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Static Parameters of Beams on Elastic Foundation
Parametres statiques pour des poutres sur fondation élastique

Statische Parameter von Balken auf elastischer Unterlage

J.J. TUMA G. ALBERTI
Prof. of Civil Engineering, Oklahoma Research Associate, Institut fur Bausta-
State University, Stillwater, Oklahoma, tik, Federal Institute of Technology, Zii-
U.S.A. rich, Switzerland
Introduction

The analysis of beams resting on elastic foundation has been developed
during the second half of the past century by WINKLER [1], ZIMMERMANN [2],
and SCHWEDLER [3]. HAavAsHI [4] extended this type of analysis to frames and
prepared a set of tables [5] facilitating the numerical calculations. New develop-
ments in this area have been initiated by Umansky [6], FILONENKO-BoRODIC
[7], and HETENEYT [8], designated as the method of initial parameters, and
the method of end conditioning, respectively.

The method of initial parameters [6] forms the basis for the development of
the transport matrix as shown in works of PESTEL [9], KERSTEN [10], PETERSEN
[11], and others. The same approach in equation form has been introduced by
Bazant [12] and recently restated by Miraxpa and NA1r [13].

The relationship between the transport matrix method, the flexibility
method, and the stiffness method applied to the analysis of beams on elastic
foundation is shown in this paper. The study is restricted to coplanar systems,
consisting of straight members of constant cross-section, subjected to causes
developing bending about the principal axis, normal to the system’s plane. It is
assumed that the material of the structure follows Hooke’s law, the foundation
is linearly elastic, and all deformations are small. The effect of shear and axial
forces is considered negligible, but if desired adjustments may be made for these
effects. The modulus of elasticity of the structure, and of the foundation are
assumed to be known, and no uncertainty exists in this respect.

Sign conventions are those typical for each of the methods mentioned.
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Letter symbols adopted for use in this paper are defined where they first
appear, and they are arranged alphabetically in the appendix.

Differential Equation

A finite, straight bar of constant cross-section with loads, and end conditions
shown in Fig. 1, is supported along its entire length I by elastic foundation of
modulus k. End vectors 6 = deflection, § = slope, M = bending moment, V =
shear, identified by L-, and R-subscripts, for the left, and the right end,
respectively, form the corresponding state vectors.
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The geometry of the beam, and its elastic curve are defined by Fig. 1.
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Fig. 1. Finite Beam, Elastic Foundation.
The governing differential equation in this case is:
d*d(x) _
Bl ———+kd(x) = p (@), (2)

in which £ = beam modulus of elasticity, / = moment of inertia of the beam’s

cross-section, ¥ = position coordinate, measured from L along X,, 8(z) =

deflextion at x, measured along Y; from the initial axial of the beam, 0(x) =

slope of elastic curve at the same section, and p (x) = intensity of load at =.
The general solution of Eq. (2) consists of two parts,

6 (u) = S(u)+ L(u), (3)
‘a

in which S(u)=A4-a(u)+B-b(u)+C-c(u)+D-d(u) (3a)
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is the shape function, representing the solution of the homogeneous Egq.(2),
and

L(u)=E (d(u—v)-p(v)-dv (3b)

p(v) m\
@ | A | ®

-u
Y

L

Fig. 2. General Load in Term of « and ».
New variables U= Az, v=2A2 (4)

4
. k
are functions of A= ‘/4—E’I (5)

The analytical expressions of a (u), b (u), ¢c(u), d (u) are recorded in Table 1,
and designated as the static parameters. They possess certain cyclometric,

Table 1. Static Parameters

a(Ax) = cosh (Ax)cos (Ax) a(0)=1 a(Al) =a
b(x) = cosh()\x)sin()\x);sinh()\m)cos (Ax) b(0) = 0 bOl) =b
¢ () :sinh()\xgsin()\m) c(0) =0 cl) = o

