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The Edge Reinforced Cantilever Plate Strip
Plaques en console et & bord renforcé

Der randversteifte Kragplattenstreifen

HERBERT REISMANN SHENG-HSIUNG CHENG
Professor, Faculty of Engineering and Graduate Assistant, Faculty of Engi-
Applied Sciences, State University of New neering and Applied Sciences, State Uni-

York, Buffalo, New York, U.S.A. versity of New York, Buffalo, New York,
U.S.A.

1. Introduction

The cantilever plate is a common structural element, and its stress and
deformation characteristics have been examined in a series of previous publi-
cations. The earliest treatment appears to be due to McGRrREGOR [1] and HoLL
[2] who considered the edge loaded cantilever plate. Mc GREGOR applies the
method of Fourier integrals to a cantilever plate strip of unbounded length,
while HoLL considers a plate of finite length and employs the (approximate)
method of finite differences. JARAMILLO [3] has treated the case of a cantilever
strip of unbounded length under the action of an arbitrarily placed concen-
trated load. The authors of [1] through [3] employ classical plate theory,
which neglects shear deformation. A recent study [4] of the edge loaded
cantilever plate within the framework of an improved plate theory indicates
that shear deformation effects are limited to the vicinity of the (concentrated)
edge load and that other regions of the plate are not affected provided the

plate width is large compared to the plate thickness, i.e., say %> 10.

In actual construction practice, it is customary to reinforce the free edge
of the cantilever plate by means of a beam, resulting in a general stiffening
of the structure. The present investigation is concerned with the case of a
cantilever plate strip of finite width rigidly clamped along one of its edges.
A beam is monolithically attached to the opposite, parallel, free edge. The
plate is unbounded in the direction of the clamped and free edges. A con-
centrated load is assumed to act on the reinforcing beam which distributes
this load to the plate (see Fig. 1).
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Nomenclature
Dimensional quantity = Physical description F-L-T units
EhR3 1

D = e ) plate flexural rigidity F—-L

E Young’s modulus F|L2

h plate thickness L

a : width of plate strip L

P transverse concentrated load F

£l beam flexural rigidity F-L?
GJ beam torsional rigidity F—L?

Sinh e =} (e*—e~*) hyperbolic sine function of «
Cosh o =1 (e*+ ¢~*) hyperbolic cosine function of «

To convert to
dimensional

Dimensionless form, multily

quantity
x

Y
2

Physical description

coordinate along clamped edge
coordinate along the plate width
coordinate perpendicular to the zy-plane

[@aaag

deflection of plate

[ ]

load intensity

v S S

bending moment per unit length of section of plate
perpendicular to the x axis

N

bending moment per unit length of section of plate
perpendicular to the y axis

N

twisting moment per unit length of a section of
the plate perpendicular to the x axis

shear force parallel to z axis per unit length of
sections of a plate perpendicular to x axis

shear force parallel to z axis per unit length of
sections of a plate perpendicular to y axis

QN 8N

ju—

stiffness ratio of beam flexural rigidity to the
product of plate flexural rigidity and plate width

1 stiffness ratio of beam torsional rigidity to the
product of plate flexural rigidity and plate width

1 Poisson’s ratio
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I1. Basic Equations

According to classical small deflection plate theory, the transverse deflec-
tions of the median surface of the plate are characterized by

34w+2 tw +84w_ (1)
oat ' Cextoyr oyt D

where ¢ is the load intensity. The moment and shear stress resultants are
related to the deflections by means of the following equations:

M, =—(§27?+V227?f), (2)
M, =—(%%+v%§), (3)
Myy = =My = (=05 ()
% = (5ar+ 50): (5)
@ =5 (5a + 58): (6)

The infinite cantilever plate strip with a beam reinforcing the free edge is
shown in Fig. 1. We introduce the Cartesian co-ordinate system Oxyz such
that the xy-plane coincides with the median plane of the plate. The z-axis is
chosen to coincide with the clamped edge. The constant load P acts on the
beam perpendicular to the x y-plane.

