Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 30 (1970)

Artikel: Importance of cell symmetry un flexural finite element method
Autor: Hrennikoff, A.
DOI: https://doi.org/10.5169/seals-23591

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-23591
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Importance of Cell Symmetry in Flexural Finite Element Method
Importance de la symétrie des éléments finis pour le calcul des plaques

Bedeutung der Symmetrie der endlichen Elemente fiir die Plattenbiegung

A. HRENNIKOFF

Sc. D., Research Professor of Civil Engineering, Emeritus, The University of British
Columbia, Vancouver, B.C., Canada

General

The use of Finite Element Method for solution of plate flexure problems is
based on replacement of the plate by a cell model and development of the
stiffness matrices of the individual cells composing it. Out of these the computer
formulates the stiffness matrix of the whole model and solves the equations
for the nodal displacements. The most common shapes of cells are triangular
and quadrilateral, with the nodes located at the corners of the cells. In the
usual presentation these cells possess three degrees of freedom for each node:
a transverse displacement and the rotations about the two co-ordinate axes
in the plane of the cell, making the size of the cell’s stiffness matrix 9x 9 in
the triangular and 12X 12 in the quadrilateral cells. Cells with more than
three degrees of freedom per node and with additional nodes on the sides of
the cells will not be considered in the present work.

The usual procedure is to assume the deflection function of the cell in the
form of a polynomial in z and y satisfying the basic biharmonic equation of
plate flexure

otw ot w *w
8x4+26x28y2+8y4 = 0. (1)

The right hand side of this equation is zero when the loads acting on the
model are applied only at the nodes, which is usual.

The triangular cells are the most convenient for constructing models of
non-rectangular plates or plates of irregular outline. However their non-
symmetry leads to loss of precision and sometimes even to gross errors espe-
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cially in flexural moments, not improved by the reduction of the mesh size.
Demonstration of this proposition coupled with discussion of the necessary
and desirable characteristics of the deflection polynomials is the subject of
this paper.

The significance of displacement continuity on the edges of cells apart from
the nodes will not be discussed here. The author’s view is that the edge con-
formity of the adjacent cells is not a necessary condition in flexural (as well
as the plane stress) elements and in this view he is supported by other
investigators [1, 2].

General Deflection Polynomial

The generally used polynomials for the deflection w are composed of some
or all of the following 12 terms

w=Ag+Ajx+ Ay 2>+ Az2*+ By + By,y>+ By y*+ C,xy+ Oy 2y

+C;23y+ Cyxy*+COsxy? (2)

all of which satisfy the differential Eq. (1). The bending and torsional moments
in the cell are expressed through the second derivatives of w. The three linear
terms of the polynomial correspond to the three free body movements of the
cell, resulting in no stresses, and the three second order terms — to the constant
curvatures and torsion, the conditions which the cells must assume on infinite
reduction of the mesh size, if they are to imitate faithfully the action of the
plate prototype. This makes the six linear and quadratic terms compulsory
irrespective of the shape of the cell. The remaining non-compulsory six terms
in Eq. (2) are included or excluded depending on the type of the cell.

It may be observed that all the terms mentioned here are either symmetrical
or antisymmetrical about the co-ordinate axes. The terms involving the odd
powers of x and y are antisymmetrical about the y and x axes respectively,
while the even power terms (including the zero power) are symmetrical.

Rectangular Cell

The rectangular cell of the dimensions @ by ka is referred to the axes x
and y coinciding with its symmetry axes. In deriving the stiffness matrix of
this cell it is sufficient to consider only the three movements of the node 1,
w,, 6% and 6Y. It is easy to see that each of these conditions may be
replaced by four symmetrical and antisymmetrical cases presented in Figs. 1,
2 and 3, and designated by the symbols s,, a,, s, and a,. In each component
case the corner movements are all equal to !/, of the total corner movement,
the node 1 being always moved in the positive direction, and the other nodes —
in the directions determined by the nature of the intervening axes s or a.
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The displacement polynomials of each component case must accordingly
consist of three terms, all of the same symmetry type as the case itself, i.e.
828y, Sz, a8, and a,a,. Here are the four symmetry components of the
12 term polynomial:

Wy = Ao+ Ay 2%+ By y?,

Sp .. Wy, = Ayx+Az23+C 2 y?,
AySy .. Wes = Bry+ B3y +Cy 2y,
@y . Wy, = Cixy+Cxdy+Cyays.

