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Mild Steel Beams Under Cyclic Alternating Deflections

Poutres en acier doux soumises ä des flexions cycliques alterndes

Träger aus normalem Baustahl unter zyklischer Verformung

A. N. SHERBOURNE S. KRISHNASAMY
Professor of Civil Engineering and Dean Research Assistant Professor, Department
of the Faculty of Engineering, University of Civil Engineering, University of Water -

of Waterloo, Waterloo, Ontario, Canada loo, Waterloo, Ontario, Canada

Introduction

Simple plastic theory is based upon the concept of a set of proportional
loads which affect the collapse of a structure. In determining the load,
ductility of the material is considered rather than fracture. The theory is, in
reality, a limiting strength theory based upon the probability of failure of a
structure under a single application of a peak load rather than gradual collapse
under repeated application of loads below the static collapse value.

It is seldom, however, that a structure will be subjected to static load only.
In its lifetime, it may well suffer variable repeated loading such as wind, snow,
etc., even though the periodicity may vary within wide limits. The repeated
application of the load may cause the structure to fail either by "incremental
collapse" or "alternating plasticity".

The second type of failure is somewhat similar to a fatigue failure but
requires a much smaller number of cycles, a higher intensity of alternating
loads leading to a greater ränge of stress and a low frequency of application
leading to a longer time at peak values.

Considerable work has been done on the elastic-plastic response of structures

and several analytical Solutions have been proposed for determining the
"shakedown" load. These theoretical studies have often been verified by tests
on model and full-scale structures [1-6]. It is important to point out that
changes in material properties during cyclic loading are not taken into account
in the theoretical analysis of "shakedown" and "incremental collapse load"
problems where it is assumed that each application of peak load is sustained
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for a sufficiently long period as to allow the deformations of the structure to
stabilize; in this sense the loading is presumed to be "quasi-static". It is clear
from the published work on the material properties under cyclic loading
conditions that there is a significant change in the stress-strain characteristics of
the steel from one cycle to the other over a wide ränge of loading frequencies
from very high to quite low. It is necessary, therefore, to account for these

changes in material properties in analysing structures under cyclic loading
conditions; this is attempted here for low frequencies.

When a structure, loaded beyond the elastic limit, is subjected to cyclic
loading at or near the collapse value, the nature of the problem is completely
changed. The difference between conventional fatigue and this particular type
of problem is that the former is associated with high intensities of loading
producing failure after relatively few cycles. It is customary to refer to this
second problem as "low endurance" fatigue.

The materials aspect of the "low endurance" problem has been the subject
of investigation by many research workers [7-11]. The structural aspect of
the problem of "alternating plasticity" has received very little attention
[12, 13].

The little work done in this area is inconclusive in helping to predict structural

behaviour analytically since no attempt is made to relate dynamic
material properties to the study of structural response. The work after Royles
[14] throws some light on simple and continuous beams under a constant
deflection ränge in formulating empirical moment-curvature relationship for
mild steel beams subjected to alternate bending.

The procedure of Royles [14] ignores partially the effect of elasticity in
constructing the moment-curvature relation or otherwise assumes a fully
nonlinear material. The application of this type of moment-curvature relation to
simple structures, where the major part of the structure is well in the plastic
ränge, will not produce much error. In the case of statically indeterminate
structures, however, where the major portion of the structure may remain
elastic, the error may be considerable.

The nature of the loading on structures is random, and consequently, it is

very difficult to study such a complex problem directly. The problem can be
classified into two cases involving (I) load control, and (II) deflection control.
Once mathematical modeis have been established for the above two types it
might be possible to formulate a Solution for the more general random loading
case.

The purpose of this investigation is to develop an analytical technique for
deriving the cyclic behaviour of simple structures under a constant ränge of
alternating displacements (strains). It should be emphasized that alternating
displacements only are considered, of a type in which the maximum amplitudes
are identical in hogging and sagging.

The ambient conditions of loading rate are such as to confine the investiga-
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tion to low cyclic fatigue behaviour (1-100 cpm). The method depends upon
the generation of "pseudo-static" moment-curvature relationships which are
discrete funetions of the iristantaneous cyclic history. These curves are obtained
either from cyclic tests on beams under pure bending or from cyclic "push-
pull" tests.

The moment-curvature modeis are derived from cyclic pure bending tests
or "push-pull" tests (Controlling the strain ränge) and are then applied to
study the behaviour of structural components under controlled deflection
amplitudes of equal and opposite sign. The problem where the deflection is
being controlled is neither strain controlled nor load controlled. In fact, when
the deflection ränge at one point is controlled, the strain (curvature) ränge
and the moment (or load) at every other point changes from cycle to cycle
because of the varying strain hardening rates under different strain ranges.
Hence the analytical technique proposed here can predict the experimental
values if the deflected shape of the beam is controlled rather than the peak
deflection ränge at one particular point. In a pure bending (or push-pull)
problem, where the strain ränge is controlled, the moment (or stress) amplitude
increases from one cycle to the other; but if the moment (or stress) amplitude
is controlled the strain ränge decreases [14-16]. The exception to the above
statement occurs if the controlled ränge of strain or moment (or stress) is in
the region of yield, where the reverse is true. In a Situation where all these

parameters change and a different parameter of deformation is controlled, it is
reasonable to assume that the moment (or stress) will be less than the case
where the strain ränge alone is controlled. Based on this conclusion, and on
the fact that the moment-curvature modeis employed in the calculations are
derived from strain controlled tests, it can be deduced that the theory proposed
in this paper will yield an upper bound envelope behaviour. On the other
hand, the load controlled problem (which is not the subject of this paper) will
yield a lower bound "Solution".

