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Deformation Capacity of Steel Plate Elements
Aptitude a la déformation des plaques d’acier

Verformungsfihigkeit von Stahlplattenelementen

BEN KATO HIROFUMI AOKI
Professor, Faculty of Engineering, Uni- Graduate Student, University of Tokyo,
versity of Tokyo, Tokyo, Japan Tokyo, Japan
Introduction

The stress-strain relation of the structural steel is characterized by the long
plastic flow started from the yield point and followed by the strain hardening.
When the steel bar of the uniform section is subject to a tensile load, its load-
deformation diagram will present the similar behavior as that of the stress-
strain diagram, and it seems to have enough duectility.

This behavior will become somewhat different when the stress in the section
changes continuously along the length of the bar. Consider the model shown
in Fig. 1, where the cross section of the bar changes continuously and the section
A-A4 has the minimum cross sectional area. The yield will firstly occur at the
section 4—A when the bar is subject to a tensile load, and without the further
increase of the applied load, the vicinity of the section 4A-A will never yield
because the strain at the section A—4 remains in the plastic flow range. This
means that, in such a specimen, the plastic flow will not appear without the
further increase of the applied load as the yield section 4—-A4 has geometrically
zero length. When the strain at the section A—A enters into the strain harden-
ing range, the applied load will increase correspondingly, and the yielded zone
will extend to the vicinity of the section 4-4.

The maximum strength and the maximum deformation*) of the specimen
will be reached when the stress at the section A-A reaches the tensile strength
of the material. Thus the inelastic deformation capacity will depend upon the

*) In this paper, the maximum deformation means the deformation of the specimen at
the maximum strength state, not the deformation at the breaking of the specimen.
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yield ratio of the material (the ratio of the yield point to the tensile strength of
the material).

If, for instance, there would be a material having the yield ratio which
equals unity, the material of elastic-perfectly plastic, the specimen will break up
abruptly as soon as the stress in the section A-A reaches the yield point, and
no plastic deformation may be observed.

The similar phenomenon may be observed when the member is prismatic,
however the stress changes along its length. This is approximately the case of
the flanges of wide-flange beams having the moment gradient, then in this
case, the rotation capacity of the beam may be controlled by the yield ratio of
the material, such as LAY had implied [1].

The idea described above will be verified by the following analysis and experi-

ments.

The Case of Gradual Stress Change — Stress Concentration is Negligible

A steel specimen having the uniform thickness is subject to a tensile load in
the direction of the z-axis as shown in Fig. 1. The specimen is assumed to be
symmetric about both x and y axis. The change of the sectional area along the
length of the specimen is assumed to be so gradual as to be able to neglect the
effect of the stress concentration.

The stress-strain relation of the material is simplified by four straight lines
as shown in Fig. 2.
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Fig. 1.
b
where, oyp: Yyield point,

og: tensile strength,

ey: strain at yield point,

€4:  strain at the start of strain hardening,
ep: strain at tensile strength point.

The maximum tensile strength of the specimen is reached when the stress
in the minimum section of the specimen attains to op.
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Tmax = O'B‘él(o)7 (1)

where, T.ae: Maximum tensile strength of the specimen,
A (0): minimum sectional area of the specimen.

The average tensile stress at an arbitrary section of the specimen when
subject to the tensile load having the magnitude of «7,,, (0=«=<1.0) is
expressed as,

o Tmam _ A (0)

o(x) = () aGBm, (2)

where, o(xz): average stress at z,
A (x): sectional area at x.

The extension of the yielded zone X is obtained by introducing o to o (x) of
eq. (2),
4 (0)
Oy = A0p m .

The alternative expression of the above equation is as follows, introducing
the symbol Y = oy /oy ; the yield ratio of the material,

A(X)—%A(O):O. (3)

Eq.(3) gives the extension of the yielded zone X under the given load
a0, and it may be seen from this equation that, in case of elastic-perfectly
plastic material (Y = 1), 4 (X) is at most equal to 4 (0) even in the maximum
strength state (x = 1), and this means that no plastic deformation of the speci-
men may be expected.

The elongation of the half length of the specimen 6;, when the tensile load
be T = « 1),,, and the extension of the yielded zone be X, is given by,

b'e L

€p— (0) aey [ A(0)
5= X eyt Y [oc T Y]dx+ Y)JA(x)dx. (4)

The elongation §,,,, at the maximum load is obtained by introducing
o« = 1 into eq. (4),
X

L
Y € A0
Omaz = I:eSt—l——-_Y_( st)] 1 _ YSt A TY f A (x (5)
X

A (X) —?A (0) =
Fig. 3 is the schematical illustration of eq. (5), assuming, for the simplicity,
that €, and ez have the same values for various grades of steel. The larger the
yield ratio of the material, the smaller the deformation capacity, though the
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descending paths become somewhat different on accordance with the shape of
the specimen.

To verify the theoretical prediction above described, experiments were
conducted using various grades of steel. The shape of the test specimens is as
shown in Fig. 4. The elongation of the specimens between points G and G’ were
measured by dial gauges as shown in Fig. 4 for each step of loading.
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Fig. 5.

The stress-strain diagrams of materials used are shown in Fig. 5, and their
specific values are shown in Table 1. The simplification of the stress-strain dia-
gram for the use of calculation was made as follows:
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Table 1. Mechanical Properties of Various Grades of Steel

Young’s | Yield | Tensile
Grade modulus | point | strength Yield ratio Strain at the Strain at the
of E oy oB of material strain hardening | tensile strength
steel ] Y =oy/op point point
in tons per square €st €B
centimetre
SS41 2005 3.03 4.62 0.655 0.022 0.195
SM50 2095 3.85 5.76 0.669 0.019 0.177
SM50Y | 2090 4.37 5.51 0.793 0.031 0.163
SM58 2065 5.01 6.05 0.827 0.020 0.135

a) €4 and ez are assumed to be 0.02, 0.19 respectively for all grades of steel
here, for simplicity.
b) It is difficult to determine € exactly because the unlimited flow occurs at
the vicinity of this point, so the point, F (¢ = o/oz = 0.95, €5 = 0.09) was
chosen as the first point to be checked.

- The simplified stress-strain diagrams were thus constructed by connecting
these points with straight lines as shown in Fig. 5.
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The diagrams for the load index « versus elongation for various grades of
steel obtained from the experiments are plotted in Fig. 6, where theoretical
predictions based on the simplified stress-strain diagrams now obtained are also
shown in broken lines.

The relation between the maximum elongation and the yield ratio of the
material is shown in Fig.7. At the loading state « = 0.95, the theoretical
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prediction and the experimental results are in good accordance, at the ultimate
state (« = 1), however, the experimental results exhibit some scattering, which
perhaps be resulted from the difficulty of measuring €5 exactly as mentioned
before. The left side of the dotted line a—a in this figure shows the domain where
the parallel parts of the specimen yields perfectly, and the longer the parallel
parts, the larger the jump of elongation at the a—a line.

The Case of Steep Stress Change — Stress Concentration must be Considered
As the typical example of the case of stress concentration, the plate with

a round hole as shown in Fig. 8 was adopted, and the behavior was investigated
until its ultimate state theoretically and experimentally.
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Fig. 8.

In order to investigate the effect of the yield ratio of the material, the
specimens of various grades of steel were examined also in this case.

The rigorous theoretical solution of such a plate in elastic-plastic range has
not yet been obtained, so the numerical analysis by the finite element method
extended to the elastic-plastic range on the basis of the plastic flow theory [2]
is performed in this paper. The specimen is divided into triangular elements
shown in Fig. 9, considering the symmetry of the specimen and the available
capacity of the computer.

The detailed description of the finite element technique adopted here is
shown in Appendix I, and the behavior of this specimen obtained by the calcu-
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lation and the experiment is illustrated bellow rather minutely taking the case
of SM 50 steel (equivalent to ST-52) as an example.

The relation between the true stress and the natural strain must be used in
this case because the material be in biaxial state of stress in the vicinity of the
hole, and this is shown in Fig. 10, which is obtained from the tensile specimen

test, the conventional stress-strain diagram is also shown in this figure for
comparison.
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The theoretical relation for the mean stress at the minimum section 4-4’
versus the elongation of the specimen between B—B’ is shown in Fig.11. The
theoretical overall yielding of this specimen had occured at the mean stress
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4.0 ton/cm? in the section 4-A4’, whereas the yield point of this material was
3.85 ton/cm? as was seen in Fig. 10, this difference was caused by having been
assumed voN MisEs’ yield condition in this analysis.

The spread of the yielded zone and the distribution of stress and strain along
the section 4-A4" are shown in Fig. 12 for variousload steps K which correspond
to the same symbol shown in Fig. 11. The meaning of other symbols used in this
figure is as follows,
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g;.::.aatkm’ || Strain-hardening region
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G = Yo + 0% — o, 0,+3 7% equivalent stress.

Measured strains at the locations of No.1-No.3 shown in Fig.8 are com-
pared with the calculated strains in Fig. 13. In the finite element method, the
strain is assumed to distribute uniformly in each triangular element, while the
actual strain will change continuously in the whole region, so the average of the
strains at neighbouring triangular elements is considered to be the equivalent
strain which should be compared with measured strain. The average strain é
was calculated by the following equation,

é - V, |4

q = m(fi i+ € Vi)
where V;, V,,, are volumes of neighbouring triangular elements and ¢;, ;. are
calculated strains at respective elements as illustrated in Fig. 14.

The diagram for mean stress at the minimum section A-A" versus elonga-
tion of the specimen between points  and (' is compared with the test results
in Fig. 15.

The agreement seems to be satisfactory for the both cases.

As the final step, the relation between the deformation capacity of such
specimens and the yield ratios of the material used is investigated. In order to
see the results on a common base, ey and €5 were assueed to have the identical
values for various grades of steel as was done in the previous section. In this



102 BEN KATO - HIROFUMI AOKI

e e o e O e e
P

/< R

Measured [

E
L
3
b / ‘ : :
| /| - Theoretical o
t 20 4

/ GAGE_NO.1

0] 001 0.02 0.03
o 40 e
: |
£ 4
z |} A \ —~—— Measured |
? 20k | z==-Theoretical
_ GAGE N0.2 # I
T
f |
0 0.01 0.02
g 40f—pmmmmT
Q i ’
e M . i .
3 ‘ Measured | Fig. 14.
o | eeeTh i
t 20k = Theoreticali
GAGE N03 |
| |
0 0.01 0.02 003
—€
Fig. 13

[ sM50] ]
60
==
40f
g
~ L
N =
[ 20/ '
L tEJastuc Deformation .i#»*:\_\_
G I I S ]
0 50 00 O 02 04 06 08 10
— e Oos ™M —Y

Fig. 15. Fig. 16.



DEFORMATION CAPACITY OF STEEL PLATE ELEMENTS 103

type of the specimen, the rupture occurs suddenly when the load reaches the
maximum without showing any necking at the part of the minimum section,
and it is very difficult to measure the elongation at the maximum load point, so
both theoretical and experimental values are compared at the loading level
a=T|T, ., = 0.95 in this study. The solid line of Fig. 16 shows the theoretical
relation between the elongation and the yield ratio of the material. Test results
of specimens having various values of yield ratios are plotted in this figure.
Mechanical properties of all steels indicated in the figure have been shown in
Table 1. The figure shown by a broken line is the prediction based on the simple
theory described in the previous section which neglects the effect of stress
concentration. The left side of the dotted line a—a in this figure shows the
domain where the whole section of no hole yields thoroughly. It can be seen
that the deformation capacity increases drastically when the yield ratio of the
material is smaller than the value shown by this dotted line.

Conclusion

It has been shown theoretically and experimentally that the elongation
capacity of the steel plates of which sectional area change along their length
was controled by the yield ratio of the material used. The larger the value of the
yield ratio, the smaller the elongation capacity of the member.

It may be said from this point of view that it should be careful when the
high yield strength steel be used in a tension member bolted or rivetted at its
connections or in tapered or notched shape, because the high yield strength
steel generally has the high yield ratio.

It has also been shown that the elongation capacity increases drastically
when the whole section of the parallel part of the member could yield thoroughly
before the maximum strength of the specimen be reached. It may be safe to
assume that the maximum average stress in the minimum section at the maxi-
mum strength state of the specimen is at least equal to the tensile strength of
the material o5 even in the case of the stess concentration be severe, then the
condition above mentioned may be written as,

Aminc’BgApo'Y> or AmngAp’

where A,.:,,: the minimum sectional area of the member,

A .

p:  the sectional area of the parallel part.

This means that the minimum area should be larger than ¥ times the area
of the parallel part. For the practical purpose, the above criterion may be useful
to secure the enough ductility of the steel tension member.
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Appendix I. Extension of the Finite Element Method for Plane Stress Analysis
to the Inelastic Range

The material dealt in this procedure is an isotropic and ductile one obeying
the vox MisEs yield condition, and the PrRaNDTL-REUSS’ loading function.

Based on the incremental strain theory, the deformations predicted for the
volume element will be different for each loading path, then the boundary of
elastic and plastic region should be determined by giving the load increments.
And the stiffness matrix of the finite element in the plastic range will change
every moment with the change of stress state of the element.

The Stiffness Matrix of Triangular Elements

In the following, a division of the region into triangular shape elements is
used. The simplest representation of the displacement increment of a node j of
the triangular element is given by two linear polynomials.

Au; =gy +qo; +qa Y,
o o (= 1,29), (6)
Vi =q4+95%;+96Y;>

where

Au;,4v;: cartesian components of the displacement increment at a node j.
x;, Y co-ordinate of a node j.
q; @ =1,2,3,...,6): unknown quantity.

The alternative expression of eq. (6) is as follows,

46=Tgq, (7)
where 406 ={du,,duy, duy, dv,,dv,, dvs},
q ={91,92,93sQ4,95,qs},
(1 2, y; 0 0 O]
1 z, yo 0 0 O
T |l % % 00 0
00 0 1 2
00 0 1 =z v,
(0 0 0 1 =z y,

The symbol {} means the transpose of the column vector.
The strain increment is defined in terms of the displacement increment.

Ao 2w A =a(A'u)

_o(du) | a(dv)
o ox '’ “ oy ’ +

AYay = oy ox (8)
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Which are written in matrix notation as,

AS:B‘]; (9)
Whefe A8={AE$,A€y,A‘}/xy},
01 0 0 0 O
B =0 0 0 0 0 1].
001 01 0
From eq. (7) and eq. (9),
de =BT140. (10)

The relation between strain increment and stress increment is assumed to be
linear during the increment.

do=Dr4de, (11)
where AO‘={Acrx,Aoy,ATwy},

Dr: Elasto-plastic value of an elasticity matrix.

The increment of external work 4 E done by nodal loads F is expressed as,
AE = —(3406*4F+406*F), (12)

where - transpose of the matrix,

F ={flmfzxaf3xaf1yaf2yaf3y}=
AF = {Aflxadfo’AfoadflyndfzyJ Ofsy}a
fizsfiy (@ = 1,2, 3): components of external load at a node ¢,
Af..4f, (1 =1,2,3): components of load increment at a node .
The corresponding increment of the strain energy 4 U is,
AU =[(3de*do+de*0)dv. (13)
From the principle of the minimum potential energy,
AE+ AU =—-(3406*AF+40*F)+{(3de*do+de*o)dv =0. (14)

The next equation may be hold simultaneously, from the theorem of virtual
work,

fde*odv—A406*F =0. (15)
From eqs. (14) and (15),
fGde*do)dv—340*%4AF =0, (16)
or Ae*40At—A46*4F =0,
where A: area of the element,

t: thickness of the element,
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Substituting eqs. (10) and (11), eq. (16) is written as,
AF =Kr 490, ~ (17)
where Kr=N*DrNAt, N=BT.

Elastic- Plastic Value of an Elasticity Matrix of the Material

After PopE [2], the elasticity matrix in inelastic range DP? is derived as
follows:
The yield condition may be represented by a yield surface which is given by

f(o'ij) =0, (18)

where o;; is a nine component stress tensor. It should be noted, however, that
the stress tensor is symmetrical and that consequently only six of the stress
components are independent.

If it is assumed that changes in the yield surface during deformation depend
on plastic strain history only, the yield condition after a further infinitesimal
increment of plastic strain is given by

of
f+t”d€,bp’+md0'“ = 0.
H deb. = of d 19

where #,; describes the strain-hardening properties.
The plastic strain increments are given by
of
b — 2
dew A 3 Uij ? ( O)
where A is the plastic strain increment factor.

We denote by the suffix 0 symbols relating to some initial loaded state in
which the stresses and strains are known in a typical triangular element. The
total strains after this initial state has been modified by a small load increment
is given by

£=¢g+de+06¢&”, (21)
where & ={€11,€20,2 €15, €33} (22)
and where 6 ¢ and 8e? are corresponding matrices of the elastic and plastic
strain increments.

Provided that there is no significant change in the elastic constants during
the load increments, the elastic strain increments are given by

o —0, = Dg§s e, (23)

where 0, = {0-1170'2290123033}: (24)

and where Dj is the elasticity matrix.
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Eq. (20) is expressed approximately by a matrix form

Ser = AP, (25)

where b ={ of of 2 4f o1 } (26)

b 2 b
00y, 0099 005 0035

When yielding is governed by the von Mises criterion, eq. (26) is written
P = {0'{1 ’ Uéz ’ 0'{2 ’ 0é3} ’

where superscript ' denotes the deviatric stress.
Provided that the stress increments are small compared with the stresses
themselves, the following linearized form of eq. (19) may be used.

Poe? = —DF(0—0), (27)
where W = [ty1,%03: Py bag] - (28)
Substituting eq. (21) and (25) in eq. (23), it may be shown that
0—0,=D§(e—&,— A D). (29)
A may be obtained by substituting eq. (25) and (29) in eq. (27)
A=LPFDg(e—¢g), (30)

where L is a scalar given by
Lt'=®d3D§D,— W, D,. (31)
Substituting eq. (30) in eq. (29)
0—0y=qS(I—-LP,DPFD;)(e—¢&y). (32)

Hence o—0,=D?(e—¢,), a3
D» = Dy(I-L®, P D), (33)
where I denotes a unit diagonal matrix and where D? is the elastic-plastic value
of an elasticity matrix.

When the element is in a state of plane stress, the D§ matrix is written in the
form '

1 v 0O O
z y 1 0 O
D = T—%lo o 1—v ol (34)
2
0 0 0 0

Using this expression, D? of eq. (33) is calculated as follows,
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, - o +vo,
. 0,242C, —o,0,+2vC,; ——xl——l—v_yTw
Dr = , o, +vo, , (35)
02 U{B2+201 - 1/1+V x'rxy
(symmetric) Cy i
2 H' T2
where o Y oke +1+V,
Cy = 0,2+ 2vo,0,+0,2+2(1—1?) (4,
1 ’ 7 ! 4 2H’ -
C, = 513 (1+V){0'z2+2"0':c0'y+0y2}+ 9% (1—-v)a2,
o, =3120,—0,)
N :: v } deviatric stress,
o, = %(20,—0,)
E: Young’s modulus,
v: Poisson’s ratio,
62 =ol+o02—0,0,+37%,
4
H =—,
4er
der = 28 (ol 4val) 4 ' tvol)de,+(1 4
€ =—3——O—2[(om+voy) €.+ (o, tvoy)de,+(1—v)7,, dy,]

equivalent plastic strain increment.

The expression of eq. (35) coincides with that appeared in the later contribution
of Y.YamapA [3].

The strain increment in the direction of the thickness 4 ¢, is obtained from
the assumption that the plastic deformation may occur with no volume change,

(1—2v)

Aez=—Aex—Aey+T(Aa'x+Aoy). (36)

Determination of the Load Increment

The stiffness matrices of respective triangular elements eq. (17) are assembled
to that of whole structural system now considering, then 4 F represents the
increment of the applied load. 44, 4 & and 4 0 may be obtained for the given
value of 4 F from eq.(17), eq. (10) and eq. (11) respectively.

Stress-strain relation of the steel is characterized by yield point and strain-
hardening point, and to study the inelastic behavior of steel specimen, it is
important to check the status corresponding to these points. This is performed
by the following procedure,
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. The distribution of the applied forces F or 4 F are indicated by their ratios.

. An arbitary value of 4 F is given according to their distribution, and 4o,
4 € of each triangular element are calculated.

. It is necessary to apply the load m 4 F to make yield an arbitrary triangular
element, the condition for this may be expressed as follows,

oy = (o,+mdo,)+(c,+mdo,)>—(c,+mdoc,)(c,+mdo,)

+3 (rpy +m Ay, (37)

where, m: multiplying factor.

Calculate the values of m for all triangular elements, and the minimum
value of them is the necessary multiplying factor to produce the first yield
of any triangular elements.

. Determine the value of m which make yield the next triangular elements by
the similar procedure as described above, in this step however, it must be
considered whether the strain of the already yielded element should reach
the strain hardening point or not by the increment of the load m 4 F. This
condition may be expressed as,

MA@ = ey~ Aev. (38)

Then in this step, eq. (37) and eq. (38) must be considered simultaneously to
determine the minimum value of m.

. In successive calculations, co-ordinates of nodes and thickness of the ele-
ments must be based upon the state just before the each load increment
should be given.

Appendix II. Notation

The following symbols are used in this paper:

= area of the element

minimum sectional area of the specimen
sectional area at x

minimum sectional area of the member

sectional area of the parallel part of the member
matrix defined by eq.(9)

functions defined by eq. (35)

OIC
o

I

IS
I
i

Dy = elasticity matrix

!
S
Il

elastic-plastic value of an elasticity matrix
Young’s modulus

AE = increment of the external work



110

F

AF
fiac:fz‘y
AfiacaAfiy
HI

NNTR 23R R"T

S TN

-~
~.

max

[N
a

I

I

I

I

I

I

I

l

Il

I

f

I

I

I

Il

BEN KATO - HIROFUMI AOKI

nodal load vector

increment of the nodal load vector

Cartesian components of external load at a node ¢
Cartesian components of load increment at a node ¢
strain hardening modulus

unit diagonal matrix

load step

stiffness matrix of a triangular element in inelastic range
half length of the specimen or a scalar given by eq. (31)
multiplying factor

matrix defined by eq. (17)

unknown vector

unknown quantity

matrix defined by eq.(7)

tensile load

thickness of the element

strain-hardening properties

maximum tensile load of the specimen

increment of the strain energy

Cartesian components of displacement increment at a node j
volume of a triangular element i

length of the yielded zone

yield ratio of the material

load index

elongation of the half length of the specimen
elongation of the half length of the specimen at the maximum
load

elongation of the specimen between G and G’ (Fig. 4, 8)
elongation of the specimen between B and B’ (Fig.12)
increment of displacement vector

{de,,d¢,,4y,,} = increment of strain vector

average strain

strain at yield point

strain at tensile strength point

strain at the start of strain hardening

increment of the equivalent strain

elastic strain increment

plastic strain increment

equivalent strain

plastic strain increment factor

Poisson’s ratio

equivalent stress

tensile strength
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o (x) = average stress at x

oy = yield point

O 44 = average stress at A-A4’' section
o = stress vector

d0 = increment of stress vector

o’ = deviatric stress

0y = nine component stress tensor
b = see eq. (26)

L' = see eq. (28)
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Summary

Deformation capacity of steel tension members of which sectional area
change continuously along their length is investigated analytically and experi-
mentally. When the change of the sectional area along the length is gradual,
the stress concentration is negligible, on the contrary, when the change is very
steep as in the case of bolt-hole, the effect of the stress concentration can not
be ignored. For the analysis of the latter case, the finite element method
extended to the elastic-plastic range based on the plastic flow theory is adopted.
The agreement of the theory with the test result is satisfactory.

Résumé

On étude théoriquement et expérimentalement ’aptitude & la déformation
de piéces d’acier soumises & des efforts et dont la section varie longitudinale-
ment. Si la variation de section est progressive longitudinalement, la concen-
tration des efforts est négligeable. Au