Sy Sy - -

(3)

The partial derivatives of these polynomials are:

8wss awa

W =2A4,x, —8—963—=A1+3A3x2+04y2, "
8was 3waa /

0 Wss =2B,y, 6,w5“=204xy,

oy ay (5)
a’was 2 2 awa'a 3 2

2y =B, +3B;y*+ C,22, 5y =02+ Cy23+30;xy2.

Each component polynomial is independent of the other three, and its
coefficients are found by substituting into it and its derivatives the proper
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corner movements of the node 1 (or any other node) and its co-ordinates, as
shown in Figs. 1, 2 and 3. Here are the resultant expressions for the three
displacement fields corresponding to the transverse displacement and the two
rotations of the node 1:

w—_l._l_ﬁi_ a? 3y ¥ 2xzy 2xy? 2m3yw

“\4 " 4ka ke 4a @ ka® kat I3qd |
_(_e_= _y, ¥ ¥ _xy ey  xy\, |
w—( 16 8k 8+4a+2a2 4ka+2ka2+ka3 o1, (6)
_(ka x 2? x3 ky xy afy  ady\
w_(ﬁ+§_4ka_2k2a2+_§+4_a—2ka2_kza3)91-

Examining the partial polynomials in Eq. (3), it may be seen that the three
terms of the polynomial w, are of the compulsory types, while the three other
partial polynomials possess each only one compulsory term, thus making
permissible replacement of the other terms by appropriate substitutes. For
example the term C,xy? in the polynomial s, a, might be replaced by the
combination F) (z®y?—xzy*) satisfying the differential equation and being of
the same symmetry type. The stiffness matrix based on so modified poly-
nomial is non-singular and would be fully suitable for solution of plate problems,
but it would involve one undesirable feature; the properties of the displace-
ments conforming to the modified polynomial would be different in the direc-
tions of the two co-ordinate axes with the result that the solution would
change if the x and y axes were renamed y and x respectively. To avoid this
unjustifiable non-similarity and the resultant decrease in precision, the terms
of the type 2™ y" must always be present in company with the terms x™y™.
Thus in the example under consideration the terms F (z3y?—2xy?*) must be
used together with the terms F,(x%y®—2x*y) in replacement of the part of the
original polynomial C, 22y + C,xy?. Although the suggested alternative is quite
legitimate, the original polynomial appears preferable, since its lower power
terms correspond to lower, i.e. less extreme, variations of displacements and
stresses within the cell. Incidentally, combinations of several terms of the
same symmetry type under single parameters such as C,(x2y+a2y3—2xty)
and O, (xy?®+ 2% y?—x y*) are possible, but their advantages seem questionable.

Combinations under the same parameter of the terms of two different sym-
metry types, such as C; (xy +22y3) would lead to unsymmetrical displacement
pattern in symmetrical modes, as will be demonstrated presently.

Isosceles Triangle Cell

The cell (Fig. 4) is referred to the co-ordinate axes with the origin at the
vertex of the triangle and the x axis placed along the axis of symmetry. The
shape of the triangle is described by the aspect ratio k. The required 9 term
displacement polynomial consists of the six compulsory linear and quadratic
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terms and the three additional terms to be chosen from the four available
cubic members, A;23, C,xy? C,2?y and B,y3, the first two of which are s,
terms, and the other two —a,. The question of symmetry of the terms about
the y axis does not arise because the cell itself is unsymmetrical about it.

In order to form a correct polynomial it is desirable to separate the dis-
placement modes w;, 67 and 6Y into their symmetrical and anti-symmetrical
parts, as is done in Figs. 4, 5 and 6. The other three necessary unit movement
modes wy, 0% and 6% (Fig. 7) need no separation, because the first two are
themselves symmetrical about the x axis and the last one — anti-symmetrical.
Components of the displacement modes in Figs. 4, 5 and 6 add up to three s,
and three a, conditions, while Fig. 7 depicts one a, and two s, conditions.
Thus the displacement polynomial must be composed of five s, and four a,
terms. Among the compulsory terms four are symmetrical and two — anti-
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symmetricaﬁl. Therefore one more s, term, i.e. either 4,23 or C,xy?, and both
a, terms Cy22y and B,y? must be added on. Choosing arbitrarily 4,23, the s
and a parts of the displacement polynomial become
w, = Ag+ A x+ A2+ Ag23+ B, y2, } .
w, = Biy+ B3y + Ciaey+Cya®y. )

Proceeding as with the rectangular cell, the six basic displacement fields are
found to be