Moment-Curvature Characteristics

Two types of steels are used in the expe*riments reported in this paper and
their chemical compositions are reported here. The material used in pure
bending, push-pull and cantilever tests is of the following composition:

Si S P Mn C Cr Fe

0.037 0.025 0.004 0.47 0.143 0.01 Remainder %

The chemical properties of the steel used in four point bending, simple
and continuous beam tests are as follows:

C Mn S P Si Fe

0.12 0.7 0.05 Remainder %
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The cyclic moment-curvature relations for the analysis of structural
components can be formulated in two ways from (I) axial push-pull tests, and (II)
cyclic reversed (pure) bending tests.

In general, four types of moment-curvature modeis can be employed in
the analysis as follows: (I) the model is linear until yield and non-linear
beyond, (II) non-linear from the outset, (III) bi-linear with two different
slopes, and (IV) a rigid-strain hardening type. The first two modeis are employed
in the analysis of structural components (determinate and indeterminate)
reported in this paper; the first of these two accounts for the effect of elasticity
while the second ignores it partly. The third model is similar to the first one

except for a constant slope in the non-linear ränge which is represented by a

polynomial in the first case. The fourth model completely ignores the effect
of elasticity. All four modeis are employed on a determinate structure
(cantilever beam) and the results are represented together with the experiment
on the same plot for the purposes of comparison. The first two modeis lead to
complicated numerical calculations because of their non-linearity, while the
latter ones are less cumbersome to apply. It follows, in general, that the
Model I will yield values closer to experiments than Model II. In the higher
ränge of strain, however, where the effects of plastic strain dominate, the
predictions are almost identical implying that the simpler continuous
nonlinear model (Model II) can often be employed in the analysis of structures
where elastic strains are small compared with inelastic strains. Model III will
yield an upper bound Solution (as in Model I) but the calculations will be

simplified to a significant extent. When the elastic and plastic strains are
comparable, the error will be appreciable, but this will diminish as the plastic
strain increases compared with elastic strain. In the case of Model IV, since
the contribution due to the elastic component is neglected, the error in the
working ränge (where the strains are very small) might be serious. The four
moment-curvature modeis can be represented mathematically as follows in
non-dimensional form:

k m elastic
k 1.0 + ocx (m — 1 )ß1 inelastic

k oc2 (m)^

k m elastic
k C 4- a3 (m — C) inelastic

k a4 (m — mc)

The constants ocx, oc2, a3, a4, ßl9 ß2, C and mc are funetions of the number of
cycles for which the particular model is constructed and can be computed by
plotting the appropriate data from the experiments on pure bending speeimen
or push-pull tests.

From reversed bending tests Royles [14] has concluded that the influence

Model I, (1)

Model II, (2)

Model III, (3)

Model IV. (4)
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of axial extension is predominant when strain ränge exceeds ±2.5% and that
moment amplitudes have to be adjusted accordingly. The present study was
limited to an inelastic strain ränge varying from yield to ± 2.5%. In the
experiments after Royles [14] (also reported here), the maximum strain ränge
considered was ±5.5%, and the results were adjusted accordingly for the
effect of axial extension.

Push-Pull Tests

The results of cyclic axial push-pull tests [17] are plotted on a log-log scale

(Fig. 1). By cross plotting from Fig. 1, the stress-strain curves of Fig. 2 a, can be
derived for various cycles. The stress-strain expression can be represented by
a power law

Aa a(Ae)h, (5)

cyclic frequency 6-30 cpm

— 4

only typical plots are shown

plot no strain ränge A B
% I03psi

1 0 600 69 50 0 0010
CVJ 0 744 71 90 -0 0058
3 1 000 71 Ol 00198
4 1 500 85 47 00 152
5 2 500 89 76 0 0225
6 3 4 00 98 60 0 0273
7 4 180 III 90 0 0388
8 5 2 90 122 20 0 0400

100 1000
cycles

10,000

Fig. 1. Cyclic Variation of Stress Range under Constant Strain Cycling.

200

10,000

5.000
000
500

Ao--a(Ae)
N-50 0

- 60100 Model I

Model I

% strain ränge

Fig. 2 a. Cyclic Stress-Strain Characteristics. Fig. 2b. Cyclic Stress-Strain Curve:
A Typical Value.
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Table la. (Authors)

Uycles <*i Pi a2 02

1.0 13.0 4.1521 0.22 5.6568
5.0 10.4 3.7020 0.35 4.7976

10.0 9.5 3.145 0.31 4.8692
50.0 8.6 2.604 0.45 4.0885

100.0 8.0 2.550 0.52 3.7934
500.0 7.3 2.26 0.56 3.7399

1000.0 7.0 2.115 0.62 3.5424
5000.0 6.2 1.9678 0.62 3.4306
0000.0 5.8 2.0773 0.64 3.4092

Table lb. (Royles)

uycles «i Pi a2 P2

1.0 10.980 1.9000 0.9961 3.4622
5.0 9.618 1.9003 0.9548 3.3577

10.0 9.003 1.9087 0.9268 3.3177
50.0 7.852 1.8972 0.8964 3.2041

100.0 7.379 1.8940 0.8833 3.1528
250.0 6.764 1.9002 0.8533 3.1041
500.0 6.348 1.8972 0.8397 3.0542

1000.0 5.964 1.8851 0.8358 2.9903
1600.0 5.720 1.8895 0.8193 2.9723

where a and b are material constants for a particular cycle (Table la). As seen
from Fig. 2 b, the power law very closely represents the material behaviour.