Fig. 1. Plate Strip Geometry.
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The governing equation and boundary conditions [5] and [6] are as follows:

tw tw *tw
3x4+23x28y2+8y4 =0 (7)
w(x,0) =0, (8)
—8—w(x 0)=0 (9)
ay ’ - bl
Mtw >Pw Bw
il =4 —_) 10
& (3w4)y=1 {8y3 T V)axzay}y=1+8(x)’ (o)
Bw Pw  Pw
ko ——— =14y 11
kz(axgay)y=l {33/2 +V3w2}y=1, (1)
where Eq. (10) is KircHHOFF’s condition which is equivalent to the require-
ments
oM 0 [Pw 2w
——_ Q —_ 'yz) = ——{———+ 2—v "“—‘} . 12)
( v.oox ), oyloy? ( )6962 =1 (

I11. Solutions for Deflection and Moment

By applying the familiar Fourier Transform [7] with respect to the x-co-
ordinate to the biharmonic Eq. (7), the boundary conditions, Eqgs. (8) through
(11), and Dirac delta function & (x), we have

W, y) = Vé;;fw(x, y) et dx (13)

with the properties of the transform of the derivative
W™ (a,y) = (=t )W (o, y) (14)

where w™ is the nth derivative of @ with respect to «. The inverse Fourier

Transform is
oo}

w(x,y) = —1: J‘z_v(oc,y) e T go, (15)
]/277'
Since 1 foa () elamdy = (16)
V27 V27

- the substitution of Egs. (13), (14), (16) into Eqgs. (7), (8), (9), (10), and (11)
leads to

ot _ 0% _ _
@w(a:y)~2a23—y2w(aay)+d4w(a>y) =0 (17)
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with the boundary conditions

W (x,0) = 0, (18a)
o _
5,70 =0, (18D)
oy AT (o, 1) = 2T (ot 1) — (2 — ) 0 -2 (at, 1) +— (180)
] =5 a 3 - - a o, T
! oy oy Y2
o _ 2 _
kzaz‘agw(“’l) =Ww(oc,1)—va2w(a,l). (18d)

The solution of Eq. (17) is
W(a,y) = A;Sinhay+ AyaySinhay+ A;Coshay+ A,xyCoshay. (19)

The coefficients 4;(¢t=1,2,3,4) are determined from Eq. (18a), (18b), (18¢),
and (18d) to be

A4, =0, (20a)
A, =—A4,, (20b)
y = W_ir_f(a—){[akz——(l——V)cx]Sinhac+(oz2k2—-2)COshoc}, (20¢)
L= m{[(l +v) — o ky] Sinh o+ (1 —) 2 Cosh a}, (20d)
where
F(@) = =23 (L4924 (20 + 2y — (L—v) =} by Ryl o — ey oy ot
—(ky—Ty) «Sinh 200+ 3 [ —4+ (L+v)2+ b, kyo?] Cosh 2. (21
Consequently,
_ 1 1 . .
W, y) = Eoﬁf(a) ks — (1 —=v)— (1 +v)yla+ o3 kyy} Sinh « Sinh a y
+{[ks— (1 —v)y] a® — 2} Cosh «a Sinh x y (22)
—[ky— (1 —v)]ax?y Sinh « Cosh oy — (63 ky — 2 o) y Cosh « Cosh a y/] .
Let
H(o,y) ={lks—(1—v)—(1+v)y]a+o3ky,y}Sinh « Sinh e
+{[ky— (1 —v) y] «® — 2} Cosh a Sinh
{[kz—( )yl } o ay (23)

—[ky— (1 —v)] 2y Sinh « Cosh a y
— (o2 ky—20a)yCoshaCoshay.

By applying the inverse Fourier Transform, Eq. (15), and with the aid of
Egs. (21), (22), (23), we obtain

w(x,y) =%fﬂ(%;yf)(—§)—zicda. (24)
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The nondimensionalized moment M, is determined from Eq. (3). Hence

My = —"2—"77 u3'f(a) dd. (25)
2
Let G (e, y) = %(nyg——vazﬂ), : (26)

then

G(x,y) =—{(1+v)[ky— (1 —v)]a+ (1 —v®) ay — (1 —v) o3 ky y} Sinh o Sinh o
—[(X+v) (kyo?—2)+ (1 —v)2a?y] Cosh « Sinh a y

+{2[—(1+v)+ k0] — (1 —v)[ky— (1 —v)] 2y {Sinh « Cosh a y (27)
—[2(1—v)a+(1—v)(c3ky—2a)y] CoshaCoshay.
G o —Tax
Therefore M, = 277 a;/);) de . (28)