3 2, 3 1, 3,
Y=ot Tkt T T Ba” T 2kad” y——y %1

1 1 1
= J— 2 RO [ . 3 X \
“ ( sia” t2a¥ "2k Y i Timar” 3/+a2?/)01, (8)
1 1 1 1
= |——a24- — 3 . 2 Y
“ (2 o TaY T I e” kazxy)el’
3 2 )
v (1_k2a2x2+k3a3x3) Ws>
w—( ——2—x +—1 x*y)| 0% L (9)
— y ka y k2a2 y 3> '
2 1
= | — _— xr2_ 3 Y
w ( Tty k2a2x)03'

It is desirable now to examine the outcome of using the combination of
the s, and a, terms C, (z?y +xy?) under the cover of a single parameter. The
polynomial for 6% is taken for the demonstration of the ensuing result. By
using the w, polynomial in Eq. (7), the same expression is found for the anti-
symmetric part of the field 6% as the second of the Eqgs. (9). However the

presence of the term k—zl— x2y on this expression brings in automatically the

s, term Ic2 ~xy?, augmenting the w, part of the deflection polynomial in

Eq. (7). With the procedure used earlier the complete deflection field is found
to be ‘
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1 1 2 1 1 : 1
(y+4k‘3 &= ka,y ka ry— 4k2a k2a2 y+ T2t yz)gg (10)

Although the nodal displacements imposed on the cell in this mode are purely
anti-symmetrical, four of the terms in its displacement polynomial are sym-
metrical. The stiffness matrix terms corresponding to this deflection poly-
nomial will not conform to the requirements of symmetry and the precision
of the model solution based on this matrix will naturally suffer. Thus the use
of a deflection polynomial with a superfluous term combined under the same
parameter with a necessary term of a different symmetry type must be
avoided. ' '

It may be observed that if an isosceles triangle cell is referred to the axes
x' and y' at an angle to the axes x and y, the single term z'2y’ in the new
system will give rise to both 2%y and zy? terms in the old system, and for this
reason will be inappropriate.

Triangle Cells of Irregular Shape

A plate model may include cells in the shape of irregular triangles, such as
the triangle 1-2'-3 in Fig. 8 whose node 2’ is located not far from the node 2

Fig. 8.

of the isosceles triangle 1-2-3, referred to the co-ordinate axes x and y, arranged
as before.

Although the use of the term C,xy? in the deflection polynomial of the
isosceles triangle is not permissible, the 9 term polynomial of the irregular
triangle may contain either Cy2?y or C,zy? terms. However in view of the
closeness of the node 2’ to the node 2, it is felt intuitively that the anti-sym-
metrical term will be the more appropriate of the two. Even better results
should ensue if the cell 1-2'-3 is referred to the axes x”, ¥”, of which the axis
2" bisects the angle at the node 3. It is felt that of the three vertices of an
irregular triangle the bisector oriented axis should be placed at the vertex
enclosed between the pair of sides whose ratio is closest to unity.
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Transformation of Co-ordinates

The directions of co-ordinate axes at different nodes of a cell model may
be different even with cells of regular shape, and so transformation of co-
ordinates becomes necessary for equalization of displacements and rotations
of different cells meeting at the common nodes. The most convenient resolution
of this complication requires selection of the best set of co-ordinate axes in
each cell in accordance with the considerations presented above, and deter-
mination of the terms of the stiffness matrix referred to these axes. Then at
each node a convenient common set of co-ordinates is chosen to which the
matrix terms of all adjoining cells belonging to this particular node are con-
verted from their individual cell axes. This conversion of the cell stiffness
matrix [K] in the cell co-ordinates to the matrix [K], in the common node
co-ordinates [2] is effected through the transformation matrix [7'] and its
transpose [T']* by the equation

[K], = [T1LK][T]*. (11)

With the use of triangular cells direct employment of a nine term deflection
polynomial referred to the common axes for all cells meeting at a node would
be unsatisfactory, because a cubic term z'2y’ in common co-ordinates would
give rise in cell co-ordinates to both 2%y and « y? terms, one of which would be
unsatisfactory and might even lead to singularity of the matrix.

Cell Symmetry

Triangular (as well as trapezoidal) cells of isosceles shape, possess only one
axis of symmetry as against two in the rectangular cells. Since the deformability
of space in a uni-symmetrical cell is different in the directions of the x and y
axes it may be expected that the precision of plate models composed of
triangular or trapezoidal cells is lower than of the rectangular cell models.
The truth of this deduction is demonstrated on the examples presented below.