The cyclic moment-curvature relations for reetangular sections can be

deduced as shown in Appendix I and may be represented in Fig. 3 a. In Fig. 3b,
the moment-curvature characteristic derived from push-pull tests for a particular

cycle is plotted along with the experimental points from pure bending
tests. The geometric constants are computed and shown in Table lb.

0,000
5.000

000
500

100

Model II
N l

0 5

predicted from push-pull tests

oooo expenment (pure bendmg)

curvature K/Ky

Fig. 3 a. Cyclic Moment-Curvature
Relationships: From Push-Pull Tests.

io
curvoture K/Ky

Fig. 3 b. Cyclic Moment-Curvature
Relationship: A Typical Value (N= 100.0).
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I 0

Fig. 3 c. Cyclic Moment-Curvature
Relationship: Log Scale. 0 I

predicted from push-pull tests

oooo expenment (pure bendmg)

curvature, K/Ky

Pure Bending Tests [19, 20]

The constants ocx, oc2, a3, a4, ß±, ß2, C and mc for various numbers of cycles
are computed by plotting the data from Figs. 4 and 5 (see Fig. 6) and listing
as indicated in Table 2. The cyclic moment-curvature modeis generated by
employing these constant are shown in Fig. 7 for the first two modeis used in
the analysis. These moment-curvature characteristics are employed to predict
analytically the cyclic response of structural components under reversed
bending.

Fig. 6 a shows the log-log plots of both m — k modeis (I and II) for a parti-

cyclic Variation of moment amplitude-constant strain ränge

frequency 3-15 cpm (authors)

-A—£ & A^ä A«=4 4% (N 500)

3 4%(N 500)
O ^5

oq

D °

* A * *
A *

W- r- •

M((£=^))M

°>2 3%(N IOOO)

I 53% (N 3000)

* • 0 67%
¦*-5-x(N=20POO)

0 84% (N= 10,000)

0 cycles N

Fig. 4a. Cyclic Variation of Moment Amplitude: Constant Strain Range (Authors).
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100 0

cyclic Variation of moment amplitude

— constant strain ränge

frequency 6cpm

strain ränge Ae

• • • • •—•-
7%

Ae t 0 42 %
• • • • ««

1
1

-«—•—•—•—-• •-

I

-•-

1

100

cycles

1000 10,000

Fig. 4b. Cyclic Variation of Moment Amplitude under Constant Strain Range: Log Scale.

I (A€=ll I %)
frequency l-IOcpm

"v^7

(8%)

My 166 7 in lbs (Royles)

(5 I•-• V

65%)

0 9%

•- •
(0 75%)

cycles
10,000

Fig. 5. Cyclic Variation of Moment Amplitude: Constant Strain Range (Royles).

Table 2 a

Cycle ax IO3 psi. b

1.0 248.6 0.2599
10.0 302.7 0.2968
50.0 347.3 0.3225

100.0 368.4 0.3336
500.0 422.9 0.3594

1000.0 448.6 0.3705
5000.0 514.8 0.3963
0000.0 546.3 0.4073
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Table 2b

Cycle a2 ft
1.0 0.7736 3.8476

10.0 0.9022 3.3693
50.0 0.9822 3.1008

100.0 1.0160 2.9976
500.0 1.0870 2.7824

1000.0 1.1160 2.6991
5000.0 1.1800 2.5233
0000.0 1.2040 2.4552

Model I

0 |L-

N=50 0

oc, 80 60 /3, 2 60

«2= 0 45 /?2 4 10

Ol io
k,(k-l)

mc 1 40 N 50 0

c 1 50 0(3 15 3 o.

slope 0 06521

mc 1 j>^-—

- / Models I and 12"

/ I l i i i 1 t

8 10

curvature,k

Fig. 6 a. Cyclic Moment-Curvature
Characteristics (Models I and II):

Log Scale.

Fig. 6 b. Cyclic Moment-Curvature Characteristics;
Models III and IV.

N =10,000 5000
-500

1000
100

20 -

static

Model I

0 5

00
6 9

curvature, K/Ky

Fig. 7 a. Cyclic Moment-Curvature Characteristics for Various Cycles: Model I.
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max.
2-5 5000^ 1000-

N 10,000 / / 500 100

static

Model I

curvature, K/Ky

Fig. 7 b. Cyclic Moment-Curvature Characteristics for Various Cycles: Model II.

cular cycle. In general, the experimental plots show linearity on log scales of
m and k values; the curve II shows linearity on log scales of (m — 1) and (k — 1)

values. This approximation may introduce an error and its magnitude will be

comparatively greater near the yield point than at larger values of m and k.
From Fig. 6 a, however, this difference seems to be insignificant and, therefore,
the approximation is acceptable without introducing serious error in the
calculations.