IV. Series Representation of Deflection and Moment

The numerical determination of the deflection and moment as functions of
position x and y, the stiffness ratios k;, k, and Poisson’s ratio v, requires
evaluation of the improper integrals appearing in Eqs. (24) and (28). In view
of the fact that these integrals are not expressible in terms of elementary
functions, a numerical integration procedure provides one possible method
for their evaluation [1]. However, this approach is exceedingly cumbersome
if a complete and sufficiently accurate coverage of the solutions is to be achieved.
For this reason, it is advantageous to resort, instead, to contour integration.
This method leads to series expansions of the integrals in terms of the residues
at the singularities of the corresponding integrands. To this end we observe
that the singularities of the integrands in Eqs. (24) and (28) are simple poles
and coincide with the zeros of f(«) which, by Eq. (21), are the solutions of

flo) ==2=3(1+v)2+[2ky+2ky— (1 —v)> = F ey ko] o® — by oy o*

—(ky~ky) 2 Sinh 2a+ 3 [— 4+ (1+)2 + b kyo?] Cosh 26, (21

where f («) is an even function of «.

Since k,, k, and v are real and positive, f(«) has no real roots. Moreover,
because all coefficients in f («) are real, the roots of f (x) must occur as complex
conjugate pairs.

Considering only the upper half plane, it is readily shown that the roots of
Eq. (21) are of the form

an=%Bytiy, (n=0,1,2,3,...00). (29)
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Thus in the region under consideration, there is a single purely imaginary
root for the specific case k, =0, k, =0, i.e., in the case where the edge beam is
absent, the remaining roots occur in complex pairs located symmetrically
with respect to the axis of imaginaries. We find that both B, and y,,, regardless
of the values of v, k,, k,, are monotonically increasing functions of n for n=1

24 T T T T T T T

/
20 ——— k=0  kezO ,// .
/

- k;= 0.20 k2= 0.05

------ ki=0.20k2= 0.10

————— k= 0.50k,= 0.05 / /
/

40
Fig. 2. Location of the Roots a, of f(a)=0.
Table 1. Roots an of f(a) = 0
n 0 1 2 3 4 5 6 7
ky=0 Bn 0 0.3565 | 1.6741 | 2.1312 2.4345 2.6642 2.8498 3.0057
k=0 yn | 2.7068 | 2.0272 | 5.9638 | 9.1813 | 12.3647 | 15.5341 | 18.6958 | 21.8528
k,;=0.20 | By 0.7181 | 1.0191 | 1.7462 2.3264 2.7465 3.0666 3.3217
ky=0.05 | y, 1.4743 | 4.2396 | 7.1540 | 10.2718 | 13.4398 | 16.6192 | 19.8005
k,=0.50 | B, 0.7348 | 1.3496 | 1.9759 2.4565 2.8242 3.1153 3.3532
ky=0.05 | yp 1.2272 | 3.9520 | 6.9883 | 10.1408 13.3246 16.5153 19.7056
ky=0.20 | Bn 0.7581 | 1.3303 | 2.1532 2.7075 3.0844 3.3607 3.5758
ky=0.10 | y5 1.4568 | 4.1722 | 7.2043 | 10.4040 13.6182 16.8230 | 20.0164
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and tend to infinity together with n. It is interesting to note that for large
values of n, all values of y, assymptotically approach = .

The distribution of the roots of f(«) =0 in the first quandrant of the com-
plex plane is indicated in Fig. 2, which is based on the values of 8, and v,, for
n=0,1,2,...7 for k,=k,=0, and for n=1,2,3, ... 7 for the remaining cases,
all of which are given in Table 1. These values are obtained by the combined
application of the method of two-dimensional lattices and nets, and the method
of false position [9] to the solution of the two real, transcendental equations
corresponding to the complex Eq. (21).

By virtue of the Residue Theorem [8], the improper integrals of both deflec-
tion, Eq. (24), and moment, Eq. (28), are determined in terms of infinite

series as
a0

H(OL, ?/) e—iax y— 2o >
_wf TSl d 2 anoRnl (30)
wG(a’y)e—iax P ©
and f—_—af(a) doo = 2 ZnéoR“’ (31)

— @

where f(x), H (e, y), G(o,y) are given by Eqgs. (21), (23), (27), respectively.
R,, and R, , are the residues at the simple poles «,, of the integrands of both
Eq. (30) and Eq. (31), respectively. Therefore, the combination of Egs. (21),
(23), (30) leads to

w(x,y) = @Z H (2, y) e~ (32)

= anf(e)

and from Eq. (21), (27), (31), we have

(33)

