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Tangent Stiffness Matrices for Finite Elements
Matrices de rigidité tangentielle pour des éléments finis

Tangentiale Steifigkeitsmatrizen fir endliche Elemente
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Introduction

It is possible to take into account both the geometric and material non-
linearities in a structure by a suitable repetition of linear stiffness analysis.
Basically, there are two distinct numerical methods for the nonlinear analysis
of structures; (1) step by step application of incremental loads and (2) regular
or modified Newton-Raphson’s iterative solution under full loads. In either
of these two numerical methods, it is assumed that during each solution cycle,
the stiffness analysis proceeds along a straight line tangent to the curve
characterizing the force-deflection relations of the structure. In order to achieve
such a tangent solution, the stiffness matrix of each element should be modified
to account for the accumulated stresses and the change in geometry. Once, the
tangent stiffness matrices are available representing both the physical and
geometric nonlinearities at any stage of deformed condition, the nonlinear
analysis as well as the stability problems of a continuous medium may be
performed by a repititious application of the direct linear stiffness method of
analysis.

Nonlinearity was first introduced into the stiffness matrices by TURNER [1],
et al. through the strain-displacement equations in connection with a truss
element and a triangle in membrane. Using similar techniques, nonlinear
stiffness matrices were obtained for a beam element in plane (2, 3, 4, 10, 12,
13, 14} and in space [5], for a triangular plate [2, 6, 10, 12], rectangular plate
[7, 8, 12], axisymmetrical shell element [9], and a tetrahedron [10, 11].
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Various valuable contributions have been made in connection with general
formulation of both the geometric [15, 16] and material nonlinearities [17, 18,
19, 20]. As an alternative to solid finite elements, HRENNIKOFF lattice models
were also used for large deflection analysis of thin plates [21]. ODEN [22]
presented an excellent review and examined the applications of the finite
element method to nonlinear problems in structural mechanics.

In this paper, it is intended to give a general matrix formulation for the
derivation of tangent stiffness matrices for two and three dimensional finite
elements. The approach is basically the same as followed by MarTIN [2],
PrzEMIENTECKI [12], WisSMANN [16], ODEN [15, 17] and others. However, a
systematic matrix manipulation scheme is presented for purposes of con-
veniently incorporating all of the higher order terms of the strain-displacement
equations. The stiffness contribution of each energy term is formulated in a
uniform fashion allowing the derivation of the complete tangent stiffness
matrix for a wide range of one, two and three dimensional finite elements to be
carried out by means of almost identical matrix operations. The final tangent
stiffness matrix is obtained as the combination of a linear stiffness matrix plus
seven or more different types of stiffness matrices which correspond to various
higher order terms of the strain energy and are functions of stresses and
displacements of the element at the stage of deformation concerned. This
separate evaluation of the contribution of each higher order term, enables the
analyst to include or discard any particular component of the tangent stiffness
matrix, depending on the relative importance of the respective terms.

In fact, numerical experience on the use of tangent stiffness matrices of line
elements [4, 13, 16] have indicated clearly, that the inclusion of some of the
previously neglected higher order terms increase both the accuracy and the
speed of convergence.

Although the formulation is general, due to space limitations, only the
complete components of the tangent stiffness matrix of a triangle and of a
tetrahedron are included at the end together with a discussion of the modified
Newton-Raphson iteration scheme.

Total Strain Energy

Total strain energy U, by definition is

U = 3[{6" o}dV = }[{4" [DI{dV, (1
in which, the material matrix D, relates the stresses to strains as
{o} = [D]{e} (2)
Dy Dy, O
and is given by D=|Dy, Dy, 0 |. (3)
0 0 D

33
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For an isotropic material,

E Y
1—_1ﬁ; Dy, = vDyy; D3y = 57— (4)

D11:D22= 2(1+V),

in which, £ =Modulus of Elasticity, »= Poisson’s ratio.

The integration should be carried over the undeformed volume of the finite
element as already proved in Ref. [16]. The strain vector €, at any intermediate
stage of deformations, may be expressed as the superposition of the instan-
taneous values of strains ¢;, and the additional strains e, which are developed
due to the application of a new set of external loads [2]. Therefore,

{ef ={it{> (5)
in which {ea = {ehoH{ch +{ehs ek (6)

or, in terms of the partial derivatives of the generic displacements u, v, and w
with respect to the local coordinates x, ¥ and z (24)

1,,2 1 1
€ [ u,x 2 u,x 2 v,x 2 w,:c —z w,xx
— — 1,2 1 1 o
{eda =€y (= l Vy (FIEUL [(TEVw (T\EWw (T RWy (- (T3)
Yy UytVy U Uy Valy WL W,y —22w,,

R N S N (e

The middle plane of the two-dimensional finite element is assumed to
coincide with the local x y-plane. In case of a three dimensional finite element
with no rotational degrees of freedom at its nodes, the incremental strain
vector ¢,, is given by

€ Uy $uZ 503 Fwh
€ Vy uy |2 | |Ewh
N ol T S FR sl FR Ll e s (7b)
Yy U, + U Uy U,y Ve, wLw,
Yz u,z + w,a: u,x u,z v,:c v,z w,x w,z
Yysz 'v,z-{—w’w Uy U, v,v, w,w,

e = ddo + {4 (D + s

Instantaneous strains e¢;, are considered to be present and numerically
available before the application of a new set of external loads. For instance,
the state of strain of the preceding cycle of analysis, thermal stresses, pre-
stressing forces, yield stresses, lack of fit, ete., constitute the initial stress
vector. It is interesting to note that the instantaneous strain vector ¢;, due to
the loads of the preceding cycle is also calculated from Eq. (7) in the same way
as the additional strain vector ¢, using all the nonlinear strain-displacement
relations. There is one difference, however, that in the case of ¢, the generic
displacements u, v and w as well as their partial derivatives, are all numerically
available, while in the case of ¢,, these displacements are variable functions
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of the nodal displacements. Therefore, from the view of load-deflection history,
it is more appropriate to call ¢;, as the “accumulated” and e,, as the “incre-
mental’’ strain vectors. Substituting these strain vectors in Eq. (1)

