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Static Parameters of Beams on Elastic Foundation

Parametres statiques pour des poutres sur fondation elastique

Statische Parameter von Balken auf elastischer Unterlage

J. J. TUMA G. ALBERTI
Prof. of Civil Engineering, Oklahoma Research Associate, Institut für Bausta-
State University, Stillwater, Oklahoma, tik, Federal Institute of Technology, Zü-

U.S.A. rieh, Switzerland

Introduction

The analysis of beams resting on elastic foundation has been developed
during the second half of the past Century by Winkler [1], Zimmermann [2],
and Schwedler [3]. Hayasrt [4] extended this type of analysis to frames and
prepared a set of tables [5] facilitating the numerical calculations. New developments

in this area have been initiated by Umansky [6], Filonenko-Borodic
[7], and Heteneyi [8], designated as the method of initial parameters, and
the method of end conditioning, respectively.

The method of initial parameters [6] forms the basis for the development of
the transport matrix as shown in works of Pestel [9], Kersten [10], Petersen
[11], and others. The same approach in equation form has been introduced by
Bazant [12] and recently restated by Miranda and Nair [13].

The relationship between the transport matrix method, the flexibility
method, and the stiffness method applied to the analysis of beams on elastic
foundation is shown in this paper. The study is restricted to coplanar Systems,
consisting of straight members of constant cross-section, subjected to causes
developing bending about the prineipal axis, normal to the system's plane. It is
assumed that the material of the structure follows Hooke's law, the foundation
is linearly elastic, and all deformations are small. The effect of shear and axial
forces is considered negligible, but if desired adjustments may be made for these
effects. The modulus of elasticity of the structure, and of the foundation are
assumed to be known, and no uncertainty exists in this respect.

Sign Conventions are those typical for each of the methods mentioned.
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Letter symbols adopted for use in this paper are defined where they first
appear, and they are arranged alphabetically in the appendix.

Differential Equation

A finite, straight bar of constant cross-section with loads, and end conditions
shown in Fig. 1, is supported along its entire length l by elastic foundation of
modulus k. End vectors 8 deflection, 6 slope, M bending moment, V
shear, identified by L-, and iü-subscripts, for the left, and the right end,
respectively, form the corresponding state vectors.

[HL] - tö [HR] Er]
&B

L.Vr

(1)

The geometry of the beam, and its elastic curve are defined by Fig. 1.
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Fig. 1. Finite Beam, Elastic Foundation.

The governing differential equation in this case is:

T1Td4'8(x) 1 0 (2)

in which E beam modulus of elasticity, / moment of inertia of the beam's
cross-section, x position coordinate, measured from L along XL, S(x)
deflextion at x, measured along YL from the initial axial of the beam, 0(x)
slope of elastic curve at the same section, and p (x) intensity of load at x.

The general Solution of Eq. (2) consists of two parts,

8(u) S(u) + L(u), (3)

in which S(u) A-a(u) +B-b(u) + C-c(u)+D>d(u) (3a)
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is the shape function, representing the Solution of the homogeneous Eq. (2),
and

4 fL(u) j- \d(u — v)-p(v)-dv (3b)

is the load function, representing the particular integral (Fig. 2).

z V
X

p(v) p(u)

©< V V M V \1 V V < \ ®
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* X
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Fig. 2. General Load

£>

in Terra of % and v.

New variables u Xx,

x=l
V Xz (4)

are funetions of
1 k

A W T (5)

The analytical expressions of a (u), b (u), c(u), d (u) are recorded in Table 1,

and designated as the static parameters. They possess certain cyclometric,

Table 1. Static Parameters

a(Xx) — cosh (Xx) cos (Xx)