3 G (g, y)emion
MU (x: y) =1 ZO o, ]U (an)

Let
S; = Sinh (8,,), C, = Cosh (8,), s, = Sin (y,,), ¢, = Cos(y,),
Sy =Sinh (B,y), C;=Cosh(B,y), s,=38in(y,y), c;=Cos(y,y),
Rt T N =
U, =B.—3Bu72, Ve =385 vn—7a>
E, =4k +4ky—2(1—v)2—k k1B, — 4k kU, +2[w, kyko—ki+ K,y
+(L+v)2—4] 8,01 (1 —}) — 22, k1 kp 5,0, (CF + 83)
+( =2k +2ky+ky ko) [B,, (CT+ 5F) (e} —s8) — 47, 8, C1 8,641,
F, =[4k+4k;—2(1—v)2—kikyly, — 4k ko V, +2[w, ki by —ky+ k,
+(L+v)2—4]8,¢; (C3+82)+ 22,k ky S, C; (c2 —s3)
+(=2ky+2ky+ky ko) [y, (OF + 8%) (c3—s3) + 48,8, Cy81¢4].
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The differentiation of Eq. (21) with respect to «, and the subsequent substitu-
tion of «, for « results in Eq. (34);

[ (o) = B, +i F,. (34)
£, F,
Let fu = e =g (35)

The dimensionless deflection and moment will depend on the parameters k,,
ky and Poisson’s ratio v. Let v=0.3 and group the values of k£, and k, as follows:

1. The absence of on edge beam, i.e., k; =0, ky=0. Combine the Eqgs. (23),
(32), (34) and (35) to obtain

wiwy) = $0-2 )" enelf, (4, Cosp,r—4, Sinp, o)
0 n=1

(36)
— 0, (s CO3B, 2+, 8 B, 2)],
where .
1 . .
by = ‘{[‘kz"f‘(l ——v)-{—(1+v)y];§+k2y}8my0 Sin y,y
0 o)
1 2 ;
+{[k2—(1—V)y]*+—3}COSyOSIHy0y (37)
Yo Yo

. 2
—[ky—(1 —v)]ylSln'yOCOS'yOy—(k2+)7)yCOSyOCOSy0y,
0 0

Go = [4ky+4ky—2(1—v)2—kyky]yo+ 4k kyvd
+[ =ik ky—ki+ s+ (1 +v)2—4]Sin 24y, (38)
+[—2k;+2ky+ Ky ky)yeCos 2y,

hy ={[ke— (1 ~v) = (1 +v)y] B} w, + ko y} (S1 Sp¢105— 01 Cy 81 85)
+ke—(1—v)— (1 +v)y] R% 2, (8, Cy¢; 85+ C; S35, C5)
+{lks— (1 —v)y] R, B, — 2R3 U, }(CyS50,6,— 8,03 81 85)
+{lke— (L =)yl R, v, —2 B3 V,} (C1 Cyc1 85+ 818581 ¢5) (39)
— ke — (L=v)]y B, [B, (81 Cz¢16,—C1 8581 8)
+ ¥ (81826185 + 0 Cy 81 5) —ka y (C1 036105~ 81 8381 8,)
+2 R ylw, (C10501 65— 81838, 83) +2, (C1 856185+ 8, Cy 8, 65)],

bp ={lka—(1—v) = (1 +v)y] B}, + ko y} (81 Cp¢185+C1 838, ¢,)
—{lly— (1 =v) = (1 +v) y] B} 2,,} (81 Sp¢165~C1 Cy 81 8,)
+{lky— (1 =v)yl B, B, —2 R} U,} (C1C5¢,8,+8; 838, ¢,)
~{lby— (L =v) Yyl B, v, — 2 B V,} (C; Sp¢160— 81 Cy 81 8,) (40)
~[ka— (1 =v)]y B, [Bn (81 85¢185+C1Cy81¢,)
—Vn (8105616 —Cy 8381 85)] —kayy (C1 85618+ 8, U381 65)
+2 Ry [w, (O 8y¢185+8,0381¢5) =2, (0100105~ 8 8381 85)]

and f,, g, are given in Eq. (35).
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From Eq. (27), (33), (34) and (35)
P @
M,=-2-2) er*[f, (@,CosB,x—P,SinB,
g 2L [fn (@ B Bn) (a1)
gn (B, CosB,x+@Q,Sing,x)], x=0
where

By ={(1+v)[ky— (1 =v)]+ (1 =v®) y + (1 —v) y§ ko y} Siny, Sin y, y
2

)+(1 “V)2')/0?/] Cos y4Siny,y
0

(42)