U=[{e;+e+e+e+eg+e}T [Dl{e;+eg+e;+ e+ e3+¢}dV (8)
J

and after carrying out the products inside the integration, the total strain
energy is expressed as the algebraic sum of thirty-six different energy com-
ponents as follows:

" ef'De;, + fDey + efDe; + €f'Dey + €' De; + €' Dey |
Constant  First Second Second Second First

¥ De; + efDey + €l De; + €fDey + ef De; + € De,
First Second Third Third Third Second

eI'De; + el Dey + efDe; + e’ Dey + €I Dey + el De,
Second  Third Fourth  Fourth  Fourth: Third

efDe; + e Dey + e’ De; + el De, + eg’De:;é + e'De,
Second  Third Fourth  Fourth Fourth% Third

el De; + el Dey + e’De; + el'De, + eg'Deg,g + el'De,
Second  Third Fourth Fourth Fourth;  Third

e De; + €fDey + efDe; + €l Dey, + €/ Deg + €l Dey
| First Second  Third  Third  Third Second | (9)

av.

d
Il
DO
—

<

Generic Displacement Functions

It is assumed that, for a finite element with » degrees of freedom, the dis-
placements %, v and w of any particular point are expressed as a suitable
polynomial of the local coordinates, xyz, involving n number of unknown
coefficients a,, a,, ..., a, as

u
vi=[C] {a}, (10)
w (3xn)(nx1)

(3x1)

in which, [C] coordinate matrix containing the individual terms of the dis-
placement polynomials in the form of certain powers of x, y and z; {a} = column
vector of unknown coefficients of the polynomial. When the actual coordinates
of the element nodes are substituted inside the coordinate matrix C, the nodal
displacements d,, d,, ..., d,, which contain both the straight and rotational
degrees of freedom, are obtained as

{d} = [A{a}, (11)
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in which, [4] = (» X ») matrix containing the local coordinates of the element
nodes; {d} = column vector of nodal displacements. Since, the content of A
matrix is numerically available, once the geometry of the element is decided,
the unkown coefficients are obtainable from the nodal displacements as follows:

{a} = [B] {d}, (12)
(nx1) (nxXn) (nx1)

where [B] = [4A1™. (13)
(nXxmn) (nxn)

Combining Eqs. (10) and (12), the generic displacements may be related to the
nodal displacements by

= [C][B]{d}. (14)

g < =

Stiffness Matrix from Strain Energy

Since, the generic displacements #, v and w, in accordance with Eq. (14),
are linear functions of the nodal displacements d,,d,, ...,d,, it can be shown
using Eq. (7) that the strain vectors {¢}, and {e},, are also linear functions of the
nodal displacements. However, the strain vectors {e}, , {¢}, and {e}; are quadratic
functions of the nodal displacements, since these vectors contain the square of
the partial derivatives of the generic displacements. Therefore, as already
indicated in Eq. (9) the total strain energy U, contains not only constants as a
result of instantaneous strains, but also a mixture of linear, quadratic, cubic
and fourth order expressions in terms of the nodal displacements.

The stiffness influence coefficients k;;, using Castigliano’s Theorem [2],
are obtained as the second partial derivative of the strain energy with respect
to the nodal displacements, from

b — 2U
v od;od;

(15)

This procedure requires rigidly, that U is expressed in terms of nodal
displacements. Once this is done, the problem is merely taking the second
partial derivatives of U. It should be realized, however, that the constants and
the first order terms of U, will vanish after the second partial derivatives are
taken, leaving behind only the second, third and fourth order terms to contri-
bute to the stiffness. After the second partial derivative of U, no nodal dis-
placements will exist in the second order expressions, therefore, they contribute
to the regular linear stiffness matrixz. All the third and fourth order terms
contribute to the nonlinear components of the tangent stiffness matrix which
are functions of intermediate displacements.
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A summary of the strain energy components contributing to various types
of stiffness matrices is given in Table 1. As already indicated in this table, for
flat plate elements and also for three dimensional solid elements in which no
rotational degrees of freedom are specified, type IV and 1V stiffness matrices
become zero. The general formulation for the systematic derivation of each
of the six different types of stiffness matrices is briefly outlined below and later
the respective stiffnes smatrix components are developed for a tetrahedron
and a triangular element. Although all of the formulation is first given for a
two-dimensional bending shell element, the modifications and translations
necessary for a three dimensional solid finite element are also introduced later
in the form of a table (Table 3).

Table 1. List of Contributing Strain Energy Components

Resulting
Type | Order| Strain Energy Components | Stiffness Remarks
Matrix
1| 20d | U | [ef De K Linear Stiffness Matrix
V
Uit | 3fel Dey+4[el De; | K
v
II 2nd Uiz 3 €iTD€2+% [es De K2 Instantaneous Stress Matrix
1
Uis %_felTDes—l——%_feb. De, Ki3
14
III | 2nd | U [es Deg K4 Linear Stiffness Matrix (Bending)
Zero, if
— no rotational degrees of free-
IV | 2nd | U | (el Des+4(el De, K% dom exist
14 v — the element is symmetrical
about the xy-plane
Un lj'eTDel—}—l—J.eTDe Ko
5 Zpr 0 Displacement Stiffness Matrix as
T T ' function of v and v
A% 3rd U2 3feg Dest+3 e, Deg K02
v 14
03 1¢.T Lr.T 03 Displacement Stiffness Matrix as
v 2;;“" D€3+2;}‘. & De a5 function of w
T
Us %f/f & De;+1ie Dey K4 Zero, if
7 - — no rotational degrees of free-
VI 3rd U 3l De+4[ e Dey K dom exist
v v — the element is symmetrical
U3 1lelDes+ L[ el De, K13 about the zy-plane
v v
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Type L. Linear Stiffness Matrix

The respective strain energy component from Table 1, is

U =3 ef DeydV . (16)

Differentiating, u, v and w, in accordance with Eq.(7), and rearranging the
results in matrix form, the strain vector, {€},, becomes

{e}o = [Gol{a}. (17)

The size of the [G] matrix, which contains a suitable combination of the x, y
and z terms, is (3 xXn) for two dimensional, and (6 X n) for three dimensional
finite elements. Using Kqgs. (17) and (12), Eq. (16) becomes
U = § [{d}" [B]" [H*][B]{d}dV (18)
v
and after differentiating twice, in accordance with Eq. (15), the stiffness matrix
K9 js obtained as
K% = [B]" [H"][B], (19)

in which H® = [[G,]7 [D][G,]dV . (20)
J

The K% matrix corresponds to the linear stiffness matrix of the small deflection
theory.