A} = cosh (Ax)sin()\x);—sinh (Ax)cos (Ax) d(0) =0 A\ =d

Table 2. Boundary Values

SO =41, =3¢ S(l) =Ar =38z L(\l) = Lgy

S (0) =ABL =216, S”(A\l) =ABgr = 2106g L’ (A1) = XLk
S7(0) =2CL =@Mz | S"(\) =XCr=X2Mg L”(Xl) = X2 L1
S”(0) =D =8V, S”(Al) =B Dgr=MVg L"(\l) = 8 Ly,




250 J.J. TUMA - G. ALBERTI

and cycloantimetric characteristics, useful in the evaluation of constants 4, B,
C, D. Since these constants two major values, depending of = (x = 0, = [), the
subscript L, or R, is used respectively as shown in Table 2. Similar is the hand-
ling of L (u), and its derivates in the same table. Some special values of L (u)
are given in Table 3.

Table 3. Special Values of L (u)

u=0 L0)=0 (=2l
S vnci | Do 2t O=at)
© 4 ® VTRt
l r —
‘!l u=A LQ) = pl [17 a]l
4 KEI XM
I m n L
1 y 1 _ Pl3 d(u_)‘m)
® in ® Am<u<d | L(u)= - y
Jx=t _
L | uw=2A Lx = L8 d0n)
i EI »
Qf\ A — Q112 c(u—-im)
A L = -
@ u \ ® A <Y< (u) B =
Y s N
L ) u=\ Ly = —@8cln)
b EI x
p —
@ /./l/l/rﬂj; O<u<A L(u) = plt [u _l;(u)]
| x=Y\ | ® 4EI X
) 3 < pl4 [A—b]
L | w=2X Loy =-2" 172
i 4ET X
ji‘ m T u<iAm L(u):Ok (7\:)\1)
IP cm<u<d | Lu)= plt [l—a(_u—)\m)]
x=% 4 K1 4
=2 - _ plt [1—a(an)]
© | H® vet PO =1 m
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Transport Matrix

With results of Tables 1 and 2, the relationship between the equivalent
vectors Hy and H; becomes

HR = iRLI'-TL‘i‘ZRLa EL = iLRER.+ i (6)

The first algebraic form Eqs. (6) is developed in Table 4, and converted into
the second one, in the same table.

A

Hp=tp Hy, Hy =t pHpg. (7)
trr, trr are the transport matrices of a loadless segment, and fnp, i.p are the

transport matrices, including the effect of loads in span L R. All matrices in
Eqgs. (6) and (7) are dimensionless, and possess following characteristics:

a) Inverse relationships
tretir = 11, /zRL?LR = [1], (8)
b) shift relationships
ZRL = —lpr, ZLR: iLR = "?LR iRL: (9)

thus I, (i.z) is the inverse of iy (iz.), obtained from inr (fry) by changing
the signs of b, and d; similarly, I, is obtained from I5; by premultiplication.
Once Iy -constants, and [, -constants are known, Eqgs. (6) and (7) are defined.

The relationship between the equivalent, state vectors H (Hy), Hy (H})
and their absolute counterparts, or vice verse, is given by means of the scaling

A

matrix A (A), or the dimensioning matrix « ().

R:’\HHR’ EL—AHHLv (10)
HR—_—KH‘[—JR’ HL_KH'HL5
H)\_R=/’\\HﬁRa ﬁL=3\HﬁL7 (11)
AR=AHER’ fIL=’QIIH_L7
in which
1 _
xl‘ "1
A 1 (12) A (13)
H = _ s y KH= .
Y E] NEHE]T
: ~NEI
B CMEI

and ’)\\H, kg are obtained by extending the diagonal by one term = 1.
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With help of these matrices, Eqs. (6) take the form

N et e e D g
lrL 1534 tLr e

Similarly, Eqgs. (7) become

A A A A A A a A

HR = ’A‘HtRLAHHLa HL = ;‘HtLR)‘IIHR' (15)
e N ——
trrL tLr

Between the absolute, transport matrices holds also the relationship (8).

trrtrr =11, tgprirm = [I]- (16)

Transport Chain
Once the transport Egs. (7) are available for a single, straight segment,

their extension to the analysis of multisegment beams is accomplished by
matrix multiplication.