1+ | .
_{2( yov-{-kz’}’O)_'(l—V) [kz—(l—V)]'yoy}sln,yocos,yoy

—(1=v)[2+ (v§ks—2)y] Cosy, Cos yo ¥,

B, = {1 +v) [l — 1=+ (1 =)y — (1 —v) kyy w,} (5185616, —C1 Cy 81 85)
—(L=v) ko y 2, (8, Cy¢185+C S35, ¢5)
—[(L+v)(ky—2 R,) + (1 —v)?y] B, (C1 Sa¢1 65— 81 U281 85)
+yn[(L+v) (ke +2 R,) + (1 —v)?y] (C1 Cg ¢y 85+ 81 8581 ¢5) (43)
+Bu{—2R,(1+v)+ 2k~ (1 —v) [ky— (1 —)] 5} (S1Cacico— C1 8581 85)
— Y2 B, (1 +v) +2ky — (1 —v) [k — (1 —v)] 4} (81 Sz 0185+ C1 Ca 81 ¢,)
—(1=v)[2+ (krw,, —2) y] ((1Cyc165— 815581 8)
+(L=v) ka2, y (C1 830182+ 8, C581¢5),

Qn = (L—=v) kyy 2, (8183016, —C1 Cp8185) —{(1 +v) [ky — (1 )]
(1 =)y — (1 =) kyy 0, } (S;Cy 6185+ C Sy 81 ¢5)
—Bnl(1+v) (k=2 R,)+ (1 —v)?y] (C1 Cy 0185+ 81 8381 ¢5)
—Yu[(L+v) (ke +2 B,) + (1 —v)2y] (C; Spc100— 8, 0581 8,) (44)
+Bu{—2R, (1+v)+2ky— (L —v) [ky— (1 —v)] 4} (81 850182+ C1 Oy 8, ¢,)
+¥u{2 By (L+v)+2ky — (1 —v) [ky — (1 —v)] 5} (S; Oy 1 05— C1 S5 8185)
—(1=»)[2+ (kyw, —2)y] (C1 856182+ 8, Cy 81 ¢5)
—(1=v)kyz,y (0105016, — 81 8581 85)

where g,, ., ¢,, are the same as before.

Table 2. Deflection (w) along x = 0

k=0 Iy =0.20 %oy =0.50 K, =0.20
y ky=0 ky=0.05 ky=0.05 ky=0.10
0 0 0 0 0
0.25 0.0134 0.0129 0.0118 0.0129
0.50 0.0500 0.0457 0.0423 0.0463
0.75 0.1003 0.0940 0.0862 0.0949
1.00 0.1677 0.1530 0.1394 0.1568
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The results of the calculations of the deflection and moment are given in
Tables 2, 3, and 4, and are shown graphically in Figs. 3, 4, and 5.

Table 3. Deflection (w) along Beam Coordinate y = 1

z k=0 k,=0.20 k,=0.50 k,=0.20
ky=0 ky=0.05 k,=0.05 ky=0.10
0 0.1677 0.1530 0.1394 0.1568
+0.25 0.1494 0.1420 0.1318 0.1449
+0.50 0.1211 0.1200 0.1152 0.1218
+0.75 0.0929 0.0956 0.0953 0.0965
+1.00 0.0685 0.0728 0.0756 0.0730
+1.25 0.0490 0.0535 0.0578 0.0531
+1.50 0.0342 0.0380 0.0427 0.0373
+1.75 0.0234 0.0261 0.0305 0.0252
+2.00 0.0157 0.0174 0.0210 0.0164
+2.25 0.0104 0.0111 0.0139 0.0102
+2.50 0.0068 0.0069 0.0087 0.0060
Table 4. Bending Moment ( — My ) along Clamped Edge
- k=0 k,=0.20 k,=0.50 k,=0.20
ky=0 k,=0.05 ky,=0.05 k,=0.10
0 0.5090 0.4708 0.4295 0.4724
+0.25 0.4740 0.4424 0.4097 0.4448
4 0.50 0.3893 0.3785 0.3604 : 0.3820
+0.75 0.2915 0.2987 0.2961 0.3020
+1.00 0.2053 0.2218 0.2306 0.2240
+1.25 0.1389 0.1571 0.1719 0.1579
+1.50 0.0913 0.1070 0.1233 0.1066
+1.75 0.0587 0.0701 0.0851 0.0690
+2.00 0.0372 0.0442 0.0563 0.0426
+2.25 0.0232 0.0266 0.0354 0.0248
4+ 2.50 0.0143 0.0150 0.0207 0.0133
0 0.25 0.50 y 0.75 1.00
2}
4}
z 6} |
>
o s} ]
o
| S J
: 10or k=0 k=0
2 - k =0.20 k2= 0.05
§ 12 ——-- k; =0.50 k2= 0.05
g —————— Kk =0.20k2=0.10
14}
16|
18 e A