Type 1I. Instantaneous Strain Matrix

A typical component of this type, from Table 1, is
U = A}l [DHehdV + 3 A [DHehdV, (21)

in which, the instantaneous vector {€},, may be calculated numerically at the
end of any intermediate cycle of analysis in terms of the numeric values of the
nodal displacements and local coordinates.

With regard to the variation of strains within the element, there are two
different cases as follows:

Case 1. Constant strain element: 1f the assumed displacement field corresponds
to a constant state of strain within the element, that is, if the strain expressions
are not functions of local coordinates, the strain energy U?! may be written,
using Eq. (2), as

U =4[ (o} {ehdV +[{S {ohdV. (22

Taking advantage of the identity
4,7 (4B
2

T
dlmoEeae e
lA?; B1B2 2 3 2 2
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the product of o7 ¢, may be expressed as

T 2 [0}
o |T[ $u%

T
u g T (1
ERE LA Wt B Nl g & (24)
U, Tey Ty 1 Uy :
w.,. U ’ >
xy T Y (2x1) (2x1)
(3x1)

in which the (3 X 1) column vector of quadratic terms are reduced to the product
of two (2 x 1) column vectors of linear terms. The middle block [¢]’, in Eq. (24)
is the instantaneous stress tensor of constant magnitude. By taking the partial
derivatives of the function for displacement u, as

w
forl =163 {a) (25)
Y (2xn) (nx1)

(2x1)

and substituting into Eq. (24), the strain energy U?! becomes
U =3[ Ha" (@) [T [Gl{a}dV + 3 [ Ha} [Gi] [o] [ {a}"dV . (26)

Since, the middle block ¢% =stress tensor is symmetrical, the congruent trans-
formation G{ o' (4 is also symmetrical. Therefore, the two separate integrals
of Eq. (26) are equal and may be combined as

Uit = érj{a}T[GﬂT [¢]*[G1]{a}dV . (27)

After substituting Eq.(12) to eliminate {a} and differentiating twice, the
stiffness matrix K1 is obtained as

K1 = [BJ"[H"1][B], (28)
in which Hil = [[&]7 [0} [G4]dV . (29)
14

By analogy, the stiffness matrices K2 and K?3 are obtained from the same
formula as given for K1, except H'! is replaced by

H'2 = [[Go]" [0 [Go]dV (30)
14

and H*® = [[G4]" [o]' [G5]dV, (31)
V

in which, G, and G5 matrices are the same as G, except w of Eq. (25) is replaced
by v and w, respectively.

Case 2. Variable strain element: If the strain vector is function of local
coordinates, in order to be able to follow the same procedure as in Case 1,
instead of replacing De; by a constant stress vector o, we shall introduce a
fictitious vector s which will be in the same role as o, except it will contain not
only the local coordinates x, y and z but also the coefficients a, ,a,, ..., a, of the
displacement functions. The column vector De;, from Eq. (3), is
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Dll €w+D12€y 81
{s} = [Dl{e}; = { D1z, +Dpye, i = 182 (32)
D33')’xy , 83

and regarding this vector as 4 vector in the identity of Eq. (23), the fictitious
strain tensor S¢ by analogy, becomes

. S; S (D€, + Dy e,) Dy y
S i [ 1 3] — [ 11 Sz 12 %y 33 'xy ] , 33
5] S; S, Dss?’xy (D12€x+D22€y) ¢ ( )

in which, ¢,, ¢, and y,, are the total instantaneous strain components to be
numerically calculated by means of Eq.(7), using the nodal displacements of
the preceding cycle. The fictitious strain tensor S? contains constants as well as
the variable functions of the local coordinates. Then, the strain energy, by
analogy to KEq. (27) is |

Uit = %I[{a}T[Gl]T[S]"[GJ {a}dV, (34)
which yields, after differentiating twice, to
Kit =[BT [H'][B], (35)
in which . H' = [[Q,)T[STE[G1aV. (36)
v

Note that, K72 and K?3 matrices are obtained from similar expressions, except
G, is replaced by G, and G5, which are the coefficient matrix of partial deriva-
tives of v and w, respectively given by Eq. (25). The only difference between
a constant and a variable strain element is thus reduced to introducing a
variable fictitious strain tensor S? in place of a constant stress tensor o°.

Type III. Linear Bending Stiffness Matrix

The respective strain energy component, from Table 1, is
U44=%1£64TD€4(ZV' (37)

Introducing
> w

0 x?
2w

(=== 55 (=204 (@} (38)

(3xn) (nx1)
2w

ox 0y

and eliminating {a} by means of Eq. (12)
U = L({a)" [BY? [H)(B){d}aV (39)
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After differentiating twice, according to Eq. (15)
K% =[BJ"[H*][B], (40)
in which H% = [22[Q,)T [D][G,)dV . (41)

7
The matrix K% contributes into the w-locations only, and it vanishes for finite
elements with no rotational degrees of freedom.

Type IV and VI. Stiffness Matrix

In most practical finite elements, type IV and VI stiffness matrices are zero,
because either there are no rotational degrees of freedom specified, i.e., ¢, = 0,
or the middle surface of the element lies in the xy-plane, thus rendering the
volume integral [zdV to zero. Therefore, for reasons of space limitations, the
matrix formulation of these types are not discussed herein.