7 cosh (Xx) sin (Xx) + sinh (Xx) cos (Aa?)
b(Xx)

c (Xx)
sinh (Aa?)sin(Acc)

d(Xx)
cosh (A x) sin (A x) — sinh (A x) cos (A x)

a(0) 1

b (0) =0

c(0) =0

d(0) 0

a(AZ) — a

b(Xl) =b

c(Xl) c

d(Xl) =d

Table 2. Boundary Values

S(0) AL El S(Xl) =AR $R L(Xl) =LRL
S'(0) XBL xeL S'(Xl) =XBR X0R L'(Xl) =XL'RL

S"(0) X*CL X*ML S"(Xl) X*CR X*MR L"(Xl) =X*L"RL

S~(0) X*DL X3VL S'"(Xl) X*DR X*VR L"'(Xl) =X*L"RL



250 J. J. TUMA - G. ALBERTI

and cycloantimetric characteristics, useful in the evaluation of constants A, B,
C, D. Since these constants two major values, depending of x (x 0, x l), the
subscript L, or R, is used respectively as shown in Table 2. Similar is the hand-
ling of L(u), and its derivates in the same table. Some special values of L(u)
are given in Table 3.

Table 3. Special Values of L (u)

©
1 1 1 1

x="/X
l V

u 0 Z(0) 0 (A AZ)

0<u<X p» [1-adO]
4 EI A^

u X L(X)- ** ^4 EI A^

_m_

© -
«*"/X j.

u<Xm L(0) 0 (A AZ)

Xm<u<X L w) ~^T~EI
d(u — Xm)

X3

u — X
PI3£(A)=4V d(An)

£/ A3

Q.

© -
)x-u/X|

^®

i^<Am

Am<w<A

w Ä

£(w)=0 (A AZ)

- Q Z2 c (w — Am)L(u)

L(X)

#/ A2

-QZ2 c(An)
#1 A2

©
x * U/X |

w 0 Z(0) 0 (A AZ)

0<^<X Ltu\ - Pl* [w-6(w)]
4#J Äs

^ A L(X)- ** »"«
4: EI A5

¦f ^5 j, D

©
(»"/>[,

rnrnnj
4<fi)

14<Am

Am<1£<X

w X

L(u) 0 (X Xl)

pl* [l—a(u — Xm)]
L(u)

L(X)

4#/ A^

pZ4 [l-o(Aw)]
4^7 A4
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Transport Matrix

With results of Tables 1 and 2, the relationship between the equivalent
vectors HR and HL becomes

Hr ~ IrlHl + Irl > HL — ^lr Hr + ^lr • (6)

The first algebraic form Eqs. (6) is developed in Table 4, and converted into
the second one, in the same table.

H* IrlHl j HL hRHR'

tRL, tLR are the transport matrices of a loadless segment, and tRL, tLR are the
transport matrices, including the effect of loads in span LR. All matrices in
Eqs. (6) and (7) are dimensionless, and possess following characteristics:

(8)

(9)

thus tLR(tLR) is the inverse of tRL(tRL), obtained from iRL(tRL) by changing
the signs of b, and d; similarly, lLR is obtained from lRL by premultiplication.
Once tfß^-eonstants, and ?Bi-constants are known, Eqs. (6) and (7) are defined.

The relationship between the equivalent, state vectors HR(HR), HL(HL)
and their absolute counterparts, or vice verse, is given by means of the sealing
matrix A (A), or the dimensioning matrix k (k).

a) Inverse relationships

Irl ^lr [I] > Irl ^lr — [-*] >

b) shift relationships

Irl —IrlIlr> ''lr ~~^lr}rl

Hb 'W HR,

Hr khHr,
Hb \ff Hr >

HR *hHr>

Hl ^hHl,
HL khHl,
HL XHHL,

HL khHl,

(10)

(11)

in which

1

X

X2EI

XSEI

(12) -X2EI
-X3EI

(13)

and XH, icH are obtained by extending the diagonal by one term
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With help of these matrices, Eqs. (6) take the form

HR f<HtRLXHIIL-i-KHlRL, HL KHtLRXHHR-^rKHlLR.
tRL iRL

Similarly, Eqs. (7) become

HR ^h^rl^hHl,

tLR

HL khIlr^hHr.

Ilr

tRL tLR

Between the absolute, transport matrices holds also the relationship (8).

Irl Ilr U] > ^rl ^lr [^J •

(14)

(15)

(16)

Transport Chain

Once the transport Eqs. (7) are available for a single, straight segment,
their extension to the analysis of multisegment beams is accomplished by
matrix multiplication.