Fig. 3. Profiles of Deflection along x=0.
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Beam Coordinate X

-225 -200 -175 =150 -1.25 100 -075 -050 -025 0
T T T T T T T T T

. 4
4 -1
. B
. 4
0k k= 0 k2= o

—_————— ki =0.20k2= 0.05

12 — ki =0.50k2=0.05
I k1= 0.20k2=0.10
16}

18} )

20 ! L ' s L : * ; .

Fig. 4. Profiles of Deflection along Beam. Co-ordinate (y=1).
Beom Coordinate X

-2.50 -2.25 =-2.00 ~1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0

T T T T T T T T T

k= 0 k2=o

os} — Kk =0.20 kp=0.05 ]
——— K =0.50k;=0.05 27
------- k= 0.20 kp=0.10 r//_
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Fig. 5. Bending Moment (—M,) along Clamped Edge.

2. kl:#:o, kz*Oo

Use the same argument as in case 1.

wx,y) =-—2 ileynx[fn (¢, Cos B, x— 4, Sin B, x)
_gn('ﬁncosﬁnx'{'(ﬁnsulﬁnx)], CL‘éO

(45)
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and M, (x,y) = —2 3, e (f, (Q, Cosp, v — F,Sin B, )
n=1

where the functions f,, ¢,,, ., ¥n, F,, and @, are defined as in case 1.

These results are also given in Tables 2, 3, and 4, and plotted in Figs. 3,
4, and 5.

The infinite series were truncated after four terms. This yields sufficient
accuracy for the deflection and moment in most engineering applications.

(46)

3. by —> o0, ky — 00.

This means the beam is rigid. There is no deflection, and the moment M,
is zero along the clamped edge.

V. Discussion of Results and Conclusions

The major results of this investigation are embodied in Figs. 3 through 5.
All numerical computations were carried out for Poisson’s ratio »=0.3.
Although no specific cross-sectional shape has been assumed for the stiffening
beam, the curves are applicable to the case of a beam of rectangular cross-
section with sides 2’ and b as follows:

key
—k—z l 2 l 4 } 10
5 (approx.)| 1.2 ! 2.1 |3.55

We note that the limiting case of a beam which is completely limber with
respect to flexure and torsion results when k; =k, =0. The numerical results
so obtained are in complete agreement with reference [3], except that data of
reference [3] must be divided by = to account for the present non-dimen-
sionalization.

With reference to Figs. 3 through 5, we note that changes of the (non-
dimensional) flexural stiffness of the beam k&, have a more pronounced effect
upon deflection and stresses than corresponding changes in its (non-dimen-
sional) torsional stiffness k,. In the physically unrealistic limiting case of a
rigid beam we have k; — o0 and k, — oo and deflections and stresses in the
plate will vanish. In this case we have a uniformly distributed shear force
transmitted by the rigid beam to the flexible plate, but its intensity is of
vanishingly small magnitude.

We thus conclude that the addition of a stiffening beam to the free edge
of a cantilever plate strip can result in substantial reductions in plate stresses
and deflections for the presently assumed loading condition. In effect, the
stiffer the beam, the more uniformly the strain energy will be distributed in
the plate.
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Summary

A cantilever plate strip is reinforced by a beam bonded to its free edge.
The opposite (parallel) edge is rigidly clamped. The beam is acted upon by a
transverse concentrated load. Deflections and stresses are determined with
particular reference to beam/plate stiffness ratios in bending and torsion.

Résumé

On renforce une plaque en console au moyen d’une poutre fixée & son bord
libre. Le bord opposé (parallele) est fixé de maniére rigide. La poutre est
solicitée par une charge transversale concentrée. Les flexions et les efforts
sont déterminées d’une maniere particuliere par référence aux rapports de
rigidité poutre-plaque pour la flexion et pour la torsion.

Zusammenfassung

Der Kragplattenstreifen ist durch einen Balken am freien Rand versteift,
wobei der gegeniiberliegende, parallele Rand fest eingespannt sein soll. Der
Randtrager wird durch eine Einzelkraft belastet. Durchbiegungen und Span-
nungen sind mit besonderer Beriicksichtigung des Balken-Platten-Steifigkeits-
verhéltnisses in Biegung und Drillung bestimmt worden.
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