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Dynamic Response of Highway Bridges to Moving Loads
Comportement dynamique des ponts-routes sous les surcharges mobiles

Dynamisches Verhalten von Strafenbriicken unter bewegter Last

K. T. SUNDARA RAJA IYENGAR K. S. JAGADISH
Professor of Civil Engineering Lecturer in Civil Engineering
Indian Institute of Science, Indian Institute of Science,
Bangalore Bangalore

1. Introduction

The Highway bridge is usually considered as a beam while analysing its
response to moving loads. This approach neglects the effect of transverse
flexibility on the bridge response. A good number of Highway bridges are
known to have widths comparable to their spans. The use of beam theory is,
therefore, not always satisfactory. The discrepancies of beam theory are
especially clear while considering a bridge under eccentric loading. When the
load moves along a line away from the centre line of the bridge, the cross-
section of the bridge is subjected to torsion in addition to flexure. This behaviour
cannot be taken into account by the beam theory. A more rigorous analysis,
preferably appealing to plate theory, is then desirable.

Some experimental studies were conducted by PRINCE ALFARO and VELETSOS
[1], and WALKER [2], on the influence of transverse flexibility of the bridge on
the response to moving loads. They used an aluminium stiffened plate model
to represent the beam and slab Highway bridge. A sprung-mass system was
devised to simulate the dynamic action of the vehicle. The dynamic distribu-
tion effects of the moving load were studied.

The slab bridge and the beam and slab bridge are the two common types
of Highway bridges. The slab bridge can be conveniently investigated by
idealising it as an isotropic plate. The beam and slab bridge is a more complex
structure and the dynamic analysis of such a bridge system has been carried
out by OrRAN and VELETSOs [3], by treating the bridge as an isotropic plate
continuous over the supporting beams. The response under moving loads of
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such a structure has been studied utilising the Lagrangian formulation. The
equations of motion have been integrated using the Newmark-8 procedure.
The differences between the beam theory and the plate-over-beams theory
have been discussed.

In this paper, the Highway bridge is represented as an orthotropic plate.
The analysis can be applied either to slab bridges or to beam and slab bridges.
This facility is provided by the fact that the isotropic plate happens to be a
special case of the orthotropic plate. It is true that the orthotropic plate
analysis is less rigorous in comparison with the plate-over-beams analysis of
OraN and VELETSOS, with reference to beam and slab bridges. Nevertheless,
it is known from the literature [4,5] that the orthotropic plate theory is a
reasonable approximation for beam and slab Highway bridges. The ortho-
tropic plate theory also offers certain advantages in the formulation of the
bridge response problem. The normal modes of an orthotropic plate are easily
analysed and this facilitates the application of the normal mode method in
the response analysis.

A satisfactory treatment of the bridge response problem requires the
selection of a suitable model to represent the dynamic behaviour of the moving
vehicle. A complex three-degree freedom system, incorporating viscous and
Coulomb damping mechanisms, has been suggested by Huaxe and VELETSOS
[6] for Highway bridges treated as beams. This model represents a tractor-
trailer combination, the load being applied to the bridge through three axles.
When the bridge is considered to be a two-dimensional structure, the repre-
sentation of the vehicle becomes more complicated. In this case, a complete
representation would require the consideration of the lateral rolling effect in
addition to the longitudinal pitching effect in the vehicle. Such a representation
would further increase the degrees of freedom of the vehicle model. In the
following analysis, a simpler representation of the vehicle is preferred, and
the vehicle is approximated by a sprung mass. It is believed that a more
involved vehicle model may obscure the essential features of the two-dimen-
sional behaviour of the bridge.

2. Analysis

An orthotropic plate, simply-supported at the edges x=0 and @ and free
at the edges y = +b/2 is now considered (Fig. 1). It is subjected to a moving
sprung load of mass M and spring constant k. The plate and the load are
assumed to have no damping. The load is considered to be distributed uni-
formly over a square area of side 2e. The centre of this square area moves in
the x-direction along the line y =c. The plate is assumed to be at rest initially.