ﬁ/ﬁ[]/l

L Lk L
S l
j

X =G
—

i
Fig. 3. Beam ¢ j k I.

Let beam ¢j k1 (Fig. 3), given by its geometry (lengths of segments [;, I, ),
the moments of inertia in each span (I;, I;, I;), and the modulus of elasticity
E, be loaded by transverse loads, and supported by elastic foundation of
modulus k.

Beginning at I, the state vector at k

H, =1t,H, (17a)
at 7, H; =i, H, (17b)
and at 7, A, = ﬁ (17¢)

A

bij» t%k, tk, are the absolute, transport matrices of the respective spans (Table 4),
and H,, H JH,., H , are the absolute, state vectors at the corresponding stations.
Combmmg Eqgs. (17a,b,c) into one equation by successive substitution,

Hz‘ = tw tﬂc le (17)
&_AV—J
ta
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The result of the chain product in (17) is a new transport matrix &, connecting
directly the absolute, state vector H, to the counterpart at I.

I
|
sl

{

ti

Kl =

1 0 0 0 0
Isa | tssq tsoa | tsmra  tsv.a
lo,u | tes,a tee,u | toma tov.al-
lM, il t]lr[ 8,1l tM @, %l tMM, %l tMV, il
_ZV, il tV 8,1l tV @, il tVM, il tVV, 1l _|

(18)

This matrix is characteristic for a given beam, and independent of the end
conditions. It is designated as the transport chain, and it may be extended to
any number of segments. Since there are always eight boundary values involved
(8;,6,, M, V.,8,,6,, M;,V;), of which four are known, and four are unknown,
four equations are necessary for the solution of a given problem. The transport
chain Eq.(17) provides these equations, of which only two must be solved

Table 5. Special cases

Free-Free Beam

v
=

Y

Lo

- -

Fixed-Fixed Beam

Y

¥

A
tit

Free-Fixed Beam

1

8;
0;

A | A
i k L
1 1 -
—| 0 0
o, | = ti 6,
— 0
Vi Vi |
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simultaneously. Four typical cases are symbolically solved in Table 5, and the
starting equations are identified by =, in each case. The handling of inter-
mediate conditions (mechanical hinges, guides, linear springs, angular springs,
linear fixities, angular fixities) developed for ordinary beam transport (9) is
applicable here without modification.

Flexibilities

The end flexibility of a straight beam on elastic foundation is defined as the
end deformation produced by a unit end cause, or by loads. Since the unite
causes are moments and forces, the end deformations are deflections, and slopes,
and the point of unit cause is the near, or the far end, sixteen unit cause
flexibilities, and four load flexibilities, are required, for the formulation of a
member flexibility matrix equation. Because of symmetry, and antisymmetry,
only ten constants are necessary.

The derivations of the flexibility matrix follows from equations (6, rows 3,
and 4 of Table 4).

g = lo, mr.+ loa, R, AL+ oo, RLL> 61, = lor+loa, 1rdr+ooir R (19)
As conventional in this case,
Arp = —A_Lv dgr = A_R (20)
and with these changes the deflection-slope equations become

-1 7 - 7—1 ~ 71 i

ALR = taA,RL taa,RL Or— taA,RL op+ taA,RL la,RL > (21)
-1 - -1 1 - -1 7

ARL = tcrA,LR oL — taA,LR toa,LR Op— toA,LR lo,LR .

In these equations,

-1 _ 1 —C d -—1 _ 1 —c —d
lod.RL = (@ bd) [ b —c]’ od LR = (2 bd) [—b —c] (22)
and ¥y pr» too. LR o, RL+ U0, Lr 8T Submatrices defined in Table 4.
The algebraic evaluation of Eqs. (21) is shown in Table 6, and recorded in

rearranged form below.

