the integration of (37). The assumption is
very appropriate for hemispherical large span domes, as in the case of Manaus
Dome, in which the edge disturbances are highly localized. In (37) we shall
neglect the variability of the coefficients in the differential equation and set
them equal to their functional values at ¢ =x/2. In other cases, the approxima-
tion should be tolerable with the numerical values of the coefficients at ¢ =d,.

Eq. (37) then simplifies to

Wy, +(p—n?)w, =0 (38)
with p defined by (35). The real form of the solution of (38) is shown to be
w, = A4, e=%cosb, + B, entsinb,¢+C,e%cosb,d+D,e%sinb,
with @, = p,cosw,; b,=p,sinw, (39)

4 2 . I Re ¢ —
where p, = Vnt+pud,; o, 2arctam 2. MRe R EYCEIPA (40)

For edge disturbances at ¢ =7/2, we must retain only the solutions
w, = A,e"%cosb,d+ B,e?sinb, ¢ (41)

and by testing this solution in the exact Eq. (37), we can make sure that the
approximation is very appropriate.
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We next integrate (32). By considering (36),
n ot by, —n2i, =0

and, under the same assumptions it reduces to ¢, — n?y, = 0, with the solu-
tions e”® and e~"$. We must discard e—"% and retain only e"#.
We introduce this result in (31) and consider again the expansion (36).
Then, by taking account of the same simplifying assumptions,

_EF

. (A, e cosb, ¢+ B,etsinb, $)+ D, e ¢,

14 2
D, —n2d,

The general solution of this differential equation is

1 EFR eanqS
= an‘#‘ —_— n¢
Pn = Ot D O = [ — n) 4+ B2 [(ay + 2 4 2]
[4,{(a’® —b% —n?)cosb,d+2a,b,sinb, ¢} (42)

+Bn{(a’%b~b121—n2)81nbn¢—2anbn¢}]

On account of the Fourier expansion (36), the stress resultants will have also
the expansions below:

M¢=i']l[¢ncosn0; M(,:ilMgncosn(); M¢0=§1M¢0n8inn9- (43)

n=1
Ny =Ny cosnbf; Ny= 3 Ny cosnb; Nyg =2 Nyg sinnf. (44)
n=1 n=1 n=1
The amplitudes of the stress resultants are now determined by simple differen-

tiations by means of (1) and (26), by accounting for (27). On account of the
simplifying assumption, we are allowed to write instead

1 .o ]- ”. l [ARN
Nqs%ja‘z‘@ ; NB%'REQ) ; N¢0= "’Eg‘p >
1 ”, 1' LI 2 I (45)
e s b= s k=g

The results are summarized in Tables I and II. The tables should be self-
explaining, all Fourier coefficients being given as

Fourier coeffictent = stiffness X [f,(¢) A+ 9, (d) B, +...].

For example,

— _3(3+'U‘) nd 2_pe_l—=p o _ ; '
My, = Sq B2 {ea a? —b2 3+Mn cosb,$—2a,b,sindb, |4,

+ ean [(afz—b%——%;—ﬁnz) sinbn¢+2anbncosbn¢]} .

The generalized shear forces Qz and the shear forces 4 and @ are also given.
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Fig. 4.

S. Numerical Applications

For a numerical illustration of the above theory, we shall report some
concrete results obtained in the design of Manaus Dome, a geodesic dome with
300 m in diameter, in high tensile steel.

The main characteristics of Manaus Dome are sketched in Fig. 4, and it is
a double-layer shell, each lattice member being a truss with a 1 m depth and
3 m length (see Fig. 4¢,d). The dome is supported along the fundation in such
a way, that the tangential displacements (normally denoted by » and v) and
the meridian rotation vanish. The support is also not able to resist a horizontal
thrust, so that Q; =0 at ¢ =n/2. The characteristics of the lattice in the edge
Zone are

a = 260cm; F = 89cm?; J = 1.80Xx 10°cm?* and R = 150m.

a.1. Axissymmetric Edge Disturbances
With the above values (15) gives
k=125.
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The moment of restraint at the foundation will be determined for dead weight,
which was variable from 124 kg/m? to 182 kg/m2. A calculation of edge dis-
placements was performed by means of the membrane theory with an equi-
valent membrane thickness determined from

1 a . F
—E—h — _ﬁ [See (5)], 1.e., h = E = 0.34 cm,

The results were

1.61 x 108 ‘ 1.87 % 104
B

Aga) —
The elasticity modulus must be inserted in t/m?.
With these results and k£=12,5 above, ¢, = 7/2, u=0, H=M =1, formulas
(21) and (23) yield