The deflection of the bridge is denoted by W and the absolute deflection
of the sprung mass by z. The deflection of the mass is measured positive down-
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Fig. 1. Orthotropic Plate Under Moving Sprung Load.

wards from its position of equilibrium. The equations of motion of the ortho-
tropic-plate-sprung mass system may be written as follows:

oW oW AW W o\
Dx“a—x_r—FZHawzayz'f‘Dy T =M(g—2)f(x—vty) (1)
and Mi+k[z—W(x,c,t)|,_,] =0. (2)

M represents the mass of the moving load, D,, H and D, are the orthotropic
plate rigidities and p is the mass of the plate per unit area. f represents the
time-dependent function distributing the load over the surface of the bridge.
This function is constant over a small area over which the load is considered
to be distributed and is zero elsewhere. g is the acceleration due to gravity.

The solution to the Eqs. (1) and (2) can now be obtained by using the
characteristic functions of the orthotropic plate. These functions are briefly
discussed in the Appendix.

Now the deflection of the orthotropic plate may be expressed as,

W= 3 3,08, 0sn" ", 3)

m=1n=1

where Y, (y)Sin @aix represents one of the characteristic functions of the

plate and @, , (t) is the corresponding normal co-ordinate. The function
f(x—wvt,y) may be expressed algebraically as,

flx—vit,y) = Z}% if vi—e<x<wvt+e and c—e<y<c+e,
- i _ (4)
=0 if x<vt—eor >vit+e and y<c—eor >c+e.
This function can also be expanded by a series as follows:
o= . mmwx
f@=vty) = 3 3 by ()Y, (y) Sin (5)
Making use of the orthogonal property of the characteristic funections,
f . mmuvt
) — mn J , 6
by (1) = 722 Sin 1 (6)

mn



60 K. T. SUNDARA RAJA IYENGAR - K. S. JAGADISH

a +b/2
1 .
where, K,, = b f fY,fm Sin? m;xdx dy
0 —b/2
. Mmme ct+e
Sin—-—
and fan = —p— P Yndy .
a c—e

Making use of (3) and (5) in (1),
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where «,, is the circular frequency of vibration of the plate

~. Using (3) in (2),

when the shape function happens to be ¥, Sin -

itwiz=w? )Y YO, . 10Y,  (c)Sina,t, (8)
m=1n=1
where w?=Fk/M.

Egs. (7) and (8) constitute an 1nﬁmte set of simultaneous differential
equations for the normal co-ordinates @,,,(t) and the load displacement z.
This set of equations may be solved by numerical means after truncating it
suitably. The numerical integration has been carried out by the Runge-Kutta-
Nystrom method.

The Eq. (3) is found to be inconvenient for the computation of moments
due to poor convergence. This difficulty can be surmounted by splitting the
solution W into ‘“‘quasi-static’’ and ‘‘inertia-force’’ solutions, as indicated
below.

Let, W (x,y,t) = W(x,y,t)+u(x,y,t). (9)

W, represents the quasi-static solution and u represents the inertia force
solution. W is chosen so as to satisfy the equation,
awW W *W

D,—— e 2H8x28y2+D” oo =M(g—2)f(x—vty). (10)

It is presumed that z is already known by the numerical integration of the
Eqgs. (7) and (8). W then represents the instantaneous static response of the
bridge to a moving variable force. This equation can be easily solved by a
double series expansion. The -quasi-static solution can now be conveniently
expressed as,

W (@.9.0 =32 (1-2) a8y, (11)

where 3, is the influence coefficient for deflection at any point (z,y) of the
bridge. This influence coefficient is obtained from the solution of Eq. (10) [7].
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The coefficient 8, is only a function of the position of the load and is inde-
pendent of the speed of the moving load. The moment M, at any point due
to the quasi-static solution may be expressed in a similar way as follows:

Mx(x,y.t)=Mg(1~§)8M. (12)

6y is the influence coefficient for moment at any point.
With W defined as above, the function » must satisfy the following equation

tu tu tu 2y  2W 2w

D””@ 4 2H3x28y2+D”8y4 T TPer TP T TP e (13)
Making use of (3),
ngzg+2ﬂaj:gyz+l)y§;u —p 5 3 B,,Y,,8n "7
Solving this equation, one can write:
u(x,y,t) = —prbozzbg i i ;Dm"YmnSin ’m'rrx, (14)
z m=1n=1"mn a
where Apn PP g‘”a4

_Mga? 2 abax v D, mawx
=5 [(1—5) D—*ﬁg};z YmnSm a ] (15)

The bending moment M, in the orthotropic plate is given by

AW vD, W
+ )
ox2 D, oy?