Type V. Displacement Stiffness Matrix
A typical strain energy component of this type, from Table 1, is
UM =1[el' De;dV+31[ef DeydV . (42)
v v

Replacing the products of De¢,, by a fictitious single vector {f}
Dy u,+Dyyv, 1

{f = [DH{e}o = {Draup+ Dypvyp = i /2 (43)
D33 (u,y + v,x) f3
(3x1) (3x1)
and using it in Eq. (42)
U = ({7 {hdV +3 (S {faV (44)
and taking advantage of the identity of Eq.(23), the strain energy becomes
T
oo =g {vel |f fs] fuetay. 45
%Il Uy fs fal \u, (49)

(1x2)  (2x2) (2x1)

The individual terms f,, f, and f; of the middle block of Eq. (45) are analogues

to o,,0, and 7, of the instantaneous stress block of Eq.(27). It is important
to note that this middle block, given by

r=r ] ()

(2x2)

contains the unknown displacement coefficients {a}, or by virtue of Eq. (12) the
unknown nodal displacements {d}. Substituting Eqs. (25) and (46) in Eq. (45)

Ut = %ij"{d}T [BI* [G " [F][G1][Bl{d}dV . (47)
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While differentiating U°! twice, in accordance with Eq. (15), a difficulty arises
due to the presence of {a} or {d} terms inside the F matrix. Obeying the rules
for the derivative of the product variables, however, it is possible to overcome
this difficulty and obtain the correct form of the resulting stiffness matrix
K, Depending on whether the F matrix is expressed in terms of displacement
coefficients a,,a,, ...,a,, or in terms of nodal displacements d,,d,, ....d, , the
stiffness matrix is obtained in one of the two following ways:

Case 1. F matrix as function of displacement coefficients:

Ko =[BT ([H*']+[M,]+[M{]) [B], (48)
in which ~ H = [[G4]7 [F,][G,]dV, (49a)
)
o H"M o HN o HOt
= |Garef G @) o Faa el e

As seen from Eq. (48), the stiffness matrix K requires the evaluation of three
middle blocks H®, M and M7, which are functions of coefficients {a}. The
supplementary blocks, M, and its transpose M{, are obtained from the partial
derivatives of H! as shown in Eq. (49b). Any jth column of M, matrix, equals
the partial derivative of H! with respect to the coefficient a;, multiplied by the
column vector of {a}. This process of taking derivatives with respect to a’s,
rather than with respect to d’s is especially convenient for finite elements for
which the F matrix is available in terms of a’s but not in terms of d’s. (Note
this significant difference in the triangle and tetrahedron elements discussed
later).

Case 2. F matrixz as function of nodal displacements: In this case, after the
second partial derivative of Eq. (47), the stiffness matrix is obtained as

K = [BIY [H][B]+[B]* [M,]+[M{][B] (50a)
1 1 T
or Ko = [K1]+ [%{d}] + [885 {d}] G=1,...,n), (50Db)

in which K! = [B]Z[H[B],

HO = [[6]" [E (6] . (51a)
i, - (G ma), [ ma) - (G e

As seen from Eqgs. (48) to (51), the stiffness matrix K° of Type V is always
dependent on the nodal displacements {d}, of the preceding cycle of analysis.
Especially, it is this matrix component that reflects the nonlinearity of the
element much. It would be therefore, more appropriate to call this component
as the “Displacement Stiffness Matrix’.

Following exactly the same procedure outlined above the other two dis-
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placement stiffness matrices K% and K% are obtained from Egs. (48) and (50),
respectively. Except, matrix H is replaced by

Ho? =Vj[G2]T[F] [Gs]dV (51)
and - H% = J. [G3]T [F][G,]dV, (52)
Vv

in which, ¢, and G; matrices are prepared in accordance with Eq. (25), using
derivatives of v and w, instead of u, respectively.

Total Tangent Stiffness Matrix

The total tangent stiffness matrix K, of a finite element is obtained by
combining algebraically various component stiffness matrices as follows:

K = K+ (Ki'+ K2+ Ki3)+ K4 4 (K% 4 K% 4 K) (53)
or K = [BI7[H][B], (54)
in which, the combined middle block H, is

H = H% 4 (Hi'+ Hi? Hi3) + H% + (H' + M, + MT)

55
T (HO 4 My ME) + (HO+ My + MY). (55)
Various components of H matrix is summarized in Table 2.
Table 2. Components of Stiffness Matrix
T H K
ype Matrix Matrix
I Hoo {[G,)T [D1[G,]dV K% — BT H% B
14
Hi G % [04][G1dV Kil= BTH!B
14
= Hiz Same as Hi1, except use v and w Ki2 = BTHi*B
His instead of w, respectively in G, Ki3 = BT Hi3 B
I11 H* [22[G,]7 [D1[G,1dV K = BTH“B
14
H JIGLITF][Gy]dV
14
(13 T 01
If, H% is function of a;’s K% = BTH" B+ BT M, B
o H" ) +BT MlTB
M, [Fo@]  G=nm
v If, H is function of dj’s
GH™ 1 o1 T fo1 r
M, [adj [B]{d}] (G=1,...,n) K" = BTH“"B++ BT M,+M*B
Ho2 Ho3 Same as above, except u is 2 03
M,, M, replaced by v and w, respectively K and K same form as K




TANGENT STIFFNESS MATRICES FOR FINITE ELEMENTS 229
Modifications for Three Dimensional Elements

The above formulation for the derivation of tangent stiffness matrices is
prepared for two-dimensional finite elements. In order to translate the results
into the three-dimensional state, the contents of various key matrices are
summarized in Table 3, for a three dimensional solid finite element with no
rotational degrees of freedom specified at its nodes.

Table 3. Three Dimensional State

Material Matrix (Eq. 3)

Orthotropic material Isotropic material

Dy, Dyy, Dyy Dyy 0 0 _ — — 1—v
D,y Dyy Dyg Doy 0 0 Du_Dn#D%——(l—}—v)(l-—Qv)
p— | Dis Dy Dy 0 0 0 .,
D, D,, 0 Dy, 0 0 Dy=Dj3=Dyy=——————FE
0 0 0 0 Dy Dy (1+4») (1—=2v)
0 0 0 0 Dy Dg D,y= Dy, = Dyg==0
E
D,y = Dy = Dgg = m—)
Displacement Derivatives (EHq. 25)
U,z V,x W, x
{ehr = Ju,y; = [G1]1{a}; {e}e = (0,9; = [Gel{a}; {e}s = Jw,yp = [G5]1{a}
U,z V,z W,z
Instantaneous Stress Tensor (Eq.. 24). Constant strain element
) Oz Tzy Txz
[Dl{e}i =[o]' = | 7oy o0y Tyz
Tzz Txz Oz _
Instantaneous Strain Tensor (Hq. 33). Variable strain element
Strain vector (Eq. 32)
S, Dy ex+Dypey+Digez+Dyyyay Strain tensor (Eq.33)
gz glzfx+g225y+1D)23€z+D24'}’xy S, S, S,
— (D1 {e — sl __ 1362+ Dogey+Dyse, ; St—=1|s8, S, S
{s} = [D]{e*} S, Diyex+Dyyey+Dyayay [S] 4 Sz Sa
Ss Dysyze+Disgyyz 3 (3:3) >
Se): Dygyze+Degyve i
(6x1)

F Matrixz (Eq. 46)

fr Dy g+ Dyav,y+ Dy w,z+ Dy (U,y+2,2)
§2 gmuyxigzz”,yigzs W,z 4 Doy (U,y+,2)
_ _JJst 13U, 23,y 33 W,z
{f} =1D] {eho = Jo| | P1at,z Doy v,y + Dy (u,y+2,2)
Ss D5 (U, +w,5)+ D (v,2+w, 1)
fe Dyg (U,z+w,z) + Deg (v,2+w,2)
(6x1) (6x1)

';: ;: ;Z coefficients a,, a,, ..., a, or, nodal displacements d,,d,, ..., dx

(3x3)

[F] = [ v Jo 51‘ Note: F' matrix may be expressed in terms of either dispalcement
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General Triangle

The local coordinate axes and the nine degrees of freedom of a general
triangle are shown in Fig. 1. Corners are numbered counterclockwise. Assumed

p o
7
(x¢3 %) ?L4 — Y,V
1
?
ONg
8 / (X35 ¥3)
T ;
=5 t= Thickness
u (XZ;YZ)
Fig. 1.
2
displacement functions are
U 1 = vy
vi=|1 o y|{a}. (56)
w 1 =z vy
(3x3)
Matrix A of Eq.11 is
[ec] 0 O] (1 0 0
[A]=| 0 [¢] O |, inwhich [¢c]=|1 =z, v, (57)
0 0 [Jc] 1z oy,
(9%9) (3x3)
and after inverting 4 as in Eq.13
c10 0 7 . 24 0 0
[B]=[4]'=]0 ¢'0 |, inwhich [l =5 | %8 Y2 —Y2|, (58)
0 0 ¢t | X35 —X3 Ty
(9x9) (3x3)
and 24 = XyY3— X3 Yy,

T3g = X3 —Tg,

Yoz = Ya—Y3.
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Type 1. Linear Membrane Stiffness matrix: Taking derivatives of generic
displacements, in accordance with Eq.(17) and subsequently employing G,
matrix in Eq. (20), the linear membrane stiffness matrix K is obtained from
Eq. (19) as given in Eq. (59). This matrix is the same as originally reported in

Ref. [23].

1 2 3 4 5 6 7Tto9
L —
1 Dy, y33 Dy Ysyss |=D11YsYss | Daz%aaYas | Daz30ys |~Das®32Ys
Dy a3, Dy 3235 | D3z X3%gy | DyipX3Yny |-D12%3Y25 | D12%2Y2s
9 Dy Y3Yes | D1y 3 ~D11Y2Y3 ,‘Daa T3Yas |~D3s®3Y;3 Dys 3y,
~Dg3s 2335 | Dy} ~Dy3 2525 Dy x50y |-Dia73y3 Dyp%3y3
3 D11 YsYes |-D11Y2Y3 Dy, y3 D3y yyps | Dazoys |=Das2ys
D3 25235 |—Dg3 y 23 Dy 23 ~D15 %30y | Dip%3ys |=D12%3Ys
Koo = 2
4 DyoZ30Ya3 | Dyp%s0y3 |=Dia%30ys | Dazyds D33 y3Yos [~D3s¥Y2Yas 0
Dy @39 a3 [—D3g3 X3 Yoz | DsgToYos | Dap %3y Doy x3%35 | Doy %y %39
5 ~Dya%3Ye3 D133y Dyy23y, Dy3ysyes | Ds3y3 D333
Dy 50 y5 =Dz 23y Dysayyy =Dy x3%35 | Doy a3 ~Dyy x4
6 Dy x3ysg | D1p%sYs |—Dya%eYs (—Das¥Ya¥os —Dss¥ya¥ys Dy y3
D3 23045 | Da3x3ys | —D3322y, Dyyxy235 |—Dog o3 Dyy 3
7t09 0

Type 11. Instantaneous Strain Matrix: Partial derivatives of displacements
in accordance with KEq. (25) give

Substituting these in Eqs

010000000
G1=_001000000_’ (60)
(2><9)A
000 001000 0]
G2=_000001000" (61)
000000001 0]
= 2
@s (000000 O0O0 1] (62)

obtained as follows:

.(29) to (31), the instantaneous strain matrices are

‘i1 0 0O 0 0 0 [0 0 0
Kli=10 0 0{; Kiz=|0 [i] 0/; Ki3=10 0 0], (63)
0 0 0 0 0 0 0 [i]

(9x9) (9x9) (9x9)

~
=

(59)



SEMIH S. TEZCAN - B. C. MAHAPATRA - C. I. MATHEWS

in which

2 2
O, Y3+ 0y X3y

2 Tacy x32 y23

OrY3Yo3 — 0yL3 T3y

Try (Y3 X32 — X3 Y23)

—OxYsYa3 1+ 0y Ly T3y

Tay (2 Y23 — Y2 %32)

OxY3¥Yo3 — 0y X3 X39

Ty (Y3 %32 — T3 Ya3)

2 2
ny3+0yx3

—2 Ty Z3Ys3

O, Y2Y3 —OyLaZy

Ty (X2 Y3+ Y2 %3)

— O, YsYs3t+ 0y Xy Lo

Ty (X2 Y23 — Y2 T32)

— 0L Y2Y3— 0y Xy g

Txy (2Ys +Ya23)

2 2
O, Y3+ 0,5

—2Txyx2y2

(64)

This matrix is the same as originally reported in Ref. [1].
Type 111, IV and VI stiffness matrix components are all zero, since there are
no rotational degrees of freedom.

Type V. Displacement Stiffness Matrix: If the partial derivatives of w and v
are taken as in Eq.(43) and the displacement coefficients {a}, are replaced by
nodal displacements {d} by means of Eq.(12), the fictititous strain vector f
becomes

1 ] Dy (Y2381 +Ysda—Yads) + Dyy (X35 dy — x3d 5+ 2y dg)
(i =11y = 54 Dy (Y231 +Ysda—yads) + Doy (X39dy — 235+ T2 dg) . (65)
fs Dgs (235d) —23dg + 25 d3) + Dyg (Yoady + Y3 ds — Yy dg)

(3x1)

By analogy to instantaneous strain matrix, it is seen that f,, f, and f; terms of
Eq. (46) are playing exactly the same role as o, o, and 7., of Eq.(24). There-
fore, the H matrices of this type, are in the same form as the H matrices of
Type 11.

From Eq. (50b)

(50b)

e [ [ ]

and taking advantage of the analogy mentioned above, the first term of Eq.
(50Db), for each displacement component %, v and w, becomes

[F] 0 O [0 0 0 0 0 0
Ki=|0 0 0]; K2=|0 [h] O; K3=]0 0 0|, (66)
0 0 0 0 0 0 0 0 [A]

(9%9) (9x9) (9%x9)

in which, [2] is identical to the (3 < 3) matrix [¢] given in Eq. (64), except o,
o, and 7,, values are to be replaced by f,, f, and f; of Eq. (65), respectively. In
order to complete the stiffness matrix, partial derivatives of K! must be taken
relative to d;,d,, ...,d, as indicated in Eq. (50b). Due to space limitations, the
explicit contents of these derivatives are not presented herein. The total
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tangent stiffness matrix then becomes the combination of various components
as follows:

1 1 T
K = o ki iy gy K [V8 ] 4 [28 )

(67)

v |G @]+ |G @] e+ [Srm] + |5

Tetrahedron Element

A general tetrahedron element is shown in Fig. 2 with three degrees of free-
dom at each joint in the local coordinate axes, xyz. The displacement poly-
nomials of Eq. (10), in terms of the xyz coordinates of a general point on the
element, are assumed to be

v =a5+agr+a,yt+agz, (68)

l} Z,W

9

(xys 935 2¢) @L.s yv
Y4 |

L

?

X,u —7 .
f/ %
2 /@ Fig. 2.
a4 (XgiYai24)
The matrix, B, relating the nodal displacements, d,, d,, ..., dys to the coeffi-
cients, a,, @, ..., 15, according to Eq. (12), is
[d]7t O 0
[Bl=| 0 [ 0 |, (69)

0 0 [d7
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in which,

[4] =

e

0

Yo
Y3
Ys

(70)

In order to develop a complete tangent stiffness matrix for the tetrahedron
element, all components of the H matrix given in Table 2 should be evaluated.
Note however, that the Types III, IV and VI matrices are all zero, since there
are no rotations specified at the nodes. The rest of the H matrices are obtained

as follows:

Type 1. Linear Stiffness Matrixz: Differentiating the generic displacements wu,
v and w with respect to z, y and z, in accordance with the ¢, expression given in
Eq. (7b), the content of the matrix G, of Eq.(17), is obtained as

2

SO oo 0o O -
(=R e = el

—_

3

0
0
0
1
0
0

4

-_0 O O O O

S O OO OO »

6

S = O O QO

0

7

S O O = O

0

(6x12)

O H O OO o W

9 10 11 12
0 0 0 0]

el e B e B = R o
—_0 O O O
O = O O O
S OO =OO

§ (71)

After pre- and post-multiplying D by G,, H of Eq. (26) becomes

SO O O O O O o o O O O M~

3

(e R )

O O =

DOj

o o O O o ©

4

S O O O Qoww O O <O

S O e

)

S o o0 O o oo o 0o o <

(=R e e

S O e

o=

S O o o o O

7 8 9 10 11
0 0O 0 0 O
v
11—, 0O 0 0 O
0 O 0 0 0
0 0 0 1 o0
0 O 0 0 0
0 0O 0 0 O
1—v
0
1—-2v v 00
0 3 0 0 %
0 0O 0 0 0O
0 0 0 1 0
0 3 00 1
v
0 O
1—-2v : :

, (72)

1—v
1—2V_

in which, V = the volume of the tetrahedron element, which equals to one
sixth of the determinant of the matrix d given in Eq. (70).
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Type 11. Instantaneous Stress Matrix: The partial derivatives of , v and w
displacements, in accordance with the expression of ¢, given in Eq. (7b), yields
the matrix ¢, of Eq. (25) as follows:

1 2 3 4 5 6 7 8 9 10 11 12

01 0 0
Gy=| 0 1 0 (73)
0 0 0 1

(3x12)

When the initial stress tensor o¢ of Eq. (24) is pre- and post-multiplied by Gy,
in accordance with Eq. (29), the matrix H!! is obtained as

(4]
[H''] = [0] ; (74)
[0]

(12x12)

in which, using the initial stress tensor o¢ of Eq. (24), 2 matrix becomes

1 2to4

N, e’

0] 011
ho=|—

0| o |2t0o4

(75)

(4x4)

As explained earlier in connection with Egs. (30) and (31), the H?%? and H*3
matrices are obtained in the same manner as the H?l matrix, except the dis-
placement u, is replaced by v and w, respectively. Therefore,

[ [0]
Hi? = (%] , (76)

[0]

[0]
Hi3 = [0] : (77)

[2] ]

Type V. Displacement Stiffness Matriz: In order to evaluate the stiffness
matrix of Type V given by Eq. (48), at first, matrix H! of Eq. (49a) should be
determined. The matrix (; appearing inside matrix H°, has been already
evaluated in connection with Type II and given in Eq. (73). The middle block F,
is obtained from Table 3 — Eq. (46) as
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(1—-v)as+va 1-2v 1-2v
+v62112 ! 3 (a3 +as) —“2—(“10‘*‘@4)
1—-2v vas+(1—v)a, | 1—-2v EV
= . (7
[F] (a’3+a6) +Va12 2 (a8+a11) (1 +V)(].—-2V) ( 8)

1—-2v 1—-2v vay+va,

B (@10 +4) Ty (25 +ay) F(L=v)ay,

(3x3)

After pre- and post-multiplying F by @, in accordance with Eq.(49a) the
matrix H% is obtained, since G, is a partially unit matrix, as
1 2to4 5tol2

N e, !

0 0 0 1

H'=| 0| [F]| 0 |[2to4 . (79)

0 0 0 [5tol2

Similarly, exchanging the locations of », with v and w, respectively, the matrices
H® and H® are obtained as follows:
1to56to8 9to 12

0 0 0 1tos
H2=| 0 |[[F]| 0 |6to8 , (80)
0 0 0 9to 12
1to910to 12
N i
0 0 1to9
Ho = . (81)
0 | [F] [10t012

As indicated in Eq. (49b), the jth column of matrix MO, is obtained as the

partial derivative of matrix H®, with respect to the coefficients a; (j=1, ..., n).
Therefore, from Eq. (49b) and (79)
1 2to12
0 0 1
M=| 0 | [m] |2to4 , (82)

0 0 5to 12
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(1 —v)a, va, va,
1-2v 1-2v
5 % 5 % 0
1-2v 1-2v
5 % 0 — %
0 0 0
1-2v 1-2v
5 s 5 e 0
in which [m]T=(1+V)E(I/_2V) vy (1—v)ag vay, . (83)
0 l—2va l—2va
2 2 3
0 0 0
1-2v 1—-2v»
5 U 0 5 e
0 l—2va l—2va
2 2 73
| va, vag (1—-v)ay, |

Differentiating H%? and H of Eqgs. (80) and (81), in accordance with Eq. (49b),
the matrices M and M are obtained as

1 2tol2

0 0 l1tob

M2 =| 0 | [m'] |6to8 , (84)

0 0 |9tol2

0 0 1to9
MO = | —— — R (85)
0 [m”] |10to 12

in which, m' and m” are the same as m, except the coefficients, a,, a; and a,
are to be replaced by a4, a; and ag for m’ and by a,,, a,, and a,, for m”, respec-
tively. These coefficients are obtained, at the end of each cycle, from the nodal
displacements, d,, d,, etc., by means of Eq. (12).

Finally, the total tangent stiffness matrix K of the tetrahedron is obtained

in the computer, from
K = [B) [H][B], (86)

in which, B is given by Eq. (69) and
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H =H00+Hi1+Hi2+Hi3+(H01+M01+M01T)

+(H02+M02+M02T)+(H03+M03+M03T). (87)

The linear component K, coincides exactly with the stiffness matrix given
by PrzEMIENIECKI [14]. The rest of the components constitute the nonlinear
part of the tangent stiffness matrix and are dependent on the instantaneous
stresses and nodal displacements, which occur in the element at the end of
previous cycle. Very few of these nonlinear stiffness components, in the author’s
knowledge, were reported until now.

Modified Newton-Raphson Iteration

For a given set of external loads, the objective of static nonlinear analysis
is to determine the true values of the displacements and internal stress resul-
tants. Since, the tangent stiffness matrix is dependent on the instantaneous
strains and displacements, an iterative methods of solution is inevitable.
Newton-Raphson method of successive cycles of linear analysis has been used
in the solution of a variety of nonlinear structural problems with extremely
satisfactory performance [3, 4, 5, 17, 20, 21]. The basic principals of this

b
| LI ¥ cycle geometry
P2 = |Unbalanced i
joint
Loads |
|
Bap-p 2" cycle geometry 5) |
27 e | _ P.=Resultant
T 77 ' Internal
A Loads
! Equilibrium |
R PZE Geometry |
| (3 K, |
L 9| e c |
5 I Dl | B
|
R = Rexternal e || | |
J \;\“20‘ ” l I |
Ky Il | | | -
o) I D
Pea J’ili ,L
D, 03 D2
N Dy =
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iterative method, as employed in the numeric examples of this presentation,
are outlined graphically in Fig. 3.

At first, using the initial geometry and the external loads P,, a linear stiff-
ness analysis is performed corresponding to the straight line oa. The slope of
this line K, represents the linear stiffness matrix of the structure. Using, the
nodal displacements D,, of this first linear cycle of analysis, in the nonlinear
expressions of stress-displacement relations (Eq.(7b)), the stresses as well as
stress resultants are calculated at each node of every element. At a particular
node of the system, in a particular direction of degree of freedom, the algebraic
sum of all the calculated stress resultants must be equal to the external load
given in that particular direction. Since, the nodal displacements obtained in
the first cycle do not correspond to the true equilibrium geometry, the alge-
braic sum of internal stress resultants P, ;,, obtained using these first approxi-
mate displacements will not be equal to the given external loads. The difference
between the internal and the external forces, that is

Py, =P Py (88)

constitutes the new external loads to be used in the next second cycle of analysis.
In preparation for a second cycle, tangent stiffness matrices of each finite
element are avaluated from Eq.(53), using all of the nonlinear components.
Thus, the changes in the global co-ordinates of the nodes, as well as the pre-
sence of instantaneous strains and displacements, are all taken into account.
A second set of nodal displacements D, are calculated, under the action of the
unbalanced nodal forces P, following a purely linear analysis along the straight
line b c. The slope K, of this line represents the tangent stiffness matrix of this
second cycle. When the nodal displacements of the first and second cycles are
superimposed, the system comes closer to the actual equilibrium configuration.
As a result, the difference between the external loads and internal stress
resultants, calculated on the basis of the combined nodal displacements, is
reduced. Denoting the internal stress resultants obtained at the end of the se-
cond cycle by B, ;,,, the modified external loads F;, of the subsequent third

cycle becomes
Fy = Pz,z'm—Pexz- (89)

Using the strains and displacements obtained at the end of the second cycle,
a new set of tangent stiffness matrices, represented by the slope K ; of the straight
line d e, are evaluated and under the application of the unbalanced nodal forces
P;, a third linear cycle of analysis is performed. The nodal displacements D,
of the third cycle are superimposed on D, and D, and a new set of unbalanced
nodal forces are calculated. The above iterative process is repeated until the
maximum unbalanced nodal force in any direction becomes less than a tolerable
value. The tangent stiffness matrices are successively altered after each cycle
so as to include the latest global coordinates and the latest strain and displace-
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ments. Unbalanced nodal forces are continuously diminished and the algebraic
sum of the nodal displacements at each cycle is taken to yield the final dis-
placements D, of the true equilibrium configuration as

D=D+Dy+Dy+---+D,,. (90)

Numerical Examples

For purposes of illustration of the use of tangent stiffness matrices in
connection with the modified Newton-Raphson iteration scheme, as well as
for assessment of relative importance of higher order terms, the following thin
plate examples have been solved:

1. Fixed square plate — Uniformly loaded (Fig. 4, 5).
2. Fixed square plate — Centrally loaded (Fig. 6, 7).

3. Simply supported square plate with immovable edges — Uniformly
Loaded (Fig. 8, 9).

4. Simply supported square plate with immovable edges — Centrally loaded
(Fig. 10, 11).

Inveriably, due to four-way symmetry only one octant of the plate is
analyzed dividing the plate into a 16 X 16 square mesh. The convergence criteria
is taken to be the ratio of the maximum unbalanced nodal force, to the maxi-
mum stress resultant in that direction in the linear cycle. In most cases, this
ratio is reduced to less than 19, within five to seven cycles. The nonlinear ana-
lysis of each particular plate has been performed for four different magnitudes
of external loads. Although the results of the analyses are illustrated by
continuous lines in all the diagrams (F'ig. 4 to 9), the actual calculation points
are indicated by circles and triangles. In order to evaluate the relative effects
of the higher order terms of Eq. (53), the examples 3 and 4 have been solved
for two cases:

Case 1. Tangent stiffness matrix, with types I, IT and I1I, but excluding all
three components of type V.

Case 2.-Tangent stiffness matrix, including all components of type I, 1I,
IIT and V.

The corresponding results have been shown separately in the diagrams,
by means of putting triangular and circular signs, respectively, around the
points of calculations. For a rectangular element lying in the local z y-plane,
a series of 24 x 24 tangent stiffness matrices have been derived, using the general
formulation presented herein. The assumed displacement functions are
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W =0+ 01X+ Y+a02+ 0130y + a1 Y2+ a5 3+ 01622y +ay; 2 YP

F U1 YP + A1 TP Y + Qg WP Y + gy TYP + Aoy X3 Y2+ Az 2 YB + Az 23 3.

Due to space limitations the contents of the tangent stiffness matrix com-
ponents of a rectangular element are not included in this paper. However, the
derivation follows exactly the same procedure as employed for triangular and
tetrahedron elements. After the first cycle, as a result of nodal displacements,
originally square plates warp out of their planes and become spatial quadri-
laterals. Consequently, the tangent stiffness matrices derived for rectangles,
are no longer applicable to quadrilaterals in the subsequent cycles. However,
in all the computations, although the changes in coordinates as well as the
intermediate strains and displacements are duly taken into account, the change
of shape from square to quadrilateral has been neglected.
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There are exact theory of elasticity solutions available in the literature for
Examples 1 and 3, as already indicated in the respective diagrams. It is not
possible, however, to compare the computer solutions of Examples 2 and 4
against any solution, since, to the knowledge of the author, no exact solution
exists in the literature for centrally loaded square plates.

Conclusions

By using the strain energy approach, in conjunction with Castigliano’s
Theorem, a systematic method of derivation has been discussed for the develop-
ment of tangent stiffness matrices for finite elements. The uniformity of formu-
lations is expected to facilitate the inclusion of various high order terms of
strain energy, which were ordinarily neglected due to complexities involved in
the derivations. ‘

As indicated in the numerical examples, when the higher order components
of tangent stiffness matrices are included, a marked improvement is observed
in the accuracy of the results as well as in the speed of convergence.

Although the numerical examples are for static analysis of nonlinear
structures, the concept of tangent stiffness matrix is readily applicable to the
stability problems in which the external loads are gradually increased until the
displacements become excessively large [25].
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Further studies are desirable, however, to investigate the relative effects
of various higher order terms in more detail, and also to formulate different
solution schemes for combined material and geometric nonlinearities. Tangent
stiffness matrices for triangular finite elements with curvatures in two direc-
tions, would be a useful extension of the formulation presented.
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Summary

A systematic method of derivation is presented for the tangent stiffness
matrices of geometrically nonlinear two and three dimensional finite elements.
At any deformed stage of the element, the strain energy is calculated by taking
into account all of the nonlinear components of the strain-displacement equa-
tions. In addition to these nonlinear terms, the instantaneous values of the
variable strains are also included in the strain energy.

Résumé

On présente une méthode systématique de dérivation pour les matrices de
rigidité tangentielle d’éléments finis bidimensionnels ou tridimensionnels
géometriquement non linéaires. Pour chaque stade de déformation de 1’élément
on calcule I’énergie de déformation en tenant compte de toutes les compo-
santes non linéaires des équations déformation-déplacement. En plus, de ces
termes non linéaires les valeurs instantanées des déformations variables sont
aussi incluses dans ’énergie de déformation.

Zusammenfassung

Ein systematisches Herleitungsverfahren wird angegeben fiir die tangen-
tialen Steifigkeitsmatrizen geometrisch nichtlinearer, zwei- und dreidimen-
sionaler endlicher Elemente. Zu jedem Verformungszustand wird die Ver-
zerrungsenergie unter Beriicksichtigung aller nichtlinearer Glieder der Deh-
nungs- Verschiebungs-Gleichungen berechnet. Zu diesen nichtlinearen Gliedern
werden auch die augenblicklichen Werte der variablen Dehnungen in die
Verzerrungsenergie einbezogen.
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