Examples

Models composed of rectangular and triangular cells are compared on the
examples of simply supported and fixed-ended uniformly loaded square plates
of Poisson’s ratio 0.3. The models (Figs. 9a to ) involve the actual (or “solid’’)
squares and the ones made of pairs of rectangular isosceles triangles in contact
along the diagonals. The model (f) is unsymmetrical about the plate axes x
and y because its contact diagonals point in the same direction over the whole
plate. The four other triangular cell models have symmetrical arrangement of
triangles in the four quadrants of the plate, which in the models (b) and (c) is
the same in all squares, and in the other two models different in the adjacent
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squares, with the contact diagonals pointing alternately in NE-SW and
NW-SE directions.

The solutions are based on the stiffness matrix terms presented in the
Appendix 1.

The distributed load is applied in the form of nodal concentrations coming
from the areas tributary to the nodes, which means that the load of a rec-
tangular element is divided equally between its four corners, and of a triangular
one — between its three. The results of solutions are presented in Table 1.

This table contains the exact elasticity values of the central deflection and
of the central bending moment M, as well as the bending moments M, and
M, [2,3] at the mid-edge of the fixed-ended plate. The precision of the finite
element solutions is given by their 9 errors, with the plus signs corresponding
to the condition when the exact value is greater than the approximate one.
Models of 8 x 8 and 16 X 16 mesh were employed to indicate the convergence
of the results. Plate moments were determined by dividing the nodal con-
centrations in the model by the tributary lengths. This method on the whole
produced here better results than the deflection method.

The figures in the Table 1 show definite trends justifying, within the limits
of the examples, the following deductions: 4

1. Of all models the ones involving the actual rectangular cells show the
best precision and the best progress towards the exact values on reduction of
the mesh size, in most of deflections and bending moments. The moment
about the axis normal to the edge in the fixed ended plate, unlike the other
moments, is inaccurate, but it improves fast as the mesh becomes finer.
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2. The unsymmetrical model (f) of the similarly arranged ‘triangles comes
out the next best. In fact it is better than the rectangular cell model in very
precise results of the simply supported plate, but is significantly behind the
leader in the fixed-ended plate.

3. Of the symmetrical triangular models two, (b) and (c), have their deflec-
tions changing in the right directions on reduction of the mesh size, but the
same does not always apply to the moments, some of which are very inaccurate.

4. The symmetrical models (d) and (e) with differently oriented triangles
in the adjacent squares are inaccurate and erratic both with regard to the
deflections and the bending moments.

Conclusions

The following conclusions based on theoretical considerations and supported
in part by the numerical results seem to be justified:

1. The terms of the deflection polynomials of the cells must conform to
certain requirements, some of which are general for all types of cells, while
others depend on the shape of the cell and its symmetry. Some of these
requirements are compulsory, while others are only desirable for better
precision.

2. Cells of triangular shape are almost always inferior in precision to rec-
tangular cells, because they cannot imitate homogeneous isotropic elastic
material. Isosceles triangle cells, similarly oriented throughout the model, such
as the ones in Fig. 9 (f), are the best of the triangular cells. As their size
decreases to zero the space modelled by them approaches homogeneity, while
remaining anisotropic. Such cells are capable of imitating uniform flexure or
torsion condition in the plate.

3. Models composed of cells of irregular triangular shape or of differently
oriented isosceles triangles, may under certain conditions lead to satisfactory
results in deflections. This applies particularly to some recently proposed con-
forming triangular cells [4]. It is not believed however that any of these
models are suitable for determination of moments because the irregularity of
their cell arrangement effectively precludes true imitation of a uniform stress
condition in the plate.

In this connection it may also be pointed out that the common practice of
selection of the centre of gravity of the cell for the assignment of stresses
determined from the displacement function has no rational basis when the
stress condition in the cell is non-uniform.

4. Two situations appear appropriate for use of triangular cells:

a) When the triangles are used on the edges of the plate in order to approxi-
mate its irregular shape, provided that the plate region covered by the triangles
is stressed lightly.
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b) When analysing circular plates or plates in the form of circular sectors,

using models formed of isosceles triangles near the centre of the circle and
isosceles trapezoids over most of the model.

Appendix I

Tables 2 and 3 contain nodal forces in a rectangular cell and a cell in the

form of an isosceles triangle, produced by unit displacements w; and unit
rotations 6% and 6y of the node 1 (see Figs. 1 to 6). The latter table presents
also the corner forces caused by the unit movements of the node 3. Forces
produced by the movements of the other nodes are similar and easily follow
from symmetry.