M, = -D, (16)
where v is the Poisson’s ratio of the slab material. Here, it is assumed that
D, =D where D is the flexural rigidity of the slab of the beam and slab bridge.
D, is taken to be vD=v.D, following the analysis of HurFFiNcTON [8] for the
selection of orthotropic plate rigidities. Applying the above equation to (15),

; bab a O\ “mn mmx D, la? =
M, = 0| (1=F)ou =5 VL 3 e sin I (e 2 B

_ bzdzymn (17)
mn — _@2—

h<

where

The values of 65, and §;, can be obtained by the static analysis using any
routine method [7].

The amplification factors for deflection and moment at midspan can now
be expressed as,
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Amplification factor for deflection

. 18
Mgaz (SD)maac ’ ( )
Amplification factor for moment M,
M, (a|2,y,1)
=AFM =322 ", 19

Here (8p)mae @04 (83 )mar are the maximum values of the midspan influence
coefficients.

3. Numerical Studies

Two typical Highway bridges are considered for detailed numerical study.
One of them is a short-span slab bridge and the other is a medium span beam
and slab bridge. The geometrical and structural characteristics of the two
bridges are summarised in Table 1.

Table 1. Details of Bridges Considered

Span H VB; P
Bridge Metres — kgl/2 m1/2 kg sec?/m?®
Type (Ft.) alb DD,y VD, D, (Ib.1/2 ft.1/2) (Ib. sec?/ft.?) v
Slab 5.00 1.0 1.0 1.0 2500.00 60.00 0.0
(16.41) (6718.75) ( 3.74)
Beam 20.00 2.0 100.0 0.4 25,000.00 90.00 0.0
and Slab (65.65) (67 187.50) ( 5.61)

In all the numerical results presented here, five modes of the bridge are
considered while calculating the inertia-force solution. For these five modes,
the value of m is equal to unity and »n takes values from 1 to 5. In an earlier
study [9], the authors have shown that the bridge response is influenced
mostly by the first three modes. The use of five modes in the present case may
therefore be considered to be more than adequate. As was mentioned earlier,
the Runge-Kutta-Nystrom method has been used to integrate the equations
of motion. The time interval for the integration has been chosen to be one-
tenth the period of the fifth mode in all the calculations.

The entire procedure for numerical integration and the evaluation of
amplification factors for deflection and moment was programmed in Fortran
to run on a CDC-3600 computer. The programme obtains the ordinates of the
amplification history curves at midspan for deflection and moment. It also
incorporates a scheme for picking out the peak values of deflection and moment
amplifications.

A number of variables, mentioned below, were considered while making
a detailed study of the problem.
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a) The Speed Parameter

This parameter is given by « = %—Z— where v is the speed of the moving

sprung load and 7' is the fundamental period of the bridge. The values con-
sidered for this parameter lie between 0.06 and 0.20. This range covers most
of the practical bridge dimensions and vehicle speeds.

b) The Frequency and Mass Ratios

The frequency ratio is denoted by 8, = w/p,, and the mass ratio by 6,= M /pab.
These two ratios are important as they control the oscillation in the sprung
load. The practical vehicle frequencies are mostly less than the fundamental
frequency of bridges. Accordingly the values of 6, between 0.2 and 1.0 are
considered. The weight of the vehicle would normally be less than the weight
of the bridge even if vehicles in excess of 30 tons are considered. The values
of 8, between 0.25 and 1.0 are considered in the numerical studies.