¦ ¦ ¦ ' r ' : ' : r <r «i r\
9

lk li

Fig. 3. Beam ij kl.

Let beam ij kl (Fig. 3), given by its geometry (lengths of segments Ij, lk, l2),

the moments of inertia in each span (Ij, Ik, Ix), and the modulus of elasticity
E, be loaded by transverse loads, and supported by elastic foundation of
modulus k.

Beginning at l, the state vector at k

at j,

and at i,

Hjc — tjciHi,

Hj — ljk Hje

Hi — hjJIj-

(17a)

(17b)

(17c)

kj> hk> hi are ^ne absolute, transport matrices of the respective spans (Table 4),
and Hi, Hj, Hk, Hx are the absolute, state vectors at the corresponding stations.

Combining Eqs. (17a,b,c) into one equation by successive Substitution,

Hi — tijtjktklHl. (17)
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The result of the chain product in (17) is a new transport matrix tü, connecting
directly the absolute, state vector Hi to the counterpart at l.

(18)

This matrix is characteristic for a given beam, and independent of the end
conditions. It is designated as the transport chain, and it may be extended to
any number of segments. Since there are always eight boundary values involved
(8i,6i,Mi, Vi,§l,dl,Ml, VT), of which four are known, and four are unknown,
four equations are necessary for the Solution of a given problem. The transport
chain Eq. (17) provides these equations, of which only two must be solved

1 0 0 0 0

hj tjk hi — lo,il
h8,u

hsji
he,u Hm,u

t@M,ü

hv,u
t@V,il

til

Jv,il
^M8,il

tv8,il

^M0,il

tv&,ü

Imm,u

tyM,il

Imv,u

Table 5. Special cases

n
Fre<3-Free Beam Fixed-Fixed Beam

\r nI \ r >l
1

L fi <]t <b 1 <b >t &
i i

j * l

~1 "
8i

"1 "

8i _^

"1 "

0

"1 "

0

®i tu 0i -> 0 tu 0

-> 0 0 Mi Mt
^L<>_ - 0

_ -Vi _ - -Vi _

Free-Fixed Be)am

f
Hinged -Hinged Beam

£Z f V i
L

\t \f \r > t iIII"i j k Al i A
i j k l

\

"1 ~ -i "1 "| ~i i r ~1 "
8i 0 -> 0 0

®i tu 0 Si tu 0i
-> 0 Mt —> 0 0

-> 0
_ - -Vi _ -Vi_ - JVi_
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simultaneously. Four typical cases are symbolically solved in Table 5, and the
starting equations are identified by ij, in each case. The handling of
intermediate conditions (mechanical hinges, guides, linear Springs, angular Springs,
linear fixities, angular fixities) developed for ordinary beam transport (9) is
applicable here without modification.

Flexibilities

The end flexibility of a straight beam on elastic foundation is defined as the
end deformation produced by a unit end cause, or by loads. Since the unite
causes are moments and forces, the end deformations are deflections, and slopes,
and the point of unit cause is the near, or the far end, sixteen unit cause
flexibilities, and four load flexibilities, are required, for the formulation of a
member flexibility matrix equation. Because of symmetry, and antisymmetry,
only ten constants are necessary.

The derivations of the flexibility matrix follows from equations (6, rows 3,

and 4 of Table 4).

dR l<j,RL + i(jA,RLdL + ia<T,RL°L> dL K,LR + Ka.LrAr + Ka,LR dR • (i9)

As conventional in this case,

ALR -AL, Arl ar (20)

and with these changes the deflection-slope equations become

7-1 5-1

ARL

In these equations,

toA,RL

AlR — t<rA, RL loa,RL ®L ~ ^aA,RL °R + taA, RL K,RL >

Ar?r toA,LR°L — t<jA,LRtoo,LRÖR — toA,LRl<j,LR'

1

4(c2-bd)
\-c d] x 1 \-c ~d]
[ b -c\9 taA>LR~ ±(c2-bd)[-b -c\

and taa> RL, toa> LR, la RL, la LR

(21)

(22)

> K,rl> K,lr are submatrices defined in Table 4.
The algebraic evaluation of Eqs. (21) is shown in Table 6, and recorded in

rearranged form below.