Analysis of Structural Components

It is proposed to apply the moment-curvature relations generated from
experiments to structures in order to predict the cyclic history of loading
under a constant ränge of alternating deflections. The following assumptions
are made in formulating the theoretical approach:

(I) the structure consists of prismatic members with reetangular sections

symmetrical about the natural axis,

(II) plane sections remain plane during elastic and inelastic bending,

(III) the effect of shear and normal force is ignored,

(IV) instability is not considered to be a factor,
(V) the cross section of the beam remains constant throughout its cyclic life.

The moment-curvature relations derived in the preceding pages are applied
in the analysis of simple and indeterminate structural Systems. The m — k
characteristics (I and II) derived from pure bending tests are applied to all
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Systems whereas those derived from the push-pull tests and Models III and IV
are applied to cantilever beams only since it is believed sufficient to compare
some typical results rather than repeating all the problems.

150 — A8 0 790

AS
jj_ x x x_

nch

0 605

X
A

X X__x —
A A A £ A A A

n o o n n
AS 0 350

-
• • •

u o o o o O

AS 0 240
• • • • • ••

-
— theory based on "push -pull" tests

AS symbol dimensions depth 0 50 inch

_ 0 240 • width =0 25
0 350 o cyclic frequency =36 cpm
0 605 A

- 0 790 X

1 l l

100
cycles

10,000

Fig. 8 a.

A8 l 135 inch

___^
¦ A8=0 965

150
¦ o 5" o o o o o 0

s. A
A A

lbs

load,

100 - theory based on "push-pull" tests

AS symbol cyclic frequency 18 — 36 cpm
0 965 A dimensions depth 0 50 inch

^n

1 135 o

1

width 0 25 "

span =65

1

cycles

Fig. 8b.
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50

t) A8

A8= 79150

A8= 605

A A A ft A & A A8= 352

A8
U aO 250

O I O

def ränge expenment

0 250 inch A

0 352 "
o

0 605 " A

0 790 " 0

1114" »
I

frequency 18—36 cpm
dimensions depth 0 50 inch

width 0 25 "

span 6 50
theoretical predictions from "pure bendmg" tests

10 1000 10,000•00 Cycies

Fig. 8c.

Fig. 8a-c. Cyclic Variation of Load on Cantilever Beams under Constant Deflection Range.

Determinate Systems

Simply supported and cantilever beams are analyzed theoretically and
experimentally. Theoretical investigations and experimental procedures are
reported in detail elsewhere [18, 19, 20].

The moment-curvature relations proposed above are applied here to predict
the behaviour of simple determinate structures subjected to reversed bending
under the constraint of a constant deflection ränge. The moment-area technique
is applied to derive expressions for the angle change and tangential deviation

150 Model H
_—

"
X

120

y/^/X
-^¦"x

^^-^* """Model I
X

90

60 -/ /
xxx expenment
dimensions depht 0

width 0
span 6

50"
25"
5"

30

/ 1 1 1

frequency 1 8-36 cpm

theoretical prediction based

upon
" pure - bendmg" tests

i i i i i

04 05 06 07
deflection ränge, inches

Fig. 9 a. Cyclic Load-Deflection Range Curves forJTJantilever Beams (iV 50.0): Models I and II.
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-
theory

• • • expenment from pure bendmg

¦^y^^ ^-from "push-pull" test

•

Model Iy^^y^
P

1 Idimensions depht 0 50
(inches) with 0 25

span 6 50

1

deflection, inches

Fig. 9b. Cyclic Load-Deflection Curves for Cantilever Beams: Push-Pull and Pure Bendmg
(AT 50.0).

150

Model JV

Model I120

Model W radius P

N-500 =2"
Model I

l '/

=——J — theory

ooo expenment

6 5

section
at A-A

02 0 800 0 4 06
deflection ränge, inches

Fig. 9c. Cyclic Load-Deflection Range Curves for Cantilever Beams: Models I-IV.

of an element subjected to end moments. By suitably combining these expressions

and applying the appropriate boundary conditions, the rotation and
deformation of the structure at any point may be calculated (Appendix II).

Tests are carried out on eight 6x/2 inch long cantilever beam specimens
measuring 1j2 X 1// and 1/4,r x 1/4//. The deflection ranges are so chosen to cover
the whole strain ränge possible, i.e., up to ±2.5%. The frequency of the
loading varies from 1.8 cpm. to 6 cpm. depending upon the deflection ränge.
The computed results are plotted with the experimental values in Fig. 8. In
Fig. 9, the load-deflection curves derived by applying both the moment-



186 A. N. SHERBOURNE - S. KRISHNASAMY

curvature modeis, are plotted for one particular cycle along with the
corresponding experimental results.

The analytical technique developed previously is now applied to predict
the cyclic Variation of loads on a simply supported beam subjected to a central
load under a ränge of alternating deflection. Predicted values are compared
with experiments after Royles [14]. The method is explained in detail in a

paper by the authors [18] and the cyclic moment-curvature constant are given
in Table lb. The results are plotted in Fig. 10. The value of ey is 0.13% for the
material used by Royles [14].

380 ' A8 0-974 inch

• A8 0-840 inch
dimensions-. width 5/16

depth 5/.I6"
span 6"

€y 0l3%

300 »-

A8 =0-657 inch

A8 =0-467 inch

Model I
o o

A8 =0-276 inch

x x symbol A 8

X 0-276
O 0-467

• 0-657
V 0•840
o 0-974

xx

experiment after Royles (14)

cycles

Fig. 10. Cyclic Variation of Load on Simple Beams under Constant Deflection Range (Model I).