¢) The Transverse Vehicle Position

This variable is denoted by c. It has a significant influence on the parti-
cipation of the various modes of the bridge as the load moves over the bridge.
In this paper, two values of ¢ i.e. ¢=0.0 and 0.45b are considered.

d) Initial Oscillation of the Sprung Load

The initial oscillation of the sprung load can be described by its initial
velocity and displacement. A detailed study would require that these two
variables should be varied independently. Such an elaborate study was not
envisaged in this paper and the initial oscillation is prescribed only by the
initial displacement. The initial velocity is taken to be zero for all the cal-
culations. The magnitude of the initial displacement may be conveniently
expressed with reference to the static displacement of the spring under load.
If z, is the initial displacement, then it may be expressed as,

My
37
Values of 83 =0.2 and 0.75 are considered.

4. Amplification Spectra
The values of AFD,,,. and AFM,,,. at the midspans of the beam and slab
bridge are presented in Figs. 2 to 5 for typical loadings against «. Figs. 2 and 3
refer to the beam and slab bridge and the other two figures refer to the slab
bridge. The details of these two bridges are given in Table 1.
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Fig. 2. Amplification Spectra for the Beam and  Fig. 3. Amplification Spectra for the Beam and
Slab Bridge. Sprung Load Moves Along Slab Bridge. Sprung Load Moves Along
y=0.45b; 8, =0.6; 3,=10.5; §, = 0.0. y=0.0; 8, =0.6; 6, =1.0; §; = 0.0.

Figs. 2 and 3 show the amplification spectra for typical eccentric and
concentric loadings respectively, of the beam and slab bridge. The spectra are
presented for points at midspan given by y = +0.45b and y=0.0. In general,
the amplifications are large for points away from the line of loading. For the
midspan point under the loading, the AFM,, . values are generally smaller
than AFD,,,, values. This effect is pronounced for the higher values of the
speed parameter. For points away from the line of loading, the AFD,,,, and
AFM,,,. values are practically equal. The unloaded edge (y = —0.45b)
experiences larger amplifications in the eccentrically loaded case than in the
concentrically loaded case. However, these large amplifications are not serious,
since the static values at the unloaded edge would be quite small due to the
nature of the load distribution.

Typical cases of eccentric and concentric loading of the slab bridge are
studied in Figs. 4 and 5. All the characteristics noticed in the beam and slab
bridge are to be found in this bridge as well. The magnitudes of AFD,,,, and
AFM,,,. values at the unloaded edges are much smaller for this bridge.

The amplifieation spectra obtained by beam theory are presented along
with the results of the orthotropic plate theory in Figs. 6 and 7. The beam
and slab bridge under eccentric and concentric loadings is considered. For
purposes of comparison, the midspan points of the beam and slab bridge lying
on the lines of loading are considered. The spectra for such points, by the
orthotropic plate theory, are plotted along with the spectra obtained by beam
theory. The points indicated in the above happen to be the critically stressed
points in the bridge. The amplifications at these points would therefore be of
interest to the bridge designer.
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The shapes of the spectra for AFD,,,, given by the orthotropic plate theory
and the beam theory are quite similar. The values of A FD,,,, in the eccentri-
cally loaded case are generally larger than the values given by beam theory.
The deflection amplifications for concentric loading are nearly of the same
order of magnitude as the amplifications given by beam theory. ‘

There are considerable differences between the shapes of the AFM,,,,
spectra given by the orthotropic plate theory and the beam theory. The
AFM,,, values in eccentric loading are larger than the values of the beam
theory for the smaller speeds. For the higher speeds, the values by beam
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theory are found to be larger than the values in eccentric loading. The magni-
tudes of AFM,, . in concentric loading do not differ significantly from the
magnitudes found by the beam thory.

A study of a good number of spectral curves [7], besides those presented
here, showed that the AFM,, . for the critically stressed point (i.e. the mid-
span point in the line of loading) rarely exceeds a value of 1.3, for speed para-
meter values below 0.2. The study of WALKER and VELETSos [11] showed
that the midspan moment amplification by beam theory does not exceed a
value of 1.4 for the same range of speeds. This indicates that the absolute
maximum value of the moment amplification given by the beam theory is
slightly on the conservative side with reference to the critically stressed point
of the Highway bridge. The same conclusion was also obtained by the detailed
studies conducted at the University of Illinois [12] on multigirder bridges.