JLR

JRL

®LB

L®BL_

LL

RL

E
E

LR

RR

¦G G7LL ^LR
*RR

GLL G

GRL G
LR

RR

F, F,

Fj?Ti Fj
LL LR

LRL RR _

~vL 1 €LR

Vr
+

€RL

ML TLR

kJ Jrl_

(23)

Eqs. (23) define analytically the end deformation (in the flexibility sign
Convention), and consequently are also equations of respective elastic weights.
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From Table 6, the following identities are observed:

(24a)

FLl Frr e >

GLL - GRR 9 >

FLL FRR /•

FLR FRL ce,

GLR -Grl cg>

FLR FRL =cf.
(24b)

Constants e, g, f are the near, end flexibilities, whereas ce, cg, cf are the far, end
flexibilities (or sometimes called carry-over flexibilities). Constants eLR, eRL,

rLR, trl are the end deformations, caused by loads.
Eqs. (23), in observance of identities (24a, b), yield a new relationship of

6?-matrices.

(25)
\lr) F(LR) ®(LR) \lr)

+
€(LR)

ß(LR)_ _ - G*LR) F(LR)_ _M(LR)_ -T(LR)_

Flexibility Chain

Once the flexibility matrix (25) is available for a single segment, the analysis
of multi-segment bars is accomplished by chain overlapping.

Considering the beam ijkl (Fig. 3), the continuity at j (any Station) requires
that,

§ü + 8jk ° >

°n + öjk ° •

(26)

With notation (23), and new equivalents:

Zj -^jj > Zj ^jj i Zj -Fjj J 2j€J > Zj Tj

designating the sum of the respective, near end flexibilities and load flexibilities
at j, the compatibility Eqs. (26) become typical Joint, force-moment equations.

p„F< + ZE„V, + EjkVk\ _\GiiMi + ZGj}Mj + GikMkr^ U'

G»Vi -ZGuV, + GjkVk{ FjtMi+ZFiiMj+FikMk

(27)

+ Zt, 0.

Eqs. (27) have a general meaning, and are used as recurrence formulas.
With end conditions to be discussed later, the complete Joint force-moment

matrix takes the form shown in Table 7.

In symbolic form

Z^i-l <PAa,i-l°i-l + Z Vi-l 0. (28)
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Table 7. Joint Force-Moment Matrix

&l]

0

0

8ik

®v

0

0

0ik

En Etj On Otj

Eji UtEjj Ejk Oji 2 Ojj o3k

Ekj 2 Ekk Eki Okj 2 Okk Oki

Eik Eu Oik On

— On Ou Fn Ft]

On —TiOjj Ojk Fji 2 Fjj Fjk

Gk3 —2 ^** Qu Fkj 2 Fkk Fki

Oik -Qu Fik Fu

2 s*-i

.2 ot-i_

Ei-i Oi~i

¦ GT-i

[2 J,-i] Nff.t-ilK-jl + E^-d

Vi

V]

Vk

Vi

Mi
M}

Mk

Mi

Vi-t

Mi-r

+

+

*ij

2 ***

€ik

2T*

Tlk

2 €i~i

.2t*-l

It is interesting to observe that <pjG)l-i is formed by four matrix chains, layed
out diagonally like a deck of cards, with overlapping corners.

¦>(u)

S(jk)

8(ki)

S(ij)

ö(jk)

*(kl)

' V

£Aji-l

E(lj) G(«j

E(jk) G(jk)

E(kl) G(kl)

-G(lj) F(u)

-G<fk) F(jk)

~K\) F(kl)

TACT, i-l

«0])

F(jk)

«(kl)

Tdj)

TOk)

r(kl)

Z^i-i

Matrices ^At_l, 2^-z are fo**med by column matrix chains, layed out
vertically like a deck of cards, with half length overlapping.

Matrix Eq. (28) may be written for any number ofsegments, and is designated
as the static flexibility chain.