SR B Err | GrL GLR 143 €LR
ORL Ery Egr | Grr Grr Ve €RL
— | = + (23)
OLr —Grr Grr | ro Fig My, TLR
| OkrL _ Grr —Gre | Fr Frr | [ Mr]| | 7rL.

Eqgs. (23) define analytically the end deformation (in the flexibility sign con-
vention), and consequently are also equations of respective elastic weights.
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From Table 6, the following identities are observed:

Er;= Epr=ce, Eir= Eg=ce,
Grr=—Grr =9, (24a) Grr = —Grr = ¢y, (24Db)
Fr; = Fgrr =1. Frr = Fry =cf.

Constants e, g, f are the near, end flexibilities, whereas ce, cg, ¢ f are the far, end
flexibilities (or sometimes called carry-over flexibilities). Constants e; 5, €ny,
Trr> Trr are the end deformations, caused by loads.

Eqgs. (23), in observance of identities (24a, b), yield a new relationship of

GG-matrices.
Swr) [ Eip ’ Gew || Var erm)
= + . (25)
@(LR)_ - G(’ER) ’ ELR)_ _M (LR) LR

Flexibility Chain

Once the flexibility matrix (25) is available for a single segment, the analysis
of multi-segment bars is accomplished by chain overlapping.
Considering the beam ¢ j k1 (Fig. 3), the continuity at j (any station) requires
that,
8;;+8,;, =0,
o (26)
ji T =Y.

With notation (23), and new equivalents:
2B 2G5 2 Fys Xes 2

designating the sum of the respective, near end flexibilities and load flexibilities
at j, the compatibility Eqgs. (26) become typical joint, force-moment equations.

{Eﬂ'iVi +2 BV + BV }+Z€' —0
Gy M+ 2. Gy M+ Gy M, ’ , (27)
{GHVi — 265V +Gu T }+ZT- _o.

By My + 2 By My + Fy, M, ’
Eqgs. (27) have a general meaning, and are used as recurrence formulas.
With end conditions to be discussed later, the complete joint force-moment
matrix takes the form shown in Table 7.
In symbolic form

24, = Pdo,i-1%i1+ 2 M1 = 0. (28)
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Table 7. Jotnt Force-Moment Matrix

8is | Ex  Ey G Gyl 1w 1 e
0 . E. SEy Ep GiSGy G Vi De
o | | By SEa Ew| | Gy XGw Gu || T X e
e | |  Baw Ba| CGu Gul|| W u
0y —Gu Gy \Fu  Fy| ||
0  Gul-2Gy  Gu FuSFyl Fpl M; 27
o | | Gy -XGw Gu | FuSFw Fa || M X
ow | | --------- el - ----------- ----- F lk: Fy M, Tk
X8| [ Ei, Gi-1 A0 Ve 7| [ Xe-t
= +
| 20| a — G Fi J L M| [ X7i-t]

(> di-1] = [®do, i-1] [Ci-1] + [ 1i-1]

It is interesting to observe that ¢4, ; ; is formed by four matrix chains, layed
out diagonally like a deck of cards, with overlapping corners.

e ‘j [~
i) Gy € 1
8(] k) G(jk) E(jk)
S G €k
* F i
8 -Guj) i (i)
-
8 ~Gii) Fir) Tk
x
B “G(kl) F(kl) T (ki)
;V_J L o s

2A-| SDAO',i-l 2 TNi-1

Matrices > 4, ;, > n;_; are formed by column matrix chains, layed out
vertically like a deck of cards, with half length overlapping.

Matrix Eq. (28) may be written for any number of segments, and is designated
as the static flexibility chain.