5. The Effect of Mass and Frequency Ratios

The maximum amplification factors for the midspan moment in the slab
bridge for eccentric and concentric loadings, are presented in Figs. 8 and 9,
as functions of the frequency ratio. The values of « equal to 0.174 and 0.126
are considered. The larger values of A¥M,, .. at points on the line of loading,
are experienced for 6; between 0.6 and 1.0. The same trend is found in beams
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as observed by WALKER and VELETsOs [11]. When the slab bridge is loaded
eccentrically, the unloaded edge is not influenced noticeably, by a change in
8. The point ¥ = 0.0 at midspan, for eccentric loading, shows increased dynamic
effects for 8; between 0.6 and 1.0 (Fig. 8), when the speed parameter is 0.174.
When the speed parameter is 0.126, the AFM,, . values at the same point
are larger for 8, between 0.4 and 0.6. Thus, the figure shows that there can
be no simple relationship between the frequency ratio and the maximum
amplification factor. The speed parameter affects the instant of bottoming of
the sprung load, and this is responsible for the complexity in the dependence
of AFM,,,, ond,. The same trends are observed even in the concentric loading
of the slab bridge (Fig. 9). The effect of mass ratio 8, is less pronounced when
compared to the frequency ratio. The AFM,,,. values are generally larger for
the higher mass ratio, except when 8, is small. For the smaller values of §,,
the mass ratio does not have any noticeable influence.

The detailed studies conducted by JacapisH [7] showed that similar
effects are present in the beam and slab bridge as well.

6. History Curves

The history curves presented here show the variation of AFM and AFD,
at certain points, as the sprung load moves over the bridge. Figs. 10 to 13
show some of the typical history curves. The 4 F M variations for the midspan
points y = +0.45b6 and y=0.0 are plotted in these curves and the AFD
variation is shown only for the midspan point in the line of loading. The A FD
values were found to be practically equal to the A M values for points away
from the loading. The force of interaction between the sprung load and the
bridge is also presented with each graph. This interaction force is represented

by R=Mg(1 —S). All the curves are presented for a speed parameter value

of 0.174.

Figs. 10 and 11 show the history curves for the eccentric loading of the
beam and slab bridge. In Fig. 10, §,=0.2 and the unloaded edge shows a
beating type of motion. The earlier studies of the authors [7,9] had shown
that the unloaded edge of this beam and slab bridge shows a beating motion
as a constant force moves along one of the edges. In Fig. 10, the interaction
force R does not vary within wide limits since §,; is well below unity. As such,
the moving constant force effect may be expected to dominate the response.
As the frequency of the sprung load is increased to make §; =0.6 (Fig. 11), the
oscillation of the load becomes more pronounced. The interaction force reaches
a value as large as 2.3 Mg when the load is near the third quarter point. The
oscillation of the load now interferes with the beating phenomenon at the
unloaded edge. When the load is near the third quarter point, the mass bottoms
and the negative peaks of the motion of the unloaded edge are reduced in



68 K. T. SUNDARA RAJA IYENGAR - K. S. JAGADISH

1.4 25

- {a) vo {a) _ L\
2 0 2. N
08 T e 10 / \

+5.0

+6.0 T

/\\/ /Xj | \/ 6:0 \JI 4 T N
AL

J— //\ \
_ AFD oot d™ '
PR | AFM| L/ \
(d)y=0.45b

00—

1
o

o
w

AFD and AFM
>
!
a
=
o
o
~
LN
\ b
lal

AFD and AFM

P N, . / \
05 A \ \\ 05 J// \
7 g+l
/ \ A= \
i N\ 4 \
d) y=0.45
00 S d) y : b solz Vs \
‘00 02 04 06 08 1.0 ) 0.2 04 06 0.8 1.0
Vt/a Vt/a