Indeterminate Systems

Analytical investigations are carried out on some indeterminate structures
in order to predict their behaviour under a constant deflection ränge. One, two
and three hinges Systems are analyzed and the cyclic moment-curvature
relationships (Models I and II) derived previously are employed in the calculations.

A three-span continuous beam loaded symmetrically is analyzed and
the predictions are compared with experiments after Royles [14]. Virtual
work methods are employed in the analytical calculations (Appendix III)
which are reported in detail elsewhere [20]. Load deflections curves (Figs. 11,
12 and 13) are plotted for various numbers of cycles of loading along with
static load-deflection curves premised upon the usual bi-linear elastic-plastic
moment-curvature relationship. In the two hinge system, the effect of varying
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135

120

105

N l

Model I
statico 60

W W-hinge II

hinge I LÜ
b= Ol L= 10

•100 -200 -300 -400 -500 -600 700 -800 900 1-00

central deflection, inches

Fig. IIa. Cyclic Load-Deflection Curve for Two Hinge System: Model I.

135
b =01

120

Model II
105

N= I

r 75

static

— hinge H

hinge I

W W

Ui
I I

I 1

¦ 100 -200 300 -400 -500 600 -700 -800 -900 100
central deflection, inches

Fig. IIb. Cyclic Load-Deflection Curve for Two Hinge System: Model II.

the spacing between the two point loads is studied. For the centrally loaded
continuous beam (Fig. 13), the cyclic Variation of central bending moment
for various deflection ranges is plotted in Fig. 14 along with experimental
values of Royles [14]. The deflection ranges are maximum amplitudes of
total 0.154, 0.243, 0.364, 0.554 and 0.740 inch equally divided in positive and
negative curvature about the undistrubed reference position of the bearns.
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N= 10,000

300

270-

240

210

180 N=l

i 150
Model I

hinge DJ

stotic

ol j bl
hinge u

hinge I

0 0-6 L 10

b 0-4

10 -20 -30 -40 -50 -60 80 -90

deflection, inches

Fig. 12. Cyclic Load-Deflection Curve for Three Hinge System: Model II.

^ 400-

N=I600
500
100

N=l

static Model I

II hinge -—s—:—zs „ &
6 6 6

I hinge

150 400 450100 •200 -250 -300 -350

central deflection, inches

Fig. 13a. Cyclic Load-Deflection Curve for Continuous Beam: Model I.

Table 3 a

System Load
(lbs)

Spacing of
Loads

Span L
(inches)

Deflection
Range

Single Hinge
Two Hinge

160
162
166
187
214

0.05 L
0.1 L
0.2 L
0.3 L

10
in all
the
cases

±0.5 in.
in all
the
cases
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Table 3 b

System Load
JV=1

(lbs)
2V= 10,000

Spacing
of Loads

Span L
(inches)

Deflection
Range

Single Hinge
Two Hinge

160
162
166
187
214

196
199
207
229
259

0
0.05 £
0.1 L
0.2 L
0.3 L

10
in all
the
cases

±0.5 in.
in all
the
cases

ÖUU

700
N I600

600

500 N l

lbs Model I
$"400

o

static

/
W300

I h

II

nge

hinge
A

\
200 A 6" * 6" A
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Discussion and Conclusions

A method is developed for determining the cyclic Variation of loads on
simple and indeterminate beams subjected to a constant ränge of alternating
deflection. Cyclic moment-curvature relations are generated from experiments
involving pure bending and axial push-pull tests. Employing these moment-
curvature characteristics, theoretical values of load variations on simple
beams subjected to a constant ränge of reverse deflection are compared with
tests.

Two types of moment-curvature realtions are employed, designated as

Model I and Model II, depending upon the inclusion or rejection of elastic
strain components in the ränge of total strain. It follows, in general, that
Model I will yield values closer to experiments than Model II. In the higher
ranges of strain, however, where the effects of plastic strain dominate the two
predictions are almost identical implying that the simpler continuous
nonlinear model can often be employed in the analysis of structures where elastic
strains are small compared with plastic strains.

A bi-linear moment-curvature model (Model III) with two different slopes

may be employed instead of Model I; it will yield a higher envelope to the
problem but the calculations will be simplified to a significant extent. When
the elastic and plastic strains are comparable, the error will be appreciable
and this will become very small as the plastic strain increases with respect
to the elastic strain.

A rigid strain hardening type of moment-curvature model (Model IV) can
also be employed in the calculation, but, since the contribution due to the
elastic component is neglected, the error in the working ränge (where the
strains are very small) may be serious.

It is useful to suggest here that more experimental evidence in the yield
region will give a better understanding of the nature of the behaviour of the
material in order that a more realistic model might be assumed. Even though
Model I is more cumbersome in its application, this can be overcome by the
use of digital Computers. It is also proved in general that the existing classical
static analysis of structures is conservative.