Four typical cases solved symbolically be the transport chain method in
Table 5, are also symbolically solved by the flexibility chain in Table 8.
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Table 8. Flexibility chain: Special cases

259

jT

Free-Free Beam Fixed-Fixed Beam

"l T-^
i i i i

i j k l i

1 1 \
j k l

"Si"
0

"0 ~

Vi

~0~
0

'Vi "

Vi

0 Vk 0 Vk

8i 0 0 Vi
— <PAo, i-i + TiVi-i — <PA(T, i-l + Xii-i
0i 0 0 Mi
0 M] 0 Mj
0 Mk 0 Mk

-®l- _0 _0_ _Mi_

Free-Fixed Beam

i
Hinged-Hinged Beam

\r >

^-i$ i T" v ~~$ i ^^t' ' i ^l 1 f v
i l 1 \ i i A
i j k L i j k i

Y8i~ 0 "0 ~ VVi -
0 Vi 0 Vi

0 Vk 0 Vk

0 Vi 0 Vi
— <PAa, i-l + Zvi-i — <PAo, i-i + 2^-*
0i 0 0i 0

0 Mj 0 Mj
0 Mk 0 Mk

_0 _ _Mi_ -®l- 0

Stiffnesses

The end stiffnesses of a straight beam on elastic foundation is defined as the
end reaction produced by a unit deformation or loads. Since the end reactions
are forces and moments, the unit deformations are deflections and slopes, and
the point of unit deformation is the near, or the far end, sixteen unit cause
stiffnesses are required, for the formulation of a member stiffness matrix equation.
Because of symmetry, and antisymmetry, only ten constants are necessary.



260 J. J. TUMA - G. ALBERTI

The derivation of the stiffness matrix follows from Eqs. (6, rows 1, and 2 of
Table 4).

Ar lA,RL + iAA,RLAL + iAo,RL°L>

Al h,LR + tAA,LRAR + ~tA(J}LRGR.
(29)

As conventional in this case,

aLR -°L> GRL GL

and with these changes, the force-moment equations become:

GLR ^Aa>RL^AA>RLAL~^AaiRLARJrtAaRLlAiRL,

grl ^AclrAl — Ia^lr^AA^rAr — I^^lrIj^r.
In these equations,

ha,LR - /c2

_1 \c d] x 1 r c -d]
-bd)[b cy tA°>RL~(c2-bd) l-b c\

(30)

(31)

(32)

and 1^4 RL, ij4LR, lj}LR, Ia,lr are submatrices defined in Table 4.

The algebraical evaluation of Eqs. (31) is shown in Table 9, and recorded in
rearranged form below.

VLR

rRL

M
M

LR

RL.

LL

RL

LR

RR

¦SLL sLR
&RL — $RR

LL

RL

LR

RR

K
K

LL

RL

K
K

LR

RR.

P£1 \FVLR 1

8b
+

FVRL

®L FMLR
ßR] JMRL\

(33)

Eqs. (33) define analytically the end stress-resultants (forces and moments in
the stiffness sign Convention), and consequently are also the slope-deflection
equations.

From the Table 9, the following identities are observed:

TLL ™rr — t,
SLL -Srr =*
Kll Krr k

Tlr — TRL — ct,
(34a) -Slr Srl =cs>

&LR KrL Ck.
(34b)

Constants t, s, k are the near, end stiffnesses, whereas ct, es, ck are the far,
end stiffnesses (or carry-over stiffnesses). Constants FVLR, FVRL, FMLR,
F MRL are the fixed end stress resultants (fixed end forces and fixed end
moments), caused by loads.

Eqs. (33), in observance of identities (34a, b), yield a new relationship of
$-matrices.

y(LR) T<(LR) s((LR) J(LR) ~FV(LR)
+ (35)

M{(LR)_ ¦ fit*(LR) K{(LR)_ Öi(LR)_ FM{(LR)_
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Stiffness Chain

Once the stiffness matrix (35) is available for a single segment, the analysis
of multi-segment bars is accomplished by chain overlapping.