Fig. 10. History Curves for Interaction Force Fig. 11. History Curves for Interaction Force
and Midspan Amplifications. Beam and Slab and Midspan Amplifications. Beam and Slab
Bridge Under Eccentric Load. Load Along Bridge Under Eccentric Load. Load Along
y=10.45b;0=0.174;8, =0.2;3,=1.0;6,=0.0. y=0.45b;0=0.174;8, =0.6;3,=1.0;3;=0.0.

magnitude. In spite of the sharp bottoming near the third quarter, the maxi-
mum moment at midspan of the loaded edge occurs when the load is at mid-
span. However, the moment at midspan remains quite large as the load moves
from midspan to the third quarter point. The maximum deflection at midspan
of the loaded edge occurs when the load has moved away from midspan. The
same feature was observed [9] in the moving constant force problem. It is thus
seen that the maximum moment and the maximum deflection at midspan of
the loaded edge do not occur at the same instant. This may be explained by
the fact that the static influence line for the midspan moment is highly peaked
near midspan (for the midspan point on the line of loading) and this causes
the maximum dynamic moment to occur when the load is at midspan. The
influence line for midspan deflection, on the other hand, is relatively flat near
midspan, and the inertia effects may cause the maximum dynamic deflection
to occur when the load is away from midspan. This also explains the con-
siderable differences between the AF¥D, ,. and the AFM,,,, spectra for the
loaded edge shown in Figs. 2 and 4. Large values of dynamic deflection can be
expected even when the load bottoms well away from midspan. For a large
dynamic moment to occur at midspan of the loaded edge, the load must
bottom when it is at midspan.

Fig. 12 shows the history curve for the slab bridge under eccentric loading,
with 8, =0.6 and 8,=1.0. The unloaded edge of this bridge does not show as
large AF M values as were found in the beam and slab bridge. This difference
in the behaviour of the two bridges may be attributed to the nature of their
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Table 2. Frequencies of Bridges Considered

Type Frequencies in cycles/sec.
Fundamental I Asymmetric IT Symmetric IT Asymmetric
Slab 20.27 36.73 80.57 159.3
Beam and Slab 10.34 12.09 18.98 33.88
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Fig. 12. History Curves for Interaction Force Fig. 13. History Curves for Interaction Force
and Midspan Amplifications. Slab Bridge Un- and Midspan Amplifications. Beam and Slab
der Eccentic Load. Load Along y=0.45b; Bridge Under Concentric Load. Load Along

«=0.174; 8, =0.6; 5, = 1.0; 8; = 0.0. y=0.0; a=0.174; 6, =0.6; §,=1.0; §;=0.0.

frequency spectra. Table 2 shows the values of the frequencies of the first four
modes of the bridges. It is clear that there is a relatively dense distribution of
frequencies in the beam and slab bridge. This is especially true of the first two
frequencies. Consequently, there is a significant participation by the second
mode in the response of the beam and slab bridge.

The history curves for the beam and slab bridge with concentric loading
are shown in Fig. 13. The variation in the interaction force is not generally
as drastic as it would be for eccentric loading. The differences between the
AFD,,. and AFM,, ,, under the load are not so pronounced in this case. The
amplification at the points y = + 0.45b is larger than what is to be found at
y=0.0. The maximum moment at the midspan point on the line of loading,
is seen to occur when the load is close to midspan.

7. Initially Oscillating Sprung Load

A few history curves for the midspan moment in the beam and slab bridge,
with initially oscillating moving load, are presented in Fig. 14 to 16. The

[ 4
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initial oscillation is specified by a positive displacement of the sprung load
which is expressed as a fraction 5, of the static displacement of the spring
under the load. The values of §; and 3, are held constant at 0.6 and 1.0 respec-
tively. The parameter §; is given values of 0.2 and 0.75 in these numerical
studies. ’

Figs. 14 and 15 consider the eccentric loading of the beam and slab bridge
for speed parameter values of « =0.174 and «=0.126 respectively. The history
curves for the case with no initial oscillation are also presented. It is clearly
observed that the initially oscillating sprung load undergoes much the same
type of oscillation it shows when there is no initial oscillation. The locations
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Fig. 14. History Curves for Beam and Slab  Fig. 15. History Curves for Beam and Slab

