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The Edge Reinforced Cantilever Plate Strip

Plaques en console et ä bord renforce

Der randversteifte Kragplattenstreifen

HERBERT REISMANN SHENG-HSIUNG CHENG
Professor, Faculty of Engineering and Graduate Assistant, Faculty of Engi-
Applied Sciences, State University of New neering and Applied Sciences, State Uni-

York, Buffalo, New York, U.S.A. versity of New York, Buffalo, New York,
U.S.A.

I. Introduction

The cantilever plate is a common structural element, and its stress and
deformation characteristics have been examined in a series of previous
publications. The earliest treatment appears to be due to Mc Gregor [1] and Holl
[2] who considered the edge loaded cantilever plate. Mc Gregor applies the
method of Fourier integrals to a cantilever plate strip of unbounded length,
while Holl considers a plate of finite length and employs the (approximate)
method of finite differences. Jaramillo [3] has treated the case of a cantilever
strip of unbounded length under the action of an arbitrarily placed concentrated

load. The authors of [1] through [3] employ classical plate theory,
which neglects shear deformation. A recent study [4] of the edge loaded
cantilever plate within the framework of an improved plate theory indicates
that shear deformation effects are limited to the vicinity of the (concentrated)
edge load and that other regions of the plate are not affected provided the

plate width is large compared to the plate thickness, i.e., say t-> 10.

In actual construction practice, it is customary to reinforce the free edge
of the cantilever plate by means of a beam, resulting in a general stiffening
of the structure. The present investigation is concerned with the case of a
cantilever plate strip of finite width rigidly clamped along one of its edges.
A beam is monolithically attached to the opposite, parallel, free edge. The
plate is unbounded in the direction of the clamped and free edges. A
concentrated load is assumed to act on the reinforcing beam which distributes
this load to the plate (see Fig. 1).
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Nomenclature

Dimensional quantity Physical description F-L-T units

D ——— 2\ plate flexural rigidity F — L

E Young's modulus FjL2
h plate thickness L
a width of plate strip L
P transverse concentrated load F
EI beam flexural rigidity F — L2

G J beam torsional rigidity F — L2

Sinh oc \ (ea — e~~a) hyperbolic sine function of a

Cosha -|(ea + e~a) hyperbolic cosine function of a

To convert to
dimensional

Dimensionless form, multily
quantity by Physical description

x a coordinate along clamped edge

y a coordinate along the plate width
z a coordinate perpendicular to the xy-nl&ne

w ^r-^ deflection of platePa2
P_

~yza'
load intensity

Mx P bending moment per unit length of section of plate
perpendicular to the x axis

My P bending moment per unit length of section of plate
perpendicular to the y axis

Mxy P twisting moment per unit length of a section of
the plate perpendicular to the x axis

p
Qx — shear force parallel to z axis per unit length of

a
sections of a plate perpendicular to x axis

p
Qy — shear force parallel to z axis per unit length of

a

EI
sections of a plate perpendicular to y axis

k± —— 1 stiffness ratio of beam flexural rigidity to the
product of plate flexural rigidity and plate width

C J
k2 y—- 1 stiffness ratio of beam torsional rigidity to theDa

product of plate flexural rigidity and plate width
Poisson's ratio
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II. Basic Equations

According to classical small deflection plate theory, the transverse deflections

of the median surface of the plate are characterized by

d*w
+ 2

d*w d*w
dx* dx2dy2 dy1a

?> (1)

where q is the load intensity. The moment and shear stress resultants are
related to the deflections by means of the following equations:

ld2w d2w\

I82w 82w\

M, -Jf =-(1.
82w

dxdy'
8 I82w 82w\

^x =~J^\Jx2+~87fj'
d I82w 82w

^v ~8~y\8x2+8~y2

(2)

(3)

(4)

(5)

(6)

The infinite cantilever plate strip with a beam reinforcing the free edge is
shown in Fig. 1. We introduce the Cartesian co-ordinate system Oxyz such
that the xy-jA&ne coincides with the median plane of the plate. The #-axis is
chosen to coincide with the clamped edge. The constant load P acts on the
beam perpendicular to the xy-nla,ne.