Considering again the bar ijkl (Fig. 3), the static equilibrium at j (any
Station) requires that,

MH + Mjk 0

with notation (33), and new equivalents:

22},; 25«; YKß; ^FVf, 7.FMt

designating the sum of the respective, near, end stiffnesses and stiffness load
funetions at /, the equilibrium Eqs. (36) become typical Joint, deflection-slope
equations.

(36)

\Tji^i +Z2#8j +TjkOk l y y

{Kj^ + ZK^ + KjM + ^
(37)

FMj 0.

Eqs. (37) have a general meaning, and are used as recurrence formulas.
With end conditions to be discussed later, the complete Joint deflections-

slope matrix takes the form shown in Table 10.

Table 10. Joint Deflection-Slope Matrix

Vlk

M

M

2 î-i

2^*-i

J-ll Tii Su Sij

±]l ZT» Tjk Sii 2 Sjj Sjk

Tkj ZTkk Tki Ski 2^fcÄ" Ski

Tik Tu Sik Su

— Su Sii Ki% Ktj
Sit — Ti^n Sik Kj% ZKis Kjk

Ski — ^Skk Ski Kki 2 Kkk KM

Sik — Su Kik Ku

[~s,

8]

8k

8i

+
®i

0]

®k

0i

Ti-

¦Sf-i

Si-i

F%- 0i-i_

FVn

ZFVi
ZFVk

FVik

FMi]
ZFMi
Y,FMk

FMlk

'ZFVi-i

XFMi-i_
ß>t_,] [rajf»-i][J»-i] + [2^*-i]

In symbolic form,

2"l-I ^1H^ + ZJ"H 0- (38)
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It is interesting to observe, that i^j^-f is formed by four matrix chains, layed
out diagonally, like a deck of cards, with overlapping corners.

v(IJ) T(ij) S0j) FVü,)

V(jk) Tok) S(jk) FVük)

Mm> T(kl) S(kl) •%.)

M(ij) s0j) K0j) FM(1J)

M(jk) 5(jk) K(jk) | FMftw

M(ki) ö(kl) K(ko 1 FMfto

EcTj-l TcrAJ-l iFcrui-l
Matrices 2°*-z>2 ^ G%-i are formed by column matrix chains, layed out
vertically like a deck of cards, with half length overlapping.

Matrix Eq. (38) may be written for any number of segments, and is designated

as the static, stiffness chain.
Four typical cases solved symbolically by the transport chain method in

Table 5, by the flexibility chain method in Table 8, are also symbolically solved

by the stiffness chain method in Table 11.
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Beam; elastic foundation; matrix analysis; transport matrix; flexibility
matrix; stiffness matrix; structural engineering.
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Summary

Three general Solutions are given in matrix form for the analysis of beams

on elastic foundation. From the transport matrix formed by the static
parameters of a single bar, the transport chain, the flexibility chain, and the stiffness

chain methods are developed and applied to the Solution of particular
cases. The study is restricted to coplanar Systems, consisting of straight members,

acted upon by transverse loads, and deforming elastically.

Resume

On donne pour l'etude des poutres sur appui elastique trois Solutions
generales mises sous forme de matrices. A partir de la matrice de transport
formee par les parametres statiques d'une barre simple, les methodes de la
chaine de transport, de la chaine de flexibilite et de la chaine de rigidite sont
developpees et appliquees ä la Solution de cas particuliers. L'etude est restreinte
aux systemes coplanaires composes de pieces droites, solicites par des charges
transversales et deformees elastiquement.

Zusammenfassung

Drei generelle Lösungen in genereller Matrixform sind für die Analysis
von Balken auf elastischer Unterlage gegeben.

Ausgehend von der Übertragungsmatrix, gebildet von den statischen
Parametern eines einzelnen Balkens wird die Übertragungs-, die Flexibilitätsund

die Steifigkeitskettenmethode entwickelt und auf Spezialfälle angewendet.
Die Untersuchung ist beschränkt auf elastisch verformbare ebene, aus geraden
Stäben gebildeten Systeme, die senkrecht zu ihrer Achse belastet werden.
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