Bridge Under Eccentric and Initially Oscil- Bridge Under Eccentric and Initially Oscil-

lating Load. Load Along y = 0.45b; x=0.174; lating Load. Load Along y = 0.45b; « = 0.126;
3, =0.6; 3,=1.0. 8, =10.6; 8, =1.0.

of the peaks and depressions in the interaction force curve are not shifted as
the initial displacement is increased. The amplitudes of the sprung load motion
are greater when there is a larger initial displacement. The moment history
curves for the different values of initial displacement also follow each other,
the oscillations being more violent with the higher value of initial displacement.
For «=0.174, a large bottoming of the load occurs, when it is near the third
quarter point. As the bottoming occurs well away from midspan, the moment
amplification under the line of loading at midspan is not seriously affected by
initial oscillation. For midspan points away from the line of loading, the ampli-
tudes of oscillation are affected to a marked degree and the maximum moment
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amplifications occur when the load is well away from midspan. With «=0.126,
the significant bottoming occurs when the load is nearer midspan. The maxi-
mum moment under the line of loading at midspan is therefore considerably
influenced by the amplitude of initial oscillation.

Fig. 16 shows the moment response at midspan of the beam and slab bridge
under concentric loading, with «=0.126. Features observed for the eccen-
trically loaded case are repeated here. There is a sharp bottoming of the load
when it is at midspan and the increase in initial displacement loads to larger
moment at the midspan point on the line of loading.
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8. Transverse Distribution of Dynamic Effects

The transverse distributions of dynamic deflection and moment at mid-
span, for various positions of the moving load, are shown in Figs. 17 and 18.
The beam and slab bridge is considered with «=0.174, 3,=0.6 and 5,=0.5.
Initial oscillation is not considered. The distribution of maximum static
deflection and moment are shown in dashed lines.

In general, it may be observed that the dynamic profiles do not vary as
sharply across the width as the maximum static profiles. This is due to the
fact that the maximum dynamic increments of deflection and moment are of
the same order of magnitude across the width. This feature of the distribution
of dynamic increments was also observed by Re1LLY and LooNEY [13], in their
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and Slab Bridge. Sprung Load Along y =0.0; and Slab Bridge. Sprung Load Along y = 0.45b;
a=0.174; 6, = 0.6; §,=0.5; §; = 0.0. a=0.174; 8, = 0.6; 5, = 0.5; 63 = 0.0.

test results. It may be attributed to the distributing effect of the inertia forces
developed in the bridge. In the eccentrically loaded case, the unloaded edge
experiences small negative deflections and moments.

9. Conclusions

A study of a large number of results [7], besides those presented here, lead
to some general observations about the two dimensional behaviour of Highway
bridges. The numerical study was restricted to two typical bridges and this
places a limitation on the generality of the conclusions obtained here. However,
it is believed that the major trends observed here will be present in most
of the other types of beam and slab Highway bridges.

The maximum amplification factors are found to be larger for points in the
bridge away from the line of loading. This effect is more pronounced for an
eccentrically loaded bridge. In this type of loading, the unloaded edge expe-
riences quite large amplifications irrespective of the frequency and mass ratios.
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The amplifications in the beam and slab bridge are much larger than the
amplifications in the slab bridge. The amplifications given by the beam theory
are slightly on the conservative side when compared to the amplifications of
the critically stressed point in the orthotropic plate theory.

For points away from the line of loading, the moment and deflection ampli-
fications are practically equal. For points on the line of loading, the maximum
moment amplification factors are generally smaller than the deflection ampli-
fication factors. This effect is more pronounced for larger values of the speed
parameter. The maximum moment, at the midspan point on the line of loadjng,
always occurs when the load is at or very close to the midspan even if the
interaction force is not large at this instant. For the larger values of the speed
parameter, the load bottoms near the third quarter point and the maximum
deflection amplification occurs when the load has travelled away from the
midspan. Thus, the interaction force variation has a stronger influence on the
maximum deflection rather than the maximum moment, for points on the
line of loading. This accounts for the considerable differences between A FD,,,,
and AFM,, . for such points.