2a k? 9.1 X 10* 2a Rk 110x 10*

Xa=v=""FFp = T B 4y = EF 7z 5
__8__aR _ laaxiot 4 aR 91x10
XM=D = "3k TB+wE E TV T3RJErwE B

With these results, any boundary conditions may be accounted for.
The condition for a vanishing meridian rotation, with no thrust is obviously
1.54 < 104 1.87 x 104
Xor—p M +x@ = 0 so that — “—’;—” M- _% —0

M =—1.21tm/m.

and therefore

The 'corresponding hoop stress at the edge is found from the last f(;l;mula of
(22) and it is , SRR '
4 MRF :
'a _ = .
Notw-0 = 3k2J(3+p) '2'_55 t/)m.

5.2. Non-symmetrical Edge Disturbances
We report the results of the calculation for the first and second harmonics
of the wind loading.
The wind pressure was determined from a wind tunel test and the result
of the calculations for the first and the second harmonics of the meridian
rotation were

‘ 5530 1880
X0 == and ) = — —

where £ must be inserted in t/m2. With the present numerical values (40) yields
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pg, =315; p,=178; w, =

v
Y
so that a, b, =17.8X0.707 = 12.6

from (39). As a,, and b, are responsible for the damping of the perturbations,
we see that this result is very close to the corresponding parameter k=12.5
for the axissymmetric edge disturbances. This conclusion is a further concrete
demonstration of the equivalence of Geckler’s and the shallow shell theory.

The meridian rotation for bending effects is obtained from (41), as the
derivative w,’ for ¢ = =/2. By taking instead a, =5, =12 in order to simplify
computations, we find

wy = A;0,e1D 4 B b ey = A,a,e2™2 + By b, et (2),
The conditions of vanishing meridian rotation are then

wi+ X =0; wi+x¥ =0

: 1 5530

from which A+ B, = T
()

1 1880

Dt =155

The other boundary condition of vanishing generalized normal shear Qz at
¢ = =/2 is obtained from the last line of Table I (e, =b,,), which now reduces to

4 4
(—2anb§—n2 a, + gnzan) 4, + (Qa%bn—nzbn—i— §n2bn)Bn=O.

By inserting the numerical values we see that A, ~ B, , so that (a) reduces to

1 5530 1 1880

AlgBl:zxmeﬁﬂ E ’A2=B2=2><1266" B

The corresponding bending moments are determined from the first line of
Table I, with ¢ = =/2.
We would find

3B+p)EJ 1
M¢1 =——(#86n (—§A1+2a1b1B1)
3B+un)EJ 1
and My, :——S—ﬁ)z——eﬁ” (—3A2+2azsz2).

By inserting the numerical values
M, =—2.26x10"3tm/m; M, =—0.76 X 10~3tm/m

which are negligible.
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6. Concluding Remark

An important difference between lattice shells and isotropic shells is the
essential deviation between membrane and bending stiffness. Particularly, in
the case of double-layer lattice shells, the equivalent bending thickness of the
shell is a multiple of the corresponding membrane thickness. _

If we estimate the edge effects in a lattice shell by means of the equivalent
isotropic shell, by using a meridian stiffness obtained from the bending stiff-
ness, the forces will be highly overestimated.

The edge displacements are more directly connected with the hoop stresses,
which depend directly on the membrane stiffness.

The appropriate combination of both effects yields the correct results.
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Summary

The problem of edge disturbances for lattice shells with triangular meshes
is investigated approximately considering both the rotationally symmetric
and the asymmetric edge stresses.

The behaviour of the lattice is accounted for by means of a continuous
analogue model. Numerical results are reported from the design of the Manaus
Dome, with 300 m in diameter.

Résumé

Le probléme des perturbations aux coupoles en treillis & subdivision trian-
gulaire est étudié par voie approximative, en tenant compte des sollicitations
rotationnelles symétriques et des sollicitations asymétriques.
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Le comportement du treillis est simulé par un modeéle continu. On donne
des résultats numériques basés sur le projet de construction pour la coupole
de Manaus mesurant 300 m en diametre.

Zusammenfassung

Das Randstorungsproblem fiir Gitterkuppeln mit dreieckiger Unterteilung
wird in angenidherter Weise untersucht, wobei sowohl drehsymmetrische als
auch unsymmetrische Randbeanspruchungen beriicksichtigt werden.

Das Verhalten des Gitters wird mit einem kontinuierlichen Modell nach-
gebildet. Es werden numerische Resultate aus dem Entwurf der Manaus-Kuppel
mit 300 m Durchmesser mitgeteilt.
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