The analysis presented in this paper predicts the load-response on the
basis of certain moment-curvature data generated by recourse to simple tests,
and m — k modeis derived from a fundamental stress-strain curve which is

itself a function of the strain. The correlation seems to be good. The study
reported here predicts the load-response of simple and indeterminate structures

subjected to constant deflection ränge. The work will only be complete,
and more practical, if it is also extended to embrace the behaviour of structural
components under a constant load ränge. It will also be more correct if every
point on the moment-curvature model is determined from a number of tests
rather than a single test.
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Notations

m moment amplitude
me moment amplitude in the elastic ränge
my yield moment
N number of cycles
k non-dimensional curvature (ratio between curvature at

any point and that at yield)
m non-dimensional moment (ratio between moment ampli¬

tude and that at yield)
<*i j a2, a3, a4, ßx, ß2, mc, C constants of the moment-curvature relationship
Ae strain ränge
e angle change
8 tangential deviation
y,A non-dimensional form of 6 and 8

<f>n end slope
Vn deflection at a point
Vc central deflection
Y non-dimensional form of deflection
*v deflection ränge
L length of the beam
Sx. Sn segment lengths

Lx.. Ln ratios: y - • «-y-
I second moment of inertia
E modulus of elasticity
e extent of elastic region
p extent of plastic region
KX,K2 constants
€v yield strain
Ae strain ränge
Av stress ränge
dem maximum strain ränge
B width of the reetangular beam
2d depth of the reetangular beam

Gv yield stress

A,B,a,b material constants

Appendix I. Cyclic Moment-Curvature Characteristics from Push-Pull Tests

The cyclic stress-strain ränge relationship can be represented by a
polynominal as below:
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Ao a(Ae)h,

where a, b are material constants (Table 2 a).
Now the above stress-strain ränge relation is applied for deriving the cyclic

moment-curvature characteristics for a symmetrical (reetangular) section.
The resisting moment of the section, then, can be written as:

d
M 2B]axdx.

o

Evaluating the integral

2+6\ d l
vM

In the elastic ränge, a E and 6 1. Hence, the value of the moment in the
elastic ränge

and the yield moment

M=^-A^d2

My ^— where AemE 2ay.

Now rendering the yield (1-1) non-dimensional

jf_ 3a(J«J>
My 2{2 + b)ay-

>

The moment-curvature characteristics can be plotted from Eq. (1-2) for
various cycles by plugging the proper values of a and 6 and putting
oy 33.5 -IO3 psi.

The m — k relationship employed in this paper is in the following form:

k oc2 (m)&,

where oc2, ß2 are geometrical constants. Values of k and m are generated for
a particular cycle from Eq. (1-2) and they are plotted on log-log scale (which
as indicated earlier is a straight line) to arrivate at the constants oc and ß.
This procedure is repeated for various cycles and the constants are tabulated
(Table 2b).

Appendix II. Deflection of Determinate Structures under Cyclic Loading [18]

Expressions are developed for angle changes and tangential deviations for
various types of loadings on beam elements; these are applied to predict the
Variation of load on simple beams subjected to a constant ränge of alternating
deflection.
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Inelastic Bending Belationships

As explained earlier, four types of moment-curvature relations (Eq. 1 to 4)
are employed in the analytical computations. Here, relationships are developed
for the first two modeis under various loadings and are tabulated in Table 4.
The relationships for the other two modeis can be similarly derived.

Table 4

v Rotation

wh<1.0
m2>1.0

wh^l.O
m2<1.0

ra^l.O
m2>1.0 m1 m2

Elastic Non-Linear A + C + D A + C-D C +H+1.0 l.O+ax^-l)^1

Complete Non-Linear
a2{m2(&+D_mi(&+l)}

(ß2+l)(m2 — wh)
«.(™i)A

Elastic A

A Tangential Deviation

m1<1.0
m2>1.0

wh^l.O
m2<1.0

m^l.O
m2>1.0 m1 m2

Elastic Non-Linear B + E — F H-G+ F E — G + H + 0.5 v/2

Complete Non-Linear

a2{m/2+2)-m1(^
(j8a+l)(j88 + 2)(ma-

-a2(m/2+1)

2+2)}

-mj)2
v/2

(A+i)(»*2-^i)

Elastic B

A (m^m^/2; B (2m1 + m2)/6; C {ai(m2- l)ft+1}/{(ft+ 1) (m2-™i)};
D (m2-l)2/2(m1-m2); E {ai(m8- l)ßl+2}l{(ß1+1)(]31 + 2)(m^mj«};
^ {(m2-l)»}/{6(ma-m1)»}; O 1^^-l)^+2}/{(i31+1)^ + 2) (m^m^2};
H {«i(»»i-l)A+1}/{Oi+l)(m1-fiiI)}.

Using the appropriate relationship (Eq. 1), angle changes and tangential
deviations of flexural members may be determined by direct integration:

Elastic Region

6ab KyLJkd(xlL)=^^jmd(xlL),
A A

B B

8BA Ky L2 f* (xjL) d (xjL) ^- \m (x/L) d (xjL).

(II-l)
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Inelastic Region
B

6AB KyLJkd(xlL)=^jmd(xlL) +^^j{1.0 + 0c1(m-l)ßi}d(xlL),
A Elastic Inelastic

B

8BA Ky L2jk (xjL) d (x/L) ^-2 Jm (x/L) d (x/L) (II-2)
Elastic

M„L2 7l^^{1.0 + ^(m-l^}{xlL)d(xJL).
Inelastic

where 6AB total angle change between two points A and B.

hBA the tangential deviation of point A from the tangent through
point B; distance (x/L) is measured from A.

2. Model II
Applying the Model II type of moment-curvature relationship (Eq. 2), the

expressions for 6 and 8 are as follows:

tt tt
6ab KyLJkd (xlL) ^- ja2 (m)ft d (x/L),

A A
B B
C M L2 C

hBA Ky L2j k (x/L) d {xjL) -fj- j a2 (m)ft (x/L) d (xjL).