Four typical cases solved symbolically be the transport chain method in
Table 5, are also symbolically solved by the flexibility chain in Table 8.
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Table 8. Flexibility chain: Special cases

Free-Free Beam Fixed-Fixed Beam
1 U1 1
f | f ! N I !
i j k l i i {
7 8; ™ 7o 1 I 7 0] [ vl I 7]
0 1% 0 V;
0 Vk- 0 Vk
o1 0 0 14
— | = | Pdo, i1 — |+ | X1 — | = | Pdo, i1 — |+ | X1
0, 0 0 M;
0 M; 0 M;
0 My 0 My
0y | N JLo | L N 0] L LM L |
Free-Fixed Beam Hinged-Hinged Beam
1 I | 2 A I | N
[ ) k L i j k l
[78; 7] F 7o 71 [ ] K B 17V 7 T N
0 Vi 0 V;
0 Vi 0 Vi
0 Vi 0 1%
— | =|®do,it || — |+]| XM= — | =|®o, it || — |+]| DMi—1
0; 0 0, 0
0 M; 0 M;
0 M]c 0 ML
_0 _ L i _Mz | _ _@z_ L | _O _ L _
Stiffnesses

The end stiffnesses of a straight beam on elastic foundation is defined as the
end reaction produced by a unit deformation or loads. Since the end reactions
are forces and moments, the unit deformations are deflections and slopes, and
the point of unit deformation is the near, or the far end, sixteen unit cause stiff-
nesses are required, for the formulation of a member stiffness matrix equation.
Because of symmetry, and antisymmetry, only ten constants are necessary.
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The derivation of the stiffness matrix follows from Eqs. (6, rows 1, and 2 of
Table 4).

A = iA,RL"‘iAA,RLAL"'iAa,RL or,s

Ap =l 1p+ias, 10l r+140, 105 R 9
As conventional in this case,
OLr = — 0L, ORL = OR (30)
and with these changes, the force-moment equations become:
OLR = iZi retasredr— iZE,RL Ap+ 52}7, rla rL> (31)
i -1

-_1 iy __1 - -
ORprL = tAo,LRAL_tAa,LRtAA,LRAR_ Ac,LRlA,LR'

In these equations,

1 _ 1 c d -1 _ 1 ¢ —d .
tA”’LR_lcz——l)(Jl)[b c]’ tA”’RL_M[—b c] (32)

and 44 rr.> 244, 28> 14, Lr> 14, Lr are submatrices defined in Table 4.
The algebraical evaluation of Eqgs. (31) is shown in Table 9, and recorded in
rearranged form below.

_VLR i B T LL TLR S LL S LR i FSL | _F VLR ]
VRL T RL TRR S RL S RR 8R 7 F VRL
— | = + (33)
MLR - SLL SLR KLL KLR @L FMLR

_MRL_ L SRL - SRR KRL KRR_ _@R _ _FMRL_

Eqgs. (33) define analytically the end stress-resultants (forces and moments in
the stiffness sign convention), and consequently are also the slope-deflection
equations.

From the Table 9, the following identities are observed:

Trn = Trg =t, Trr = Tpr =ct,
Kir= Kgpg=Fk. Kip=Kpy=ck.

Constants ¢, s, k are the near, end stiffnesses, whereas ct, c¢s, ck are the far,
end stiffnesses (or carry-over stiffnesses). Constants F Vip, ¥ Ver, F My,
F M,,; are the fixed end stress resultants (fixed end forces and fixed end mo-
ments), caused by loads.

Eqgs. (33), in observance of identities (34a, b), yield a new relationship of

S-matrices.
Ser || Swr) FVirr
+ : (35)
Kor || Owr_ FMip

- Vew } I- Trr

%
- S(LR)
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Stiffness Chain

Once the stiffness matrix (35) is available for a single segment, the analysis
of multi-segment bars is accomplished by chain overlapping.
Considering again the bar ¢jk! (Fig.3), the static equilibrium at j (any
station) requires that,
I@i + V-,,c =0,

36

with notation (33), and new equivalents:
Z ]]’ ZSJ?’ ZK])’ ZF

designating the sum of the respective, near, end stiffnesses and stiffness load
functions at j, the equilibrium Eqs. (36) become typical joint, deflection-slope
equations.