Table 2. Nodal Forces in a Rectangular Cell

(Figs. 1, 2, 3)

Action w; =1 Action 67 = Action 8Y = 1
Z = (4k+lj‘3 + 2]:3 O‘]f" g | Z = (—2k—07'2~0;fﬁ)1, Zy = (k—22+0.2+0.8p,)L
Zo= (-t =224 O 2] = (204 02028 1 | 2 = (-02-084) 2
242(_2k_k_2:3+2];8_0;££)§ z4=(k—%g+%‘)lz z4=(_ki2+0.2—0.2p)L
mfz(_zk—%z—ﬁ;lfﬁ)L mgz(%_%Jr%’“)aL m? = palL
mg:(_zk—-%ﬁgf—“ L mg,:(_ﬁJrﬁfLﬂL%’ﬁ)a mg = 0
m{:(k—22+0.2+08/u. L my = —pal mi’:(:—g% ‘;—;c 41—’;3]6)(1L
mé’:(i}i—OQ—OSp)L mi =0 mé’:(;—k—%+%@)aL
mgz(k%+0.2—02p)L mf§ =20 mg=(§27c—l—’%+il‘-§)aL
mZ:(kiz—02+0.2p)L my = 0 mgz(ﬁqul—’;—%) L

Note:L:-;D =—1—é—(IE—’%a.
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Table 3. Nodal Forces in a Triangular Cell

(Figs. 4, 5, 6 and 7)

Action wy =1 Action 6y = 1 Action 65 =1
J

Zy = k_?;éi Zgz—%L Zs =0
LR R
mg:(“s%_%r{%)’: "3 121152'L“ mg:(lzlkﬁ%_%ﬁ)]““
mg:(’s%“Lg)L mll’:(ﬁ% lﬁc_%k)l‘ my 121k2L“
mgzkizL mg=—2—1kLa mf =0
Action 67 = 1 ‘Action 0 =1 !Action ws =1
mf:(ﬁl-zgk3+ﬁ+§f_+3ﬁ]£)l'a mi = I};La mf=(13—3+%)L
m§=(481k3+6—112+1—g72)La mg =0 mé = 0
m’,{:(—4;?;cz—3—4’f)La m{:alzlla m{:—k%
m¥ 4]102La m%:—llaLa mg:—%L

Note: L = — = B
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Notation

Dimension of the cell.

Aspect ratio of the cell.

Nodal moments due to unit nodal movement.
Plate thickness.

Transverse deflection.

Co-ordinate axes, co-ordinates of a point.
Symmetry axes.

Anti-symmetry axes.

Transverse nodal force.

, B, C, F Co-efficients in the displacement polynomial.

Elastic constant.

Modulus of elasticity.
Stiffness matrix.

Elastic constant.

Bending moment.
Transformation matrix.
Angle.

Poisson’s ratio.

Angle of rotation of a node.
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Summary

In this study analysis is made of different terms used for deflection poly-
nomials in the flexural finite elements of triangular and quadrilateral shapes,
and the conclusion is reached that some terms are essential, while others are
desirable and still others inadmissible. The triangular cells are found intrin-
sically inferior to the rectangular ones, especially for determination of bending
moments. The theoretical expectations are confirmed by comparing the results
of the finite element calculations with the values determined by the equations
of elasticity.

Résumé

Dans cette étude, on examine I'influence des différents termes du polynéme
de la déformée admise pour la flexion des éléments triangulaires et quadri-
latéres, et I’on aboutit & la conclusion que certains termes sont indispensables,
tandis que d’autres sont utiles, et d’autres méme inadmissibles. On a trouvé
que les éléments triangulaires étaient de par leur nature inférieurs aux rectan-
gulaires, particuliérement pour le calcul des moments de flexion. Les con-
sidérations théoriques sont confirmées par la comparaison des résultats numé-
riques avec les valeurs obtenus par les équations d’élasticité.

Zusammenfassung

In dieser Untersuchung wurden verschiedene Terme fiir Durchbiegungs-
polynome endlicher Biegelemente von dreieckiger und viereckiger Form analy-
siert. Daraus folgte, dafl einige Terme wesentlich, andere wiinschenswert und
wieder andere unzulissig sind. Die dreieckigen Elemente ergaben erheblich
schlechtere Genauigkeit gegeniiber den rechteckigen, insbesondere fiir die
Bestimmung der Biegemomente. Die theoretischen Erwartungen wurden
durch Vergleich mit den mittels Elastizitdtsgleichungen bestimmten Werten
bestétigt. '
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