(II-3)

Expressions for 6 and S

Considering the beam element subjected to a load as shown in Fig. 15, the
angle change and tangential deviation can be obtained by employing the
appropriate equations (II-1) to (II-3) above. All values are made dimensionless
for convenience.

m(s

njiviy

A

3> MZ

^ vy

*"

mpMy

9AB= angle Change

Sab - tangentential
deviation

Fig. 15. Beam Element.
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1. Model I
I. Angle Change. Moment at any point, xjL (taking the origin at A)

m(x/L) ml + (™2 - ml) (XIL) • (n"4)

In the elastic region,
hxiD mi + (m2 ~ mi) (XIL) (H-5)

and in the inelastic region,

hxiD 1.0 + ax {m1 + (m2 - rax) (x/L) - 1.0}&. (H-6)

The change in angle between A and i?, from expressions (II-5) and (II-6), is:
e

eAB -jjjj- I {™1 + (m2 _ ml) (XIL)} d (XIL)
°

,0 (H-7)

+ ^^J[1.0 + o1{m1 + (ma-m1)(a!/L)-1.0}A]d(a;/JL).
e

By evaluating the integral (II-7)

_ i^Xf^ + m, ^(m.-l.O)^ (m2-l)2 | JfyL^ EI \ 2 (ß1+l)(m2-m1) 2(m2-m1)j y EI ' { }

II. Tangential Deviation. One needs the tangential deviation 8AB; this can
be determined by applying expression (II-2) in which the origin is taken at
point B instead of A. The moment at any point (x/L) is thus given by:

m(x/L) ™>2- (m2 ~ ml) (XIL) • (n"9)

The tangential deviation becomes:

M L2 f
hAB ^T] [1-0 + cc1{m2-(m2-m1)(xlL)ß^(xlL)d(xlL)

0

1.0
M L2 C

+ -fj- J {w2 - (m2 - mx) (x/L)} (x/L) d (x/L).

Evaluation of the integral (11-10) leads to:

MyL2 f 2mi + m2 gl (m2- 1 )(ft+2> (m2-l)3 | =AMyL2
AB EI \ 6 +(ig1+i)(i81 + 2)(m2-m1)2 §(m2-m^)2) EI '

(11-11)
2. Model II

I. Angle Change. Moment at any point (x\L) (origin at A)

m(xlL) % + K-%) («/£) ' (H-12)
Then k(x/L) oc2{m1 + (m2-m1)(xlL)}ßK (H-13)
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Change in angle

l.U

~^rJa2{w1 + (ma-m1)(a;/JL)}ftd(x/i)
o

MyL a2{m2<fe+1>-m^+1>}
_ MyL

EI (ß2+l)(m2-mi) ~V EI ¦

(11-14)

//. Tangential Deviation. Moment at any point (x/L) with origin at B

m(xlD m2- (m2 -mx) (x/L). (11-15)

Then k(xlL) a2 {m2 - (m2 - mx) (x/L)}^. (11-16)

Tangential deviation

M L2 C

8ab —fij- I *M% - (m2 - mi) (*/£)}* (xlL) d (x/L)
0

MyL2 r «2{m|fe+2>-m1'fe+2>} <x2 (m1)fe+1 1
_ MyL2

EI [(ß2 + l)(ß2 + 2)(m2-mi)2 (ß2+l)(m2-mi)\ ~ EI'
(11-17)

As explained above, the expressions for the values of y and A for various
types of loadings are derived and tabulated (Table 4).

Example

The above expressions are now applied to solve a particular problem. The
method as explained in this paper is oriented to a digital Computer since the
amount of work is enormous and it is cumbersome to do by hand. A detailed
study of the Computer flow diagram [18] indicates that, in order to proceed
with the Solution of the problem, it is necessary to know two initial conditions
of either of the boundaries, i.e., rotation and deflection at the support. In a
cantilever beam, for example, the values of cf> and y are known at the built-in
end. In the case of a simply supported beam, however, only y is known and
</> has to be determined at the support. It is, therefore, proposed to formulate
an expression for the end slope <f> of a simple supported beam in terms of the
constants y and A.

A simply supported beam loaded as shown in Fig. 16 is considered. The
Solution is first formulated for this particular problem and is then generalized
for any type of loading.

The B.M. diagram is drawn for the given loading and divided into as many
small parts as required; the ordinates are designated as shown.

Constants yx, y2, y3 and A1, A2,A3 are the values of y and A for the segments
(l)-(2), (2)-(3) and (3)-(4), respectively.
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miM. Ck Si

©

m| My

W2 W3

S2 S3

© ®
a)beam

b) b.m. diagram

ÄJ~AJ m4My

®

n^M
m3My m4My

03.4
*2

»1.2

c) deformed shape

Fig. 16. Simple Beam (Example).

From Fig. 16, a general expression for </> can be derived as shown below:

M„Lt

(11-18)

<£ Eyj {yi^i+y2^2+r3^3+ • • • +yn-iLn-i}

+ ^[{A1L2 + A2L22 + • • • + An_1L*_J

-{y1L1L1 + y2(L1 + L2)L2+ +yw_1(L1 + i2+ • • • + Ln_t) Ln^}].

In order to solve a specific problem applying the above technique, the following
steps are necessary:

1. The bending moment diagram for the given loading is drawn and is divided
into as many segments as necessary. Each ordinate of the diagram is divided
by the yield moment (My) to make it dimensionless.