. S F M,

8 +Z ii 1 +1}'k8k} _
{ 6, +3.5,,6; +5,6,) =T =0 (37)
Z V] +S]'k8k} _
{Kn@ﬁZKj,@ﬁKjk@k T2 FM; =0

Eqgs. (37) have a general meaning, and are used as recurrence formulas.
With end conditions to be discussed later, the complete joint deflections-
slope matrix takes the form shown in Table 10.

Table 10. Joint Deflection-Slope Matrix

Vi Ti Ty [ Su Sy 3 F Vi

0 Ti: 2Ty T Sﬂ » Sy Sy 3 2FV;

0 Teji X Twe! Tl S 5 Sk | Su ||| B S FVe

Vie T Tu L S Su & F Vig
PRI - SSE St T + -

My —Su Sij i iKu KUE 0, F My

0 Sji:.—ZSﬁ' Sik | K4l YKy Kp 6; 2 FM;

Y Slcf — X Ske: Sk | Kkj;ZKkk'Kkl Ok Y F My
My S —Su b K Ku 6, F M
X Vi B Ti— Si—1 N7 8- ([ ZF Vi 7]

ol
| XM | L —-S*, K dLOi-i) | [ XF M
Doi—t] = [Ted,i-1]1[4i-1]+ [ Foii]
In symbolic form,
2o =Topi 4+ 2 Fo,_;=0. (38)
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It is interesting to observe, that I' 4 ; ; is formed by four matrix chains, layed
out diagonally, like a deck of cards, with overlapping corners.

[m ol T In sl
Von Tap S FVi)
Vi Tiw S FVik
V(kl) T(kl) S(kl) Fv(kl)
Maj) S Kai FMg;)
M Siji) K FM)

%
M) Sty Ko FMga)

L. - - 1 L -

;V—_l iy ‘_——\,___‘
207-1 Ioa,i-1 XFoi.|

Matrices > o, ;, > F o, ; are formed by column matrix chains, layed out vert-
ically like a deck of cards, with half length overlapping.

Matrix Eq.(38) may be written for any number of segments, and is desig-
nated as the static, stiffness chain.

Four typical cases solved symbolically by the transport chain method in
Table 5, by the flexibility chain method in Table 8, are also symbolically solved
by the stiffness chain method in Table 11.
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Summary

Three general solutions are given in matrix form for the analysis of beams
on elastic foundation. From the transport matrix formed by the static para-
meters of a single bar, the transport chain, the flexibility chain, and the stiff-
ness chain methods are developed and applied to the solution of particular
cases. The study is restricted to coplanar systems, consisting of straight mem-
bers, acted upon by transverse loads, and deforming elastically.

Résumé

On donne pour I'étude des poutres sur appui élastique trois solutions
générales mises sous forme de matrices. A partir de la matrice de transport
formée par les parametres statiques d’une barre simple, les méthodes de la
chaine de transport, de la chaine de fléxibilité et de la chaine de rigidité sont
développées et appliquées a la solution de cas particuliers. L’étude est restreinte
aux systémes coplanaires composés de pieces droites, solicités par des charges
transversales et déformées élastiquement.

Zusammenfassung

Drei generelle Losungen in genereller Matrixform sind fiir die Analysis
von Balken auf elastischer Unterlage gegeben.

Ausgehend von der Ubertragungsmatrix, gebildet von den statischen
Parametern eines einzelnen Balkens wird die Ubertragungs-, die Flexibilitéts-
und die Steifigkeitskettenmethode entwickelt und auf Spezialfille angewendet.
Die Untersuchung ist beschrinkt auf elastisch verformbare ebene, aus geraden
Stdben gebildeten Systeme, die senkrecht zu ihrer Achse belastet werden.
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