The frequency and mass ratios have definite, although secondary, influences
on the response characteristics. When the frequency ratio is between 0.6 and
1.0, large dynamic effects are observed. The effect of mass ratio is less pro-
nounced, although the amplifications generally increase with the mass ratio.

The initial oscillation generally leads to higher amplitude oscillations all
over the bridge. The maximum moment, at the midspan point on the line of .
loading, would be increased significantly by initial oscillation only if the load
bottoms at or near the midspan. In a flexible bridge, eccentric loading with
initial oscillation may produce pronounced oscillations at the unloaded edge.

Appendix

The expressions for Y, (y) are presented in this appendix. The functions

.. Mux
Y, Sin -

two opposite edges simply-supported and the other two free. The expressions
for the functions may be easily obtained by a free-vibration analysis of the

plate.

happen to be the shape functions of an orthotropic plate with

Modes Symmetric in y—n is Odd

1. D,;+0
D 2 -2 h2
oy Cosh amn% oc,z,m——f)i m(; b Cos B";)”y
mn y = + 2,22 ?
] mn 2 _& mem b an
- Cosh—=3 mnt B, T Cos =5
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where «,,, and B,,, satisfy the equations

Dy m2a2b2 7|2

R e =ar
%mn "D, T a2
5 H mEa® b2 262
and o2, = Dy +p2,,-
2. D;=0
Yoi1(y) =1
and Br1=0.

For values of n greater than unity, expressions of (1) may be used.

Modes Antisymmetric in y—n is Even

. amny 2 _2{ m27T2b2 . any
Sinh—=== o, D, @ Sin

e (Y) = .« Qmn + D1 m2=2b2 . Bmn’
Sinh =5~ Bz, + = Sin =5

where «,,, and B,,, satisfy the equations
- 2 Dl m2n2b2]2
Ian _ an “mn_j); a? tanh %mn
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2 2 2 2

Y

Notation

=
o

Sides of the orthotropic plate.
Transverse position of the moving load.

S
:

<

Orthotropic plate rigidities.

" Acceleration due to gravity.
Spring constant of the moving load.
Mass of the moving load.
Natural frequency of the orthotropic plate.
Force of interaction between the load and the bridge.
Speed of the moving load.
Deflection of the orthotropic plate.
Absolute deflection of the sprung load.

S

Nge m? Ew‘Q“meQ

a=—— Speed parameter.
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mnv
L a

o Crossing frequency.

% s Bmn » Amn  Frequency parameters of orthotropic plate.
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81 =w/pP1 Frequency ratio.
o=M|[pab Mass ratio.

[~

3

© T g

10.

11.

12,
13.

Initial oscillation parameter.

Frequency of the sprung load.

Poisson’s ratio of the bridge material.
Mass per unit area of the orthotropic plate.
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Summary

The response of beam and slab Highway bridges, under the action of
moving loads, is studied by the orthotropic plate theory. The moving load is
idealised as a mass-spring system. The equations of motion for the problem
are solved numerically by the Runge-Kutta-Nystrom method. The results are
presented in the form of amplification spectra and history curves.

Résumé

On étudie, a 'aide de la théorie des plaques orthotropes, le comportement
dynamique des ponts d’autoroutes, formés de dalles ou de poutres. La charge
mobile est remplacée par un systéme de masses sur ressorts. On donne une
résolution numérique des équations du probléme & l'aide de la méthode de
Runge-Kutta-Nystrom. Les résultats sont présentés sous forme de spectres
d’amplification et de courbes de réponse.

Zusammenfassung

Das dynamische Verhalten von Platten- und Balken-StraBlenbriicken unter
der Einwirkung bewegter Lasten wird mittels der orthotropen Plattentheorie
untersucht. Die bewegte Last wird als ein System federnder Massen idealisiert.
Die fiir das Problem erforderlichen Gleichungen werden numerisch anhand
der Runge-Kutta-Nystrom-Methode gelost. Die Resultate werden in Form
von Vergréferungs-Spektren und Hysteresis-Kurven dargestellt.
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