2. The constants oc and ß are chosen for a particular cycle of loading.
3. The values of y and A are evaluated for all the segments of the beam by

applying the appropriate expression.
4. Using the expression (11-18) the value of </h is calculated.
5. Once </h is known, it is a simple addition and subtraction, using values of

y and A, to calculate the rotation and deflection of the beam at any required
point.

6. The procedure may be repeated for any number of cycles.



198 A. N. SHERBOURNE - S. KRISHNASAMY

The above technique can be made more convenient to apply in the Solution
ofproblems by plotting values of m2 against y and A for various values of m1. In
order to solve a problem completely, one needs a family of plots for all loading
cycles.

The procedure explained above is easy to apply in finding the rotations
and deformations of a beam once the load is defined. When it is required to
find the loads on the beam for a given deflection, it becomes cumbersome and
a trial and error procedure has to be invoked. To avoid this difficulty a digital
Computer programme is developed in the language of Fortran II [18]. This

programme will compute the loads on a determinate structure for a given
deflection by properly reading in some specific initial conditions.

Appendix III. Central Deflection of Two Hinge System

Typical calculations for a two hinge system are shown. The moment-
curvature relationship (Model I) is used in the calculations. Due to symmetry
of loading, there is only one unknown, the end moment. Assuming that the
ratio between the moment at the loading point and the end moment is equal
to k, the expression for the end moment can be written in terms of k, a and W

as shown below.
Referring to Fig. 17,

m — -
WaL
M —Km

or m

v

WaL (III-l)
(K+l)My'

If the value of the constant k is known for a given value of W, the value
of m can be evaluated from equation (III-l). The value of k can be found
from Virtual work equations [21].

* (c)
¦0

3L I bL |
structure

unit moment

unit moment
diagram

I C 2

(a)

4*
(d)

I unit load

a,L
l-C /cm

10

(b)

1/2

b.m.d. dueto
m load

(dimensionless)

(e)

(f)

1/2

b.m.d dueto
unit load

Fig. 17. Two Hinge System.
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There are three stages of loading:

1. purely elastic,
2. the moment at A exceeds the elastic limit but the moment at 1 is below

the yield point, i.e. m> 1.0 Sind /cm^l.O,
3. moment at A and 1 exceed the elastic limit.

It should be noted here that the loading on the structure is assumed such

that the points A and B reach the yield limit before any other point on the
structure. The deflection of the beam at the centre can be calculated by
writing the Virtual work equation. Here three cases mentioned above have to
be considered. The equation for deflection in each case is derived by knowing
the values of k and appropriately combining the loadings (Figs. 17 b and

17f).
A detailed derivation of these equations is given in Ref. [21].

Stage (I) (m^l.O and Km < 1.0)

_MyL2\ mal Km(a-a1) (2a + a1) Km(l-4a2)"[
Vc ~"~1bT~[ 6~+ 6 + 8 _]'

K ' }

Stage (II) (m>1.0 and Km < 1.0)

2M„L2
Vc

MyL2\ \(ax-e)2 *xa\(m-lf^ \ jm
"¥T_[~l"_T_ + 2(^1+l)(^1 + 2)m2J"\TLai (ai 6)i

m[al-(a1-er]] + Km{a-^
(III-3)

6ax

Stage (III) (m>1.0 and Km> 1.0)

2MVL2\ (K-e)2 aiaf(m-l)fr+2 \m

6 l«i («i e> 1}+ 2Km\2 + 3Kmj
[(a-a-y (Km-1) + JKm- 1) {a2-a\) a1a(a-ax)(Km-l)ß^+1

+ { 4K2m2 + m(/3i + l)
oc(a-a1)2(Km-l)ßi+2) n_4a2v

Employing the moment-curvature Model II, the central deflection can be

written as follows:

_2MyL2\ «2a2mß* aca{Km)ß*(a-a1) fly°--J^r2(ß2+l)(ß2 + 2)+2(ß2+l)(ß2 + 2)^ + a{ß2+1)}

+ ^^(1_4a2)-|
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Summary

An analytical technique, based upon some simple experiments, is developed
for predicting the behaviour of mild steel, simple and indeterminate, structures
subject to reversed bending of the type in which a strain (or deflection) ränge
is prescribed. The method constructs moment-curvature relationships which
are funetions of the cyclic history of the structure and uses these curves to
determine the Variation of load with cyclic straining.

Resume

En se basant sur des experiences simples, on developpe une methode
analytique pour prevoir les proprietes de structures en acier doux, simples et
indeterminees sujettes a une contre-courbe du type dans lequel une classe de
deformations (ou de flexion) est prescrite. La methode conduit ä des relations
moment-courbure qui sont fonetion du passe cyclique de la structure et utilise
ces courbes pour determiner la Variation de la charge avec des contraintes
cycliques.

Zusammenfassung

Es wird auf Grund einiger einfacher Versuche ein Berechnungsverfahren
entwickelt, um das Verhalten von Tragwerken aus normalem Baustahl,
einfach und unbestimmt, unter durch den Dehnungs- oder Durchbiegungsbereich
vorgeschriebener Wechselbiegung vorauszusagen. Die Methode ergibt Moment-
Durchbiegungs-Beziehungen, die Funktionen der Wechselbelastung sind, und
verwendet diese Kurven zur Bestimmung der Laständerung mit zyklischer
Dehnung.
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