Fig. 1. Plate Strip Geometry.
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The governing equation and boundary conditions [5] and [6] are as follows:

d*w 8*w £^_0Jtf* dx2dy2 + dy* ' '

w(x,0) 0, (8)

^(*,0) 0, (9)
dy

7 ld*w\ [d*w /ft d*w ]

7 / d*w \ [d2w d2w)
-MäPäFU* W+V^U (11)

where Eq. (10) is Kirchhoff's condition which is equivalent to the requirements

-IQ,-'**) »{£"+<»-.)??} (12)
\ y dx fy==1 dy\dy2 dx2jy=1

III. Solutions for Deflection and Moment

By applying the familiär Fourier Transform [7] with respect to the
^-coordinate to the biharmonic Eq. (7), the boundary conditions, Eqs. (8) through
(11), and Dirac delta function 8 (x), we have

oo

w(<x, y) =-—= \w(x,y)ei0LXdx (13)
T2ttJ

— 00

with the properties of the transform of the derivative

w^n)(cx.,y) — ioc)nw(oc,y), (14)

where w{n) is the nth derivative of w with respect to a. The inverse Fourier
Transform is

oo

w(x,y) -== iw(oc,y)e~iocxdoc. (15)
i27Tj

Since —L [h{x)eiotxdx —L= (16)
i2ir J Y2tt

the Substitution of Eqs. (13), (14), (16) into Eqs. (7), (8), (9), (10), and (11)
leads to

d* _ „ ,_0*
dy

Aw(oc,y)-2oc2~-2w(oc,y) + a*w(a,y) 0 (17)



THE EDGE REINFORCED CANTILEVER PLATE STRIP 153

with the boundary conditions

w(<x,0) 0, (18a)

— w(*,0) 0, (18b)

k1x*w(x,l) ^w(x,l)-(2-v)x2 — rö(a,l)+—, (18c)

d _ d2 _ _k2oL2-7—w(oc, 1) -^-^w(<x, l) — vx2w(x,l). (18d)

The Solution of Eq. (17) is

w(oc,y) A1Sinhay + A2aySinhoty + A3Cosh(x,y + A±ayCoshoty. (19)

The coefficients At(i= 1, 2, 3,4) are determined from Eq. (18a), (18b), (18c),
and (18d) to be

A3 0, (20a)

A^ -A1, (20b)

Ax —L {[aÄ:2-(l-v)a]Sinha-h(a2Ä;2-2)Cosha}, (20c)
a3y2 7r/(a)

^2 -^J {[(l+v)-a2Ä:2]Sinha + (l-v)aCosha}, (20d)
xz\2rrf(x)

where

f(oc) -2-±(l+v)2 + [2k1 + 2k2-(l-v)2-ik1k2]*2-k1k2a*
-(Ä;1-Ä:2)aSinh2a + l[-4 + (1+^)2 + ^i*2a2]Cosh2a.

(21)

Consequently,

^ (a>^) ~7^= ^TTT [{[fc2-(1-v)-(1+v)y]a + a8fc2y}SinhaSiiihay
]/2 77 or/(a)
+ {[k2-(l-v)y]x2--2}CoshK&inh<xy

(22)

— [&2 — (1 — v)] a21/SinhaCosha?/ — (a3k2 — 2x)y CoshaCosha^/]
Let

H (<x,y) {[k2 — (1 — *>) — (1 + i>)^]a + a3&2^} Sinha Sinha?/

+ {[fc2-(l-v)^]a2-2}CoshaSinha2/
— [k2~(l—v)]x2ySinhxCoshay ^ '
— (a3 k2 — 2x)y Cosh a Cosh a ?/.

By applying the inverse Fourier Transform, Eq. (15), and with the aid of
Eqs. (21), (22), (23), we obtain

1 rH(x,y)e~i0LXJ
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The nondimensionalized moment My is determined from Eq. (3). Hence

O—iOLX

M-~yj""~ sm—*¦• <25>Lf(jty±L
2ir J a3/(«)

— OO

Let fl((«,y)=i(^-v«»fi), (26)

then

G(cc,y) -{(l+v)[k2-(l-v)]x + (l-v2)ay-(l-v)lxsk2y}SmhocSinh<xy

- [(1 + v) (4, oc2 - 2) + (1 - v)2 ol2 y] Cosh <x Sinh <x y
+ {2[-(l+v) + *;aa2]-(l-v)[Ä;2-(l-v)]a2i/{SinhaCosha«/
-[2(l-v)a+(l-v)(a3fc2-2a)2/]CoshaCoshat/.

(27)

00

Therefore Mv -~ [ G^y]e~'axda.
2ttJ ccf(ac)

(28)

IV. Series Representation of Deflection and Moment

The numerical determination of the deflection and moment as funetions of
position x and y, the stiffness ratios kl9 k2 and Poisson's ratio v, requires
evaluation of the improper integrals appearing in Eqs. (24) and (28). In view
of the fact that these integrals are not expressible in terms of elementary
funetions, a numerical integration procedure provides one possible method
for their evaluation [1]. However, this approach is exceedingly cumbersome

if a complete and sufficiently accurate coverage of the Solutions is to be achieved.
For this reason, it is advantageous to resort, instead, to contour integration.
This method leads to series expansions of the integrals in terms of the residues
at the singularities of the corresponding integrands. To this end we observe
that the singularities of the integrands in Eqs. (24) and (28) are simple poles
and eoineide with the zeros of /(a) which, by Eq. (21), are the Solutions of

/(a) -2-l(l+v)2 + [2i1 + 2i2-(l-v)2-li1Ä;2]a2-^1^a4
-(^1-Ä:2)aSinh2a + l[-4 + (l+v)2 + Ä:1yfc2a2]Cosh2a,

^21^

where / (a) is an even function of a.
Since kl9 k2 and v are real and positive, /(a) has no real roots. Moreover,

because all coefficients in / (a) are real, the roots of / (a) must occur as complex
conjugate pairs.

Considering only the upper half plane, it is readily shown that the roots of
Eq. (21) are of the form

ocn=±ßn + iyn (n 0,1,2,3, oo). (29)
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Thus in the region under consideration, there is a single purely imaginary
root for the specific case kx 0, k2 0, i.e., in the case where the edge beam is
absent, the remaining roots occur in complex pairs located symmetrically
with respect to the axis of imaginaries. We find that both ßn and yn, regardless
of the values of v, k±, k2, are monotonically increasing funetions of n for n ^ 1

nn
7 /

ki 0 k2= 0
k|= 0.20 k2= 0.05 ///- k, 0.50k2=0.05

- k|=0.20k2=0.l0 ¦ <

7/i
r ////

/ // /

'S

7/

^0.4 0.8 1.2 1.6 Ä 2.0 2.4 2.8 3.2 3.6 4.0
ßn

Fig. 2. Location of the Roots <xn of/(a) 0.

Table 1. Roots <xn of f(<x) 0

n 0 1 2 3 4 5 6 7

k1 0 ßn 0 0.3565 1.6741 2.1312 2.4345 2.6642 2.8498 3.0057
k2 0 Vn 2.7068 2.0272 5.9638 9.1813 12.3647 15.5341 18.6958 21.8528

kx 0.20 ßn 0.7181 1.0191 1.7462 2.3264 2.7465 3.0666 3.3217
k2 0.05 Yn 1.4743 4.2396 7.1540 10.2718 13.4398 16.6192 19.8005

k± 0.50 ßn 0.7348 1.3496 1.9759 2.4565 2.8242 3.1153 3.3532
k2 0.05 Yn 1.2272 3.9520 6.9883 10.1408 13.3246 16.5153 19.7056

k± 0.20 ßn 0.7581 1.3303 2.1532 2.7075 3.0844 3.3607 3.5758
k2 0.lO Jn 1.4568 4.1722 7.2043 10.4040 13.6182 16.8230 20.0164
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and tend to infinity together with n. It is interesting to note that for large
values of n, all values of yn assymptotically approach mr.

The distribution of the roots of / (a) 0 in the first quandrant of the complex

plane is indicated in Fig. 2, which is based on the values of ßn and yn for
n 0,1, 2, 7 for kx k2 0, and for n 1, 2, 3, 7 for the remaining cases,
all of which are given in Table 1. These values are obtained by the combined
application of the method of two-dimensional lattices and nets, and the method
of false position [9] to the Solution of the two real, transcendental equations
corresponding to the complex Eq. (21).

By virtue of the Residue Theorem [8], the improper integrals of both deflection,

Eq. (24), and moment, Eq. (28), are determined in terms of infinite
series as

/ H(x,y)e~i0LX
VÜÖL ^ 77"£

n=0«3/(«)
da 27™2Ai (3°)

00

and f^^f'f^a 2tt* fj Rn, (31)

where /(a), H(x,y), G(x,y) are given by Eqs. (21), (23), (27), respectively.
Rnl and Bn2 are the residues at the simple poles ccn of the integrands of both
Eq. (30) and Eq. (31), respectively. Therefore, the combination of Eqs. (21),
(23), (30) leads to

n 0 n ' ' n'

and from Eq. (21), (27), (31), we have

H.M-i±e^fr"~. ,33,

Let
51 Sinh (ßn), ^ Cosh (ßn), sx Sin (yn), ex Cos (yn),
52 Sinh (ßn y), C2 Cosh (ßn y), s2 Sin (yn y), c2 Cos (yn y),

R™
P2 ..2*» wn==ffi-yi> Zn 2ßnYn>
Pn i'Yn

un ßl-zßnYl, vn 3ß2nYn-yn,

En [±k1 + ±k2-2(l-v)2-k1k2]ßn-±k1k2Un + 2[a>nk1k2-k1 + k2

+ (l+v)2-i]S1C1(c2-s2)-2znk1k2s1c1(Cl + S2)

+ (-2k1 + 2k2 + k1k2)[ßn(C2 + S2)(c2-s2)-4,ynS1G1s1c1],

Fn =[4k1 + 4k2-2(l-v)2-k1k2]yn-4k1k2Vn + 2[a>nk1k2-k1 + k2

+ (l+v)2-4:]s1c1(Ct + Sl) + 2znk1k2S1C1(c2-s21)

+ (-2k1 + 2k2 + k1k2)[yn(C2+S2)(cl-si) + 4ßnS1ClSlc1].
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The differentiation of Eq. (21) with respect to oc, and the subsequent Substitution

of ocn for oc results in Eq. (34);

f'(*n) En + iFn. (34)
rp jp

Let L EltW' gn M?W (35)

The dimensionless deflection and moment will depend on the parameters kx,
k2 and Poisson's ratio v. Let v 0.3 and group the values of kx and k2 as follows:

1. The absence of on edge beam, i.e., k± 0, k2 0. Combine the Eqs. (23),
(32), (34) and (35) to obtain

w(x,y)=^-2Yjernx[fn(cf>nCosßnx-tnSinßnx)
9o ~i (36)

- 9n (0n CoSßnX + <f>n Smßnx)~\
where

i/j0 -U~k2 + (1 -v) + (1 +v)y]^ + k2y\Siny0Siny0y

+ hk2-(l-v)y]~ + ^\Cosy0Siny0y (37)

-[k2-(l-v))^-8iny0Cosy0y-\k2 + —W Cos y0 Cos y0 ?/,
ro \ ro /

g0 [4k1 + 4:k2-2(l-v)2-k1k2]y0 + 4:k1k2yl

+ [-y2k1k2-k1 + k2 + (l+v)2-4:]Sin2y0 (38)

+ [-2k1 + 2k2 + k1k2]y0 Cos 2 y0,

+ [k2-(l-v)-(l+v)y]Bizn(S1C2c1s2 + C1S2s1c2)

+ {[k2-(l-v)y]Bnßn-2BlUn}(C1S2c1c2-S1C2s1s2)
+ {[k2-(l-v)y]Rnyn-2BlVn}(C1C2c1s2 + S1S2s1c2) (39)

-[k2-(l-v)]y Bn [ßn (S1 C2c1c2 - C1 S2s1s2)

+ yn(S1 S2 cx s2 + C1C2 s± c2) -k2y (Cx C2 cx c2 - Sx S2 s± s2)

+ 2Bly [a>n (C1C2 c1 c2 - Sx S2 s± s2) + zn (G1S2 cx s2 + Sx C2 sx c2)],

K ={[^2-(1~^)-(1+^)^]^^ + ^2^}(Ä1^2Cl«2 + ^1^2ÄlC2)

~{[k2-(l-v)-(l+v)y]B2nzn}(S1S2c1c2-C1G2s1s2)
+ {[k2-(l-v)y]Bnßn-2BlUn}(C1C2c1s2+S1S2s1c2)
~{[k2-(l-v)y]Bnyn-2BlVn}(C1S2c1c2-S1C2s1s2) (40)

- [k2 - (1-v)] y Bn [ßn (S± S2c±s2 + CxC2sxc2)

~yn(S1 C2 cx c2 - G1S2 s1 s2)] -k2y (Cx S2 c1 s2 + S± C2 st c2)

+ 2B2ny [a>n (C± S2 c1 s2 + S± C2 8t c2) - zn (Gx C2 c1 c2 - S1 S2 s± s2)]

and fn, gn are given in Eq. (35).
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From Eq. (27), (33), (34) and (35)

My ^-2ter*x[fn(QnCosßnx-PnSinßnx)
71=1 (41)

-9n(PnGosßnx + QnSiaßnx)], x^O

(42)

where

^o ={(l+v)[k2-(l-v)] + (l-v2)y + (l-v)r20k2y}Siny0Siny0y

+ \(l+v)lk2y0 + --\ + (l-v)2y0y\Cosy0Smy0y

-hl-^ + k2yA-(l-v)[k2-(l-v)]y0y\Siay0Coay0y

-(l-v)[2 + (y2k2-2)y]Gosy0CoSy0y,

Pn =-{(l+v)[k2-(l-v)] + (l-v2)y-(l-v)k2ycon}(8182c1c2-C1C2slS2)
-(l-v)k2yzn(S1C2c1s2 + C1S2s1c2)

-i(l+v)(k2-2Rn) + (l-v)2y]ßn(C1S2c1c2-S1C2s1s2)
+ yn[(l + v)(k2 + 2ßn) + (l-v)2y](C1C2c1s2 + S1S2s1c2) (43)

+ ßn{-2Rn(l+v) + 2k2-(l-v)[k2-(l-v)]y}(S1C2c1c2-C1S2s1s2)
-yn{2Rn(l+v) + 2k2-(l-v)[k2-(l-v)]y}(S1S2c1s2 + C1C2Slc2)

-(l-v)[2 + (k2a>n-2)y](C1C2c1c2-S1S2s1s2)
+ (^-v)k2zny(C182c1s2 + 81C2s1c2),

Qn {^-v)k2yzn{S1S2c1c2-G1G2s1s2)-{(l + v)[k2-(l-v)}
+ {l-v2)y-{l-v)k2ya>n}{S1C2c1s2 + C1S2s1c2)

-ßn[(l+v)(k2-2Bn) + (l-v)2y](C1C2c1s2 + S1S2s1c2)

-yn[(l+v)(k2 + 2Rn) + (l-v)2y](C1S2c1c2-S1C2s1s2) (44)

+ ßn{-2Rn(l+v) + 2k2-(l-v)[k2-(l-v)]y}{SlS2cls2 + ClC2s1c2)

+ yn{2Bn(l+v) + 2k2-(l-v)[k2-(l-v)]y}(S1C2c1c2-C182s1s2)
-(l-v)[2 + (k2a>n-2)y](C1S2c1s2 + S1C2s1c2)

-{l-v)k2zny{C1C2c1c2-S1S2s1s2)

where g0, fn, gn, are the same as before.

Table 2. Deflection (w) along x 0

ÄJ1 0 Ä-! 0.20 ^ 0.50 &x 0.20
y /c2=0 fc2 0.05 fc2 0.05 fc2 0.10

0 0 0 0 0
0.25 0.0134 0.0129 0.0118 0.0129
0.50 0.0500 0.0457 0.0423 0.0463
0.75 0.1003 0.0940 0.0862 0.0949
1.00 0.1677 0.1530 0.1394 0.1568
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Beam Coordinate X

-2 50 -2 25 -2 00 -175 -150 -125 -100 -0 75 -0 50 -0 25 0
oi 1 1 i 1 r i i i •

^
ki 0 k2=0

ki 0e0k2=005
ki 0 50k2=0 05

ki 0 20k2=0 10

Fig. 4. Profiles of Deflection along Beam. Co-ordinate (y=l).

Beom Coordinate X

-2 50 -2 25 -2 00 -175 -1 50 -125 -100 -075 -0 50 -0 25 0
1 1 1 1 t 1 1 1 1

k, 0 k2=0

k, 0 20k2 005
k| 0 50k2=0 05
k, 0 20k2=0 10

0 5

y^ 04

cn 03

0 2

01

Fig. 5. Bendmg Moment {—My) along Clamped Edge.

2. kx±0, k2 + 0.

Use the same argument as in case 1.

00

w(x,y) =-22 evn*^^Cosßnx-i/>nSinßnx)

-gn(>l>nCosßnx + <t>nSmßnx)], x^O
(45)
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(46)
and My(x,y) -2 2 er*x(fn(QnCosßnx-PnSinßnx)

n l
-£n(^Cos/3^ + Q„Sin/3^)], x^O

where the funetions fn, gn, cpn, ifjn, Pn, and Qn are defined as in case 1.

These results are also given in Tables 2, 3, and 4, and plotted in Figs. 3,

4, and 5.

The infinite series were truncated after four terms. This yields sufficient
accuracy for the deflection and moment in most engineering applications.

3. kx -> oo, k2 -> oo.

This means the beam is rigid. There is no deflection, and the moment My
is zero along the clamped edge.

V. Discussion of Results and Conclusions

The major results of this investigation are embodied in Figs. 3 through 5.

All numerical computations were carried out for Poisson's ratio v 0.3.

Although no specific cross-sectional shape has been assumed for the stiffening
beam, the curves are applicable to the case of a beam of reetangular cross-
section with sides hf and 6 as follows:

h
/c2

2 4 10

y (approx.) 1.2 2.1 3.55

We note that the limiting case of a beam which is completely limber with
respect to flexure and torsion results when kx k2 0. The numerical results
so obtained are in complete agreement with reference [3], except that data of
reference [3] must be divided by tt to account for the present non-dimen-
sionalization.

With reference to Figs. 3 through 5, we note that changes of the
(nondimensional) flexural stiffness of the beam kx have a more pronounced effect

upon deflection and stresses than corresponding changes in its (non-dimensional)

torsional stiffness k2. In the physically unrealistic limiting case of a

rigid beam we have kx -> oo and k2 -> oo and deflections and stresses in the
plate will vanish. In this case we have a uniformly distributed shear force
transmitted by the rigid beam to the flexible plate, but its intensity is of
vanishingly small magnitude.

We thus conclude that the addition of a stiffening beam to the free edge
of a cantilever plate strip can result in substantial reduetions in plate stresses
and deflections for the presently assumed loading condition. In effect, the
stiffer the beam, the more uniformly the strain energy will be distributed in
the plate.
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Summary

A cantilever plate strip is reinforced by a beam bonded to its free edge.
The opposite (parallel) edge is rigidly clamped. The beam is acted upon by a

transverse concentrated load. Deflections and stresses are determined with
particular reference to beam/plate stiffness ratios in bending and torsion.

Resume

On renforce une plaque en console au moyen d'une poutre fixee ä son bord
libre. Le bord oppose (parallele) est fixe de maniere rigide. La poutre est
solicitee par une charge transversale concentree. Les flexions et les efforts
sont determinees d'une maniere particuliere par reference aux rapports de

rigidite poutre-plaque pour la flexion et pour la torsion.

Zusammenfassung

Der Kragplattenstreifen ist durch einen Balken am freien Rand versteift,
wobei der gegenüberliegende, parallele Rand fest eingespannt sein soll. Der
Randträger wird durch eine Einzelkraft belastet. Durchbiegungen und
Spannungen sind mit besonderer Berücksichtigung des Balken-Platten-Steifigkeits-
verhältnisses in Biegung und Drillung bestimmt worden.
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