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Introduction

It is possible to take into account both the geometric and material non-
linearities in a structure by a suitable repetition of linear stiffness analysis.
Basically, there are two distinct numerical methods for the nonlinear analysis
of structures; (1) step by step application of incremental loads and (2) regulär
or modified Newton-Raphson's iterative Solution under füll loads. In either
of these two numerical methods, it is assumed that during each Solution cycle,
the stiffness analysis proceeds along a straight line tangent to the curve
characterizing the force-deflection relations of the structure. In order to achieve
such a tangent Solution, the stiffness matrix of each element should be modified
to account for the accumulated stresses and the change in geometry. Once, the
tangent stiffness matrices are available representing both the physical and
geometric nonlinearities at any stage of deformed condition, the nonlinear
analysis as well as the stability problems of a continuous medium may be
performed by a repititious application of the direct linear stiffness method of
analysis.

Nonlinearity was first introduced into the stiffness matrices by Turner [1],
et al. through the strain-displacement equations in connection with a truss
element and a triangle in membrane. Using similar techniques, nonlinear
stiffness matrices were obtained for a beam element in plane (2, 3, 4, 10, 12,
13, 14] and in space [5], for a triangulär plate [2, 6, 10, 12], reetangular plate
[7, 8, 12], axisymmetrical shell element [9], and a tetrahedron [10, 11].
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Various valuable contributions have been made in connection with general
formulation of both the geometric [15, 16] and material nonlinearities [17, 18,

19, 20]. As an alternative to solid finite elements, Hrennikoff lattice modeis
were also used for large deflection analysis of thin plates [21]. Oden [22]
presented an excellent review and examined the applications of the finite
element method to nonlinear problems in structural mechanics.

In this paper, it is intended to give a general matrix formulation for the
derivation of tangent stiffness matrices for two and three dimensional finite
elements. The approach is basically the same as followed by Martin [2],
Przemieniecki [12], Wissmann [16], Oden [15, 17] and others. However, a
systematic matrix manipulation scheme is presented for purposes of
conveniently incorporating all of the higher order terms of the strain-displacement
equations. The stiffness contribution of each energy term is formulated in a
uniform fashion allowing the derivation of the complete tangent stiffness
matrix for a wide ränge of one, two and three dimensional finite elements to be
carried out by means of almost identical matrix Operations. The final tangent
stiffness matrix is obtained as the combination of a linear stiffness matrix plus
seven or more different types of stiffness matrices which correspond to various
higher order terms of the strain energy and are funetions of stresses and
displacements of the element at the stage of deformation concerned. This
separate evaluation of the contribution of each higher order term, enables the
analyst to include or discard any particular component of the tangent stiffness
matrix, depending on the relative importance of the respective terms.

In fact, numerical experience on the use of tangent stiffness matrices of line
elements [4, 13, 16] have indicated clearly, that the inclusion of some of the
previously neglected higher order terms increase both the accuracy and the
speed of convergence.

Although the formulation is general, due to space limitations, only the
complete components of the tangent stiffness matrix of a triangle and of a
tetrahedron are included at the end together with a discussion of the modified
Newton-Raphson iteration scheme.

Total Strain Energy

Total strain energy U, by definition is

U iJ{€}r{a}dF */{«}*¦ [Z)]{e}dF, (1)
V V

in which, the material matrix D, relates the stresses to strains as

M [D]{e} (2)

and is given by D
Ai A« 0

A2 A2 0

0 0 Aa
(3)
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For an isotropic material,

EA A« l A, vD11 ¦ A* E
2(\+vy (4)

in which, E Modulus of Elasticity, v Poisson's ratio.
The integration should be carried over the undeformed volume of the finite

element as already proved in Ref. [16]. The strain vector e, at any intermediate
stage of deformations, may be expressed as the superposition of the instan-
taneous values of strains ei, and the additional strains ea which are developed
due to the application of a new set of external loads [2]. Therefore,

in which {«}a={*}o + {«}i+{«}8+{6}4

(5)

(6)

or, in terms of the partial derivatives of the generic displacements u, v, and w
with respect to the local coordinates x, y and z (24)

{«}«
€x U,x 2 U,x \V,x
ev ' V,V + < lw22 u,y + < iv,v
Yxy^ U,V + V,x, U,x ^,2/. V,XV,V,

— zw „

Wo Wi {«}.

#X

+ {*W;,y + — 2W,2/2/

— 22W^,^,2/
M (*}4

>xy

(7a)

The middle plane of the two-dimensional finite element is assumed to
coincide with the local xy-nl&ne. In case of a three dimensional finite element
with no rotational degrees of freedom at its nodes, the incremental strain
vector ea, is given by

{«}«

€x U,x 'iu% [H* hw%

€y v,y \u% \tv kw?v

*z
> <

w,z
> + < *"i > + <

\v%
>+¦ \wl

Yxy u,y+v,x U,x ^,y V,xV,V W,xw,y
Yxz u>z + W}X uxU)Z yy w,x w,z

7vz, v,z + ™,xt ^fV^sZj V,VV,Z, W,VW,Z

{*}a Wo + {e}i + W, + w»

(7b)

Instantaneous strains et, are considered to be present and numerically
available before the application of a new set of external loads. For instance,
the state of strain of the preceding cycle of analysis, thermal stresses, pre-
stressing forces, yield stresses, lack of fit, etc., constitute the initial stress
vector. It is interesting to note that the instantaneous strain vector et, due to
the loads of the preceding cycle is also calculated from Eq. (7) in the same way
as the additional strain vector ea using all the nonlinear strain-displacement
relations. There is one difference, however, that in the case of €i, the generic
displacements u, v and w as well as their partial derivatives, are all numerically
available, while in the case of ea, these displacements are variable funetions
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of the nodal displacements. Therefore, from the view of load-deflection history,
it is more appropriate to call et, as the "accumulated" and ea, as the "incre-
mentaV strain vectors. Substituting these strain vectors in Eq. (1)

f7=J{^ + ^0 + ^ + ^2 + ^ + ^}T[^]{^ + ^0 + el + ^2 + ^ + ^}^^ (8)

and after carrying out the products inside the integration, the total strain

energy is expressed as the algebraic sum of thirty-six different energy
components as follows:

«f Z»e. + ef De0 + eJDex + eTDe2 + ef De3 + efDe,
Constant First Second Second Second First

4Dei + 4De0 + 4Det + 4De2 + $DH + e^De,
First Second Third Third Third Second

v

4Dei + €fDe0 + e?Dei + ef De2 + 4De3 + cf De4
Second Third Fourth Fourth Fourth Third

ef De, + 4De0 + efD6l + 4De2 + $DH + 4 D e4

Second Third Fourth Fourth Fourth Third

4Dct + 4D*o + 4De, + 4De2 + e^De3 + 4DH
Second Third Fourth Fourth Fourth Third

4DH + efDe,, + 4Dzx + 4De2 + e$DH + efZ>e4
First Second Third Third Third Second

dV.

(9)

Generic Displacement Functions

It is assumed that, for a finite element with n degrees of freedom, the
displacements u, v and w of any particular point are expressed as a suitable
polynomial of the local coordinates, xyz, involving n number of unknown
coefficients a±, a2, an as

(10)

in which, [C] coordinate matrix containing the individual terms of the
displacement polynomials in the form of certain powers of x, y and z; {a} column
vector of unknown coefficients of the polynomial. When the actual coordinates
of the element nodes are substituted inside the coordinate matrix C, the nodal
displacements dx, d2, dn, which contain both the straight and rotational
degrees of freedom, are obtained as

{d} [A]{a}, (11)

u
' V [C] {«},
w (3xn) (nxl)

(3x1



{«} - [B] {d},
(nxl) (nxn) (nxl)

[B] [A]7
(nxn) (nxn)
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in which, [^4] (nxn) matrix containing the local coordinates of the element
nodes; {d} column vector of nodal displacements. Since, the content of A
matrix is numerically available, once the geometry of the element is decided,
the unkown coefficients are obtainable from the nodal displacements as follows:

(12)

where [B] [Ay1. (13)
(nxn) (nxn)

Combining Eqs. (10) and (12), the generic displacements may be related to the
nodal displacements by

u
v \ [C][B]{d}. (14)
w

Stiffness Matrix from Strain Energy

Since, the generic displacements u, v a,nd w, in accordance with Eq. (14),
are linear funetions of the nodal displacements dx,d2, ...,dn, it can be shown
using Eq. (7) that the strain vectors {e}0 and {e}4, are also linear funetions of the
nodal displacements. However, the strain vectors {e]1, {e}2 and {e}3 are quadratic
funetions of the nodal displacements, since these vectors contain the square of
the partial derivatives of the generic displacements. Therefore, as already
indicated in Eq. (9) the total strain energy JJ, contains not only constants as a
result of instantaneous strains, but also a mixture of linear, quadratic, eubie
and fourth order expressions in terms of the nodal displacements.

The stiffness influence coefficients ktj, using Castigliano's Theorem [2],
are obtained as the second partial derivative of the strain energy with respect
to the nodal displacements, from

k --*SL (im

This procedure requires rigidly, that U is expressed in terms of nodal
displacements. Once this is done, the problem is merely taking the second

partial derivatives of U. It should be realized, however, that the constants and
the first order terms of U, will vanish after the second partial derivatives are
taken, leaving behind only the second, third and fourth order terms to contri-
bute to the stiffness. After the second partial derivative of U, no nodal
displacements will exist in the second order expressions, therefore, they contribute
to the regulär linear stiffness matrix. All the third and fourth order terms
contribute to the nonlinear components of the tangent stiffness matrix which
are funetions of intermediate displacements.
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A summary of the strain energy components contributing to various types
of stiffness matrices is given in Table 1. As already indicated in this table, for
flat plate elements and also for three dimensional solid elements in which no
rotational degrees of freedom are specified, type IV and IV stiffness matrices
become zero. The general formulation for the systematic derivation of each
of the six different types of stiffness matrices is briefly outlined below and later
the respective stiffnes smatrix components are developed for a tetrahedron
and a triangulär element. Although all of the formulation is first given for a
two-dimensional bending shell element, the modifications and translations
necessary for a three dimensional solid finite element are also introduced later
in the form of a table (Table 3).

Table 1. List of Contributing Strain Energy Components

Type Order Strain Energy Components
Resulting
Stiffness
Matrix

Remarks

I 2nd U00 f€o'-D€o
V

K™ Linear Stiffness Matrix

II 2nd

jjn

Ui2

V V

V V

V V

Kn

Ki2

Ki3

Instantaneous Stress Matrix

III 2nd £J44
V

K** Linear Stiffness Matrix (Bending)

IV 2nd JJOi iJ«?*B«4+iJcfj>C0
V V

K0i

Zero, if
— no rotational degrees of

freedom exist
- the element is symmetrical

about the ^^/-plane

V 3rd

U01

t/02

u°*

V V

b$€0 £>e2+2.fe2 D€0
V V

i^o D€s+ihs D€0
V V

KQ1

K02

K03

1 Displacement Stiffness Matrix as
j function of u and v

Displacement Stiffness Matrix as
function of w

VI 3rd

r/4i

*742

£743

V V

V V

V V

Ki2

Zero, if
- no rotational degrees of

freedom exist
- the element is symmetrical

about the #2/-plane
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Type I. Linear Stiffness Matrix

The respective strain energy component from Table 1, is

£7«° ^4De0dV. (16)
V

Differentiating, u, v and w, in accordance with Eq. (7), and rearranging the
results in matrix form, the strain vector, {e}0, becomes

{*}„ [GUW. (17)

The size of the [G0] matrix, which contains a suitable combination of the x, y
and z terms, is (3xn) for two dimensional, and (6xn) for three dimensional
finite elements. Using Eqs. (17) and (12), Eq. (16) becomes

[/oo if{d}T[B]T[H™][B]{d}dV (18)
v

and after differentiating twice, in accordance with Eq. (15), the stiffness matrix
K00 is obtained as

K00 [B]T[H°°][B], (19)

in which H™ / [G0]T [D] [ö0] dV. (20)
v

The K00 matrix corresponds to the linear stiffness matrix of the small deflection
theory.

Type II. Instantaneous Strain Matrix

A typical component of this type, from Table 1, is

W1 iJ{€}f [DU^dV + UWlDUWV, (21)
V V

in which, the instantaneous vector {e}^, may be calculated numerically at the
end of any intermediate cycle of analysis in terms of the numeric values of the
nodal displacements and local coordinates.

With regard to the Variation of strains within the element, there are two
different cases as follows:

Case 1. Constant strain element: If the assumed displacement field corresponds
to a constant state of strain within the element, that is, if the strain expressions
are not funetions of local coordinates, the strain energy Ui 1 may be written,
using Eq. (2), as

ü*1 ij»f {e}^F + i/{e}f {a}tdV. (22)
V V

Taking advantage of the identity

Mi] T flA2)
A% • \B\
M ßi B2

»srE-ata-
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the product of of e± may be expressed as

°x T \rfx
°V • i"i
Txy. U,xu,y.

[a]<

_ 1 lU,x\T \ax Txy\ jU,x\ /9a\" 2\UJ \jxy Ov\\v>,vV
(2x1) (2x1)

(3x1)

in which the (3x1) column vector of quadratic terms are reduced to the product
of two (2x1) column vectors of linear terms. The middle block [o]1, in Eq. (24)
is the instantaneous stress tensor of constant magnitude. By taking the partial
derivatives of the function for displacement u, as

[UA [GJ {«} (25)
l U*V> (2xn)(nxl)
(2x1)

and substituting into Eq. (24), the strain energy JJ11 becomes

U" iJi{a}r[ö1F[a]«[ÖJWdF + i/i{a}[ö1]M*[öjr{a}''dF. (26)
V V

Since, the middle block o{ stress tensor is symmetrical, the congruent
transformation Gf ol G1 is also symmetrical. Therefore, the two separate integrals
of Eq. (26) are equal and may be combined as

U" ^{a}T[01]T[oY[G1]{a}dV. (27)
V

After substituting Eq. (12) to eliminate {a} and differentiating twice, the
stiffness matrix Kix is obtained as

Kil [B^iH^lB], (28)

in which H11 /[ÖJ^M^ÖJdF. (29)
v

By analogy, the stiffness matrices Ki2 and Kiz are obtained from the same
formula as given for K11, except H11 is replaced by

H^=nG2lT[<rf[G2]dV (30)
V

and Ä"=J[ö8r[<7]<[Ö3]dF, (31)
V

in which, G2 and Gz ma^trices are the same as Gx, except u of Eq. (25) is replaced
by v and w, respectively.

Case 2. Variable strain element: If the strain vector is function of local
coordinates, in order to be able to follow the same procedure as in Case 1,

instead of replacing De^ by a constant stress vector a, we shall introduce a
fictitious vector s which will be in the same role as o, except it will contain not
only the local coordinates x, y and z but also the coefficients a1,a2, ...,anof the
displacement funetions. The column vector Dei, from Eq. (3), is
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{s} [D-]{c}t
D, + D.

D12eT + D,
12 cs/

22ti/(
D.33 Yxy

(32)

and regarding this vector as A vector in the identity of Eq. (23), the fictitious
strain tensor Si, by analogy, becomes

[S]i \si S3~\ l(Dn€x + D12€y)
L^a ^2j L ^33 Yxy

D3sYxy 1

^22 €y)\ i(D12€X +
(33)

in which, ex, ey and yxy are the total instantaneous strain components to be

numerically calculated by means of Eq. (7), using the nodal displacements of
the preceding cycle. The fictitious strain tensor Sl contains constants as well as
the variable funetions of the local coordinates. Then, the strain energy, by
analogy to Eq. (27) is

U*1 iKanGJ* [SHGJtodF, (34)

which yields, after differentiating twice, to

Kil [B]T[Hil][B],
in which H*1 J [GJ2" [8f [öJ dV.

(35)

(36)

Note that, Ki2 and Kiz matrices are obtained from similar expressions, except
G1 is replaced by G2 and G3, which are the coefficient matrix of partial derivatives

of v and w, respectively given by Eq. (25). The only difference between
a constant and a variable strain element is thus reduced to introducing a
variable fictitious strain tensor Si in place of a constant stress tensor ai.

Type III. Linear Bending Stiffness Matrix

The respective strain energy component, from Table 1, is

Introducing

«4

U^ b$eZDHdV.
v

d2w
dx2

d2w

d2w

(37)

dxdy

-*[GJ W
(3xn) (nxl)

(38)

and eliminating {«} by means of Eq. (12)

«7*4 lf{d}T[B]T[Hu] [B]{d}dV.
r

(39)
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After differentiating twice, according to Eq. (15)

K^ [B]T[H^][B], (40)

in which H^ j z2[G4]T[D][G4]dV. (41)
v

The matrix K44 contributes into the w-locations only, and it vanishes for finite
elements with no rotational degrees of freedom.

Type IV and VI. Stiffness Matrix

In most practical finite elements, type IV and VI stiffness matrices are zero,
because either there are no rotational degrees of freedom specified, i.e., e4 0,

or the middle surface of the element lies in the x «/-plane, thus rendering the
volume integral jzdV to zero. Therefore, for reasons of space limitations, the
matrix formulation of these types are not discussed herein.

Type V. Displacement Stiffness Matrix

A typical strain energy component of this type, from Table 1, is

Un $J4DeidV + $j4DeodV. (42)
V V

Replacing the products of D €0, by a fictitious single vector {/}
\DiiV>tfB + D12v,v\ [fi

{f} [D]{^ \D12ux + D22v}y> -

[ DS3(Uty + Vj
(3x1) (3x1)

and using it in Eq. (42)

U01 Ittfy&yV + lStfUftdV (44)
v v

and taking advantage of the identity of Eq. (23), the strain energy becomes

""-yfori/wiiföK ,45>

(1x2) (2x2) (2X1)

The individual terms fx, f2 and /3 of the middle block of Eq. (45) are analogues
to ox, oy and rxy of the instantaneous stress block of Eq. (27). It is important
to note that this middle block, given by

(2x2)

contains the unknown displacement coefficients [a], or by virtue of Eq. (12) the
unknown nodal displacements {d}. Substituting Eqs. (25) and (46) in Eq. (45)

E7°i U{d}T[BT[Gi]T[F][_G1\[B]{d}dV. (47)
V

(43)
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While differentiating U01 twice, in accordance with Eq. (15), a difficulty arises
due to the presence of {a} or {d} terms inside the F matrix. Obeying the rules
for the derivative of the product variables, however, it is possible to overcome
this difficulty and obtain the correct form of the resulting stiffness matrix
K01. Depending on whether the F matrix is expressed in terms of displacement
coefficients a1,a2, ,an, ov in terms of nodal displacements dx,d2, ...,dn, the
stiffness matrix is obtained in one of the two following ways:

Case 1. F matrix as function of displacement coefficients:

k^ [sr ([#01]+t-äfi]+[ifn) iß], (48)

in which H01 =i[G1]T[Fa][G1]dV, (49a)

Mf^41^4 ¦•••&)]¦ ^
As seen from Eq. (48), the stiffness matrix K01 requires the evaluation of three
middle blocks H01, M and Mf, which are funetions of coefficients {a}. The

supplementary blocks, M1 and its transpose Mf, are obtained from the partial
derivatives of H01 as shown in Eq. (49b). Any jth column of Mx matrix, equals
the partial derivative of H01 with respect to the coefficient aj, multiplied by the
column vector of {a}. This process of taking derivatives with respect to a's,
rather than with respect to d's is especially convenient for finite elements for
which the F matrix is available in terms of a's but not in terms of d's. (Note
this significant difference in the triangle and tetrahedron elements discussed

later).

Case 2. F matrix as function of nodal displacements: In this case, after the
second partial derivative of Eq. (47), the stiffness matrix is obtained as

or *-^ft?H+[W «

in which K1 [B]T [H01] [B],
H^^ttGiVlFMGJdV,

v
[(dH01.

Mx dd,

(50a)

.,n) (50b)

(51a)

dH01

ddn
[B]{d}} (51b)

As seen from Eqs. (48) to (51), the stiffness matrix K01 of Type V is always
dependent on the nodal displacements {d}, of the preceding cycle of analysis.
Especially, it is this matrix component that reflects the nonlinearity of the
element much. It would be therefore, more appropriate to call this component
as the "Displacement Stiffness Matrix".

Following exactly the same procedure outlined above the other two dis-
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placement stiffness matrices K02 and Kos are obtained from Eqs. (48) and (50),
respectively. Except, matrix H01 is replaced by

H°2=j[G2r[F][G2]dV (51)

and H™=$[Gs]T[F][G3]dV, (52)

in which, G2 and G3 matrices are prepared in accordance with Eq. (25), using
derivatives of v and w, instead of u, respectively.

Total Tangent Stiffness Matrix

The total tangent stiffness matrix K, of a finite element is obtained by
combining algebraically various component stiffness matrices as follows:

K K00 + (Kil + Ki2 + Kis) + K^ + (K01 + K02 + K^)
or K [B\*[H][B],
in which, the combined middle block H, is

H H00 + (Hil + Hi2 + His) + H^ + (H01 + M1 + Mf)
+ (HQ2 + M2 -f Mf) + [#03 + Ms + Mf).

Various components of H matrix is summarized in Table 2.

Table 2. Components of Stiffness Matrix

(53)

(54)

(55)

Type
H

Matrix
K

Matrix

I H00 nGoV\.D][G0]dV
V

K00 BT H00 B

II
Hi3

HGiFIVnöjdF
V

Same as H11, except use v and w
instead of u, respectively in Gx

Kil BTW1B

Ki2 BTHi2B

III #44 J*'[fl'jr[i)][G,jdr
V

K** BTH**B

V

#01

Mt9M3

V

If, H01 is function of a/s

If, H01 is function of d/s

Same as above, except w is
replaced by v and tt?, respectively

K01 BTH01B + BTM1B
-yBTM* B

K01 BTHQ1B+ BTMx +Mi B

K02 and K03 same form as X01
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Modifieations for Three Dimensional Elements

The above formulation for the derivation of tangent stiffness matrices is
prepared for two-dimensional finite elements. In order to translate the results
into the three-dimensional state, the contents of various key matrices are
summarized in Table 3, for a three dimensional solid finite element with no
rotational degrees of freedom specified at its nodes.

Table 3. Three Dimensional State

Material Matrix (Eq. 3)

Orthotropic material

D

Ai A2 A3 A4 0 0

A2 D22 D23 A* 0 0

A3 A3 A3 0 0 0

A4 A4 0 #44 0 0
0 0 0 0 D55 D
0 0 0 0 D56 D

Ai A,

Isotropie material

1-vA
-A2 — -Aa — ^23 —

A. A, A,

(l + v)(l-2v)
V

il+v){l-2v)1

E

-E

-E

2(l + v)

'acement Derivatives (Eq. 25)

Wi E[ [ej{«}i «3 y,y\ {Gz\{a}
\w..

Instantaneous Stress Tensor (Eq.. 24). Constant strain element

Ox Txy Txz

Txy ety TyZ
TXZ TXZ Gz

Instantaneous Strain Tensor (Eq. 33). Variable strain element

Strain vector (Eq. 32)

Ax *x +A2 €y +A3 €z + A4 yxy

{»} [/>]{€>}

f«i
s,
s,
s4
s*
s« i

A2 ex + D22 €y 4- Z>23 €Z + Z>24 y^
•A3 €X 4" ^23 €2/ 4" -A3 eZ

-A4 e# + A4 €y H~ -A4 7a;2/

D5Syxz+D56yyZ
D56yXz +D(.ßyyZ

(6x1)

Strain tensor (Eq. 33)

S± Ä4 £5
[£]* Ä4 Ä2 ^6

S5 Sq S3

(3x3)

i*7 Matrix (Eq. 46)

{f} [D]{e}9

f/il
/i
/«
/<

/i
1/.J

(6x1)

Dxxu,x + D^v ,y + Dxzw ,z + Dx±(u,y +v ,x)
D12u,xJrD22vfy + D23w)Z + D2t{uty + v>x)
D1ButX + DMvty + DZ3w,e
DuU>tx+DMViy+Du(uty + vtX)
D55{utZ + w,x)+Db(.(vfZ + w,x)
pM(utg + wfX) + DM(vtZ-{-wtX)

(6x1)

[F]
fl Ji Jh

Ji J2 /6

(3x3)

Note: F matrix may be expressed in terms of either dispalcement
coefficients ax, a2, an or, nodal displacements dl9d2, • • •, dn
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General Triangle

The local coordinate axes and the nine degrees of freedom of a general
triangle are shown in Fig. 1. Corners are numbered counterclockwise. Assumed

tz,w

x,u

L(xi;y,) © y.v//

/ l*z*ty

/(x2jy2)
t= Thickness

Fig. l.

displacement funetions are

u 1 x y
• V > 1 x y {«}¦
w 1 x y

(3x3)

Matrix A of Eq. 11 is

>] 0 o" 1 0 0

[A] 0

0
[c] 0

0 [c]_

in which [c] 1 i^2
1 x3

2/2

2/3_

9x9) (3x3)

and after inverting A as inEq. 13

"c-1 0 0 ~2Ä 0 0

[B] [A]-1 0 c-

0 0
<9>

1 0

c_1_
9)

in which [c]-1
1

2~I 2/23

J^32

2/3

— x3
(3x3)

-2/2
^2__

and 2 A x2 y% — ;r3 y2,

x%2 x% x2,

y23 y*-y*-

(56)

(57)

(58)
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Type I. Linear Membrane Stiffness matrix: Taking derivatives of generic
displacements, in accordance with Eq. (17) and subsequently employing G0

matrix in Eq. (20), the linear membrane stiffness matrix K00 is obtained from
Eq. (19) as given in Eq. (59). This matrix is the same as originally reported in
Ref. [23].

1 2 3 4 5 67to9
1

Ai2/|3
-^33 XS2

Al 2/3 2/23

—JJ33 X3 X32

-Ai 2/2 2/23

X^33 X2 X32

D33 XS2 2/23

A2 ^32 2/23

^33 *^32 2/3

-i^12 x3 y23

^33 "^32 2/2

A2 ^2 2/23

0

2 Al 2/3 2/23

—X/33 X3 #32

DuVl
-^33 X3

-Ai 2/2 2/3

—X'33 rc2 #3

—1)33 x3 y23

1J\2 XZ2 2/3

—U33 x3 y3

-V12 x3 y3

^33 ^3 2/2

A2 X2 2/3

3

4

"Al 2/2 2/23

D33 x2 x32
"Al 2/2 2/3

—U33 X2 X3

Ai2/t
X/33#2

^33 X2 2/23

-JJ12 x32 y2

^33 X2 2/3

A2 X3 2/2

—JJ33 x2 y2

~D>\2 X2 2/2

"n XS2 2/23

^33 «^32 2/23

A.2 X32 2/3

—JJ33 x3 y23

—iy12 ^32 2/2

^33 *^2 2/23

^33 2/23

^22 *^32

^33 2/3 2/23

—1/22 *^3 ^32

-^33 2/2 2/23

X/22 ^2 *^32

5
-1)12 x3 y23

^33 ^32 2/3

—D12 x3 y3
—JJ33 x3 y3

A2 X3 2/2

^33 ^2 2/3

^33 2/3 2/23

—JJ22 x3 x32

As 2/1

X/22^3

-D33y2y3
—U22 x2 x3

6
^12 X2 2/23

—U33 x32 y2

A2 X2 2/3

-^33 xs 2/2

—D12 x2 y2

—U33 x2 y2

--^33 2/2 2/23

-^22 *^2 *^32

-As 2/2 2/3

—U22 X2 X3

D33y\
u22x2

7to9 0

t
4Ä

(59)

Type II. Instantaneous Strain Matrix: Partial derivatives of displacements
in accordance with Eq. (25) give

_T0 1000000 0]
1 ~ [0 0 1 0 0 0 0 0 Oj'

(2x9)

_ro 0001000 oi
2~L000001000J'
_ro 0000001 01

3"~ [0 0000000 ij*

(60)

(61)

(62)

Substituting these in Eqs. (29) to (31), the instantaneous strain matrices are
obtained as follows:

Kll
[i] 0 0

0 0 0

0 0 0

(9x9)

Ki2
0 0 0

0 [i] 0

0 0 0

(9x9)

K**
0 0 0

0 0 0

0 0 [i]
(9x9)

(63)
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in which

w

ax 2/23 + (JyX32

* TXy x32 2/23

°x 2/3 2/23 "-" aj/ *^3 «^32

Txy (ys X32 ~ X3 2/23)

ax 2/2 2/23 "f~ °V *^2 *^32

Tici/ \X2 2/23 ~ 2/2 ^32/

ax 2/3 2/23 ~~ ay X3 X32

Txy (2/3 ^32 ~~ X3 2/23)

°xyl+<*vxl
— 2 rxy x3 y3

~~ °x 2/2 2/3 "" Gy X2 X3

TX2/(^2 2/3 + 2/2^3)

"~ ax 2/2 2/23 + °y X2 X32

Txy \X2 2/23 — 2/2 ^32)

~ Gx 2/2 2/3 — ay X2 X3

rxy \X2 2/3 + 2/2 X3!

^2/| + 0r2/^2

— 2 T^ #2 2/2

t
4X (64)

This matrix is the same as originally reported in Ref. [1].
Type III, IV and VI stiffness matrix components are all zero, since there are

no rotational degrees of freedom.

Type V. Displacement Stiffness Matrix: If the partial derivatives of u and v

are taken as in Eq. (43) and the displacement coefficients {a}, are replaced by
nodal displacements {d} by means of Eq. (12), the fictititous strain vector /
becomes

'Ai (2/23 di + 2/3 d2 - y2 d3) + D12 (x32 d4 - x3 d5 4- x2 d6)

A2 (2/23 dl + 2/3 rf2 - 2/2 ds) + A2 (^32 d* ~ ^3 rf5 + X2 d%){/}
f/ll
/.

./a

1

(65)
^33 (^32 ^1 ^3 ^2 + ^2 ^3) + ^33 (2/23 ^4 + 2/3 ^5 — 2/2 **6/.

(3xl)

By analogy to instantaneous strain matrix, it is seen that /l5 f2 and /3 terms of
Eq. (46) are playing exactly the same role as ax, ay and rxy of Eq. (24). Therefore,

the H matrices of this type, are in the same form as the H matrices of
Type IL

From Eq. (50b)

^-<*4£4 ?[£»]' (50b)

and taking advantage of the analogy mentioned above, the first term of Eq.
(50b), for each displacement component u, v and w, becomes

K1
[h] 0 0 0 0 0 0 0 0
0 0 0 ; K2 0 [h] 0 ; K* 0 0 0

0 0 0 0 0 0 0 0 [h]
(9x9) (9x9) (9x9)

(66)

in which, [h] is identical to the (3 x 3) matrix [i] given in Eq. (64), except crx,

oy and Txy values are to be replaced by f±, f2 and f3 of Eq. (65), respectively. In
order to complete the stiffness matrix, partial derivatives of K1 must be taken
relative to d1,d2, ...,dna>s indicated in Eq. (50b). Due to space limitations, the
explieit Contents of these derivatives are not presented herein. The total
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tangent stiffness matrix then becomes the combination of various components
as follows:

[dK1 1 [dK1 ~\T
K K^ + Kil + Ki2 + Ki^ + K1+\^-{d}\ + k^W

_ [8K*fJ] [dK2c„Y ^ R^'r^l \dK\^V (67)

Tetrahedron Element

A general tetrahedron element is shown in Fig. 2 with three degrees of freedom

at each Joint in the local coordinate axes, xyz. The displacement poly-
nomials of Eq. (10), in terms of the xyz coordinates of a general point on the
element, are assumed to be

u a1 + a2x + a3y + a±z,

v a5 + a6x + a7y + a8z,

w a9 + a10x + a11y-{-a12z.

(68)

1 z,w

(xl8y,,2,) 0 L
//

UT
x,u ®U3.y3«*3>10

12

(x2iy2>z2^ ®A

7

»- y.v

4 (x4iy4iz4) Fig. 2.

The matrix, B, relating the nodal displacements, d1, d2, d12 to the
coefficients, alt a2, «12, according to Eq. (12), is

[B]
'[d]-1 0 0

0 [d]-i 0

0 0 [d]-1.
(69)
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in which, [d]

0 0 0

Xo 2/2

2/3

2/4

(70)

In order to develop a complete tangent stiffness matrix for the tetrahedron
element, all components of the H matrix given in Table 2 should be evaluated.
Note however, that the Types III, IV and VI matrices are all zero, since there
are no rotations specified at the nodes. The rest of the H matrices are obtained
as follows:

Type I. Linear Stiffness Matrix: Differentiating the generic displacements u,
v and w with respect to x, y and z, in accordance with the €0 expression given in
Eq. (7 b), the content of the matrix G0 of Eq. (17), is obtained as

1 2 3 4 5 6 7 8 9 10 11 12

0 10000000000000000100000
G0 000000000001001001000000000000010010

0 00100000100
(6x12)

After pre- and post-multiplying D by G0,H00 of Eq. (26) becomes

[#00]
EV
1+v

2

0

¦2v

3 4 5 6

0 0 0 0

0 0 0 0

7

0

0

0

0

0

\-2v
0

0

0

0

v

i o o \
0 \ 0 0

0 0 0 0

\ o 0 \
0 0 0 0

0 0 0 0

0 0 0 0

0 10 0

0 0 0 0

\-2v
0

0

0

0

l-v
\-2v

8 9 10 11

0 0 0 0

0 0 0 0

12

0

v

\-2v 0 0 0 0

0

0

0

0

v

l-2i

1-2^
0 0 0 0 0

0 0 10 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

i o o i
0 0 0 0

0 0 10
\ o o i
0 0 0 0

\-2v
0

0

0

0

\-v
\-2v

(71)

(72)

in which, V — the volume of the tetrahedron element, which equals to one
sixth of the determinant of the matrix d given in Eq. (70).
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Type II. Instantaneous Stress Matrix: The partial derivatives of u, v and w
displacements, in accordance with the expression of ex given in Eq. (7b), yields
the matrix 6?x of Eq. (25) as follows:

123456789 10 11 12

G,=
0 1 0 0

0 0 1 0 0

0 0 0 1

(73)

(3x12)

When the initial stress tensor ol of Eq. (24) is pre- and post-multiplied by G1?

in accordance with Eq. (29), the matrix H11 is obtained as

ts«]
'[*]

[0]
[0]

(74)

(12x12)

in which, using the initial stress tensor ol of Eq. (24), h matrix becomes

1 2to4

h
0 0

0 Gl

1

2to4
(75)

(4x4)

As explained earlier in connection with Eqs. (30) and (31), the Hi2 and Hi3
matrices are obtained in the same manner as the Hix matrix, except the
displacement u, is replaced by v and w, respectively. Therefore,

Hi2

Hi3

[0]

"[0]

[h]

[0]

[0]

[A]

(76)

(77)

Type V. Displacement Stiffness Matrix: In order to evaluate the stiffness
matrix of Type V given by Eq. (48), at first, matrix H01 of Eq. (49 a) should be
determined. The matrix Gx appearing inside matrix H01, has been already
evaluated in connection with Type II and given in Eq. (73). The middle block F,
is obtained from Table 3 - Eq. (46) as
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[F]

(l-v)a2 + va7
+ va12

l-2v
2

(a3 + «e) l-2v,
2 Ko + «4)

\-2v
2

(a3 + a6)
va2 + (l—v)a7

+ va12

1-21.,
2 K + an)

l-2v
2 Ko + a4)

\-2v
—2~-K+«n)

va2-l-va7
4-(l-v)a12

EV
{\+v){l-2v) ¦ (78)

(3x3)
After pre- and post-multiplying F by Gt, in accordance with Eq. (49 a) the
matrix H01 is obtained, since Gx is a partially unit matrix, as

1 2to4 5tol2

HQ1

0 0 0

0 [F] 0

0 0 0

1

2to4

5tol2

(79)

Similarly, exchanging the locations of u, with v and w, respectively, the matrices
H02 and H03 are obtained as follows:

lto5 6to8 9tol2

H02

0 0 0

0 [F] 0

0 0 0

lto5

6to8

9tol2

(80)

Ito9 10tol2

H™
0 0

0 [F]

lto9
10 to 12

(81)

As indicated in Eq. (49b), the /th column of matrix M01, is obtained as the
partial derivative of matrix HQ1, with respect to the coefficients a^ (j=\, ...,n).
Therefore, from Eq. (49b) and (79)

1 2tol2

M01

0 0

0 [m]

0 0

2to4

5to 12

(82)
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in which \m\T
EV

(l+v)(l-2v)

~(l-v)a2
l-2v
-g— ^3

\-2v
2

0

\-2v

va9

0

va3

\-2v
~^*2

0

0

\-2v
-2—^2
(\-v)a3
l-2v

0

\-2v
0

0

\-2v

va4

0

\-2v
—2~-a2

0

0

va4

l-2i/
—2—«8

0

l-2i/
-2—^2

-a«

va« i/ao

2 -s

(l-v)a4j

(83)

Differentiating H02 and #03 of Eqs. (80) and (81), in accordance with Eq. (49b),
the matrices M02 and M03 are obtained as

1 2tol2

Jf02

0 0

0 [mf]

0 0

1 2tol2

Jf03
0 0

0 [m"]

ltoö

6to8

9tol2

lto9

10tol2

(84)

(85)

in which, m! and m" are the same as m, except the coefficients, a2, a3 and a4

are to be replaced by a6, a7 and a8 for m! and by a10, an and a12 for m", respectively.

These coefficients are obtained, at the end of each cycle, from the nodal
displacements, dx, d2, etc., by means of Eq. (12).

Finally, the total tangent stiffness matrix K of the tetrahedron is obtained
in the Computer, from

K [By[H][B], (86)

in which, B is given by Eq. (69) and
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+ (H02 + M02 + M02 T) + (Hos + M03 + M03 T)
(87)

The linear component K00, coincides exactly with the stiffness matrix given
by Przemieniecki [14]. The rest of the components constitute the nonlinear
part of the tangent stiffness matrix and are dependent on the instantaneous
stresses and nodal displacements, which occur in the element at the end of
previous cycle. Very few of these nonlinear stiffness components, in the author's
knowledge, were reported until now.

Modified Newton-Raphson Iteration

For a given set of external loads, the objective of static nonlinear analysis
is to determine the true values of the displacements and internal stress
resultants. Since, the tangent stiffness matrix is dependent on the instantaneous
strains and displacements, an iterative methods of Solution is inevitable.
Newton-Raphson method of successive cycles of linear analysis has been used
in the Solution of a variety of nonlinear structural problems with extremely
satisfactory Performance [3, 4, 5, 17, 20, 21]. The basic principals of this

P2 Unbalanced
Joint

Loads

P2=F?fPe

k P r cycle geometry

2 cycle geometry

Equilibrium
GeometryP3=P2rPe

lpA
n

c\*
rf*'1U<*

P1= External

I P. Resultant
"~r ~~Th Internal" Loads

I r2iB,:

t »

^^JL^J
Di

Fig. 3.
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iterative method, as employed in the numeric examples of this presentation,
are outlined graphically in Fig. 3.

At first, using the initial geometry and the external loads Pe, a linear stiffness

analysis is performed corresponding to the straight line oa. The slope of
this line K±, represents the linear stiffness matrix of the structure. Using, the
nodal displacements D1, of this first linear cycle of analysis, in the nonlinear
expressions of stress-displacement relations (Eq. (7b)), the stresses as well as
stress resultants are calculated at each node of every element. At a particular
node of the system, in a particular direction of degree of freedom, the algebraic
sum of all the calculated stress resultants must be equal to the external load
given in that particular direction. Since, the nodal displacements obtained in
the first cycle do not correspond to the true equilibrium geometry, the
algebraic sum of internal stress resultants Pltint obtained using these first approximate

displacements will not be equal to the given external loads. The difference
between the internal and the external forces, that is

A P\,int~Pext (88)

constitutes the new external loads to be used in the next second cycle of analysis.
In preparation for a second cycle, tangent stiffness matrices of each finite

element are avaluated from Eq. (53), using all of the nonlinear components.
Thus, the changes in the global co-ordinates of the nodes, as well as the
presence of instantaneous strains and displacements, are all taken into account.
A second set of nodal displacements D2 are calculated, under the action of the
unbalanced nodal forces P2 following a purely linear analysis along the straight
line bc. The slope K2 of this line represents the tangent stiffness matrix of this
second cycle. When the nodal displacements of the first and second cycles are
superimposed, the system comes closer to the actual equilibrium configuration.
As a result, the difference between the external loads and internal stress
resultants, calculated on the basis of the combined nodal displacements, is
reduced. Denoting the internal stress resultants obtained at the end of the
second cycle by P2>int, the modified external loads P3, of the subsequent third
cycle becomes

-*3 ^2, int ~~ *ext • ^
Using the strains and displacements obtained at the end of the second cycle,
a new set of tangent stiffness matrices, represented by the slope K3 of the straight
line d e, are evaluated and under the application of the unbalanced nodal forces
P3, a third linear cycle of analysis is performed. The nodal displacements D3
of the third cycle are superimposed on Dx and D2 and a new set of unbalanced
nodal forces are calculated. The above iterative process is repeated until the
maximum unbalanced nodal force in any direction becomes less than a tolerable
value. The tangent stiffness matrices are successively altered after each cycle
so as to include the latest global coordinates and the latest strain and displace-
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ments. Unbalanced nodal forces are continuously diminished and the algebraic
sum of the nodal displacements at each cycle is taken to yield the final
displacements D, of the true equilibrium configuration as

D D1 + D2 + D3+--+Dn. (90)

Numerical Examples

For purposes of illustration of the use of tangent stiffness matrices in
connection with the modified Newton-Raphson iteration scheme, as well as

for assessment of relative importance of higher order terms, the following thin
plate examples have been solved:

1. Fixed square plate - Uniformly loaded (Fig. 4, 5).

2. Fixed square plate - Centrally loaded (Fig. 6, 7).

3. Simply supported square plate with immovable edges - Uniformly
Loaded (Fig. 8, 9).

4. Simply supported square plate with immovable edges - Centrally loaded
(Fig. 10, 11).

Inveriably, due to four-way symmetry only one octant of the plate is

analyzed dividing the plate into a 16 x 16 square mesh. The convergence criteria
is taken to be the ratio of the maximum unbalanced nodal force, to the maximum

stress resultant in that direction in the linear cycle. In most cases, this
ratio is reduced to less than 1% within five to seven cycles. The nonlinear
analysis of each particular plate has been performed for four different magnitudes
of external loads. Although the results of the analyses are illustrated by
continuous lines in all the diagrams (Fig. 4 to 9), the actual calculation points
are indicated by circles and triangles. In order to evaluate the relative effects
of the higher order terms of Eq. (53), the examples 3 and 4 have been solved
for two cases:

C&se 1. Tangent stiffness matrix, with types I, II and III, but excluding all
three components of type V.

Case 2. Tangent stiffness matrix, including all components of type I, II,
III and V.

The corresponding results have been shown separately in the diagrams,
by means of putting triangulär and circular signs, respectively, around the
points of calculations. For a reetangular element lying in the local xy-n\&ne,
a series of 24 x 24 tangent stiffness matrices have been derived, using the general
formulation presented herein. The assumed displacement funetions are
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u a1 + a2x + a3y + a4:xy,

v a5 + a6x + a7y + a8xy,

w a9 + a10x + an y + a12x2 + a13xy + a^y2 + a15x3 + aux2y + a17xy2

+ a18 y3 + a19 x3y + a20 x2 y2 + a21 xy3 + a22 x3 y2 + a23 x2 y3 + a23 x3 y3.

Due to space limitations the Contents of the tangent stiffness matrix
components of a reetangular element are not included in this paper. However, the
derivation follows exactly the same procedure as employed for triangulär and
tetrahedron elements. After the first cycle, as a result of nodal displacements,
originally square plates warp out of their planes and become spatial
quadrilaterals. Consequently, the tangent stiffness matrices derived for rectangles,
are no longer applicable to quadrilaterals in the subsequent cycles. However,
in all the computations, although the changes in coordinates as well as the
intermediate strains and displacements are duly taken into account, the change
of shape from square to quadrilateral has been neglected.
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There are exact theory of elasticity Solutions available in the literature for
Examples 1 and 3, as already indicated in the respective diagrams. It is not
possible, however, to compare the Computer Solutions of Examples 2 and 4

against any Solution, since, to the knowledge of the author, no exact Solution
exists in the literature for centrally loaded square plates.

Conclusions

By using the strain energy approach, in conjunction with Castigliano's
Theorem, a systematic method of derivation has been discussed for the development

of tangent stiffness matrices for finite elements. The uniformity of formu-
lations is expected to facilitate the inclusion of various high order terms of
strain energy, which were ordinarily neglected due to complexities involved in
the derivations.

As indicated in the numerical examples, when the higher order components
of tangent stiffness matrices are included, a marked improvement is observed
in the accuracy of the results as well as in the speed of convergence.

Although the numerical examples are for static analysis of nonlinear
structures, the concept of tangent stiffness matrix is readily applicable to the
stability problems in which the external loads are gradually increased until the
displacements become excessively large [25].



244 SEMIH S. TEZCAN - B. C. MAHAPATRA - C. I. MATHEWS

Further studies are desirable, however, to investigate the relative effects
of various higher order terms in more detail, and also to formulate different
Solution schemes for combined material and geometric nonlinearities. Tangent
stiffness matrices for triangulär finite elements with curvatures in two directions,

would be a useful extension of the formulation presented.
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Summary

A systematic method of derivation is presented for the tangent stiffness
matrices of geometrically nonlinear two and three dimensional finite elements.
At any deformed stage of the element, the strain energy is calculated by taking
into account all of the nonlinear components of the strain-displacement
equations. In addition to these nonlinear terms, the instantaneous values of the
variable strains are also included in the strain energy.

Resume

On presente une methode systematique de derivation pour les matrices de

rigidite tangentielle d'elements finis bidimensionnels ou tridimensionnels
geometriquement non lineaires. Pour chaque stade de deformation de l'element
on calcule l'energie de deformation en tenant compte de toutes les compo-
santes non lineaires des equations deformation-deplacement. En plus, de ces

termes non lineaires les valeurs instantanees des deformations variables sont
aussi incluses dans l'energie de deformation.

Zusammenfassung

Ein systematisches Herleitungsverfahren wird angegeben für die tangentialen

Steifigkeitsmatrizen geometrisch nichtlinearer, zwei- und dreidimensionaler

endlicher Elemente. Zu jedem Verformungszustand wird die
Verzerrungsenergie unter Berücksichtigung aller nichtlinearer Glieder der Deh-
nungs-Verschiebungs-Gleichungen berechnet. Zu diesen nichtlinearen Gliedern
werden auch die augenblicklichen Werte der variablen Dehnungen in die
Verzerrungsenergie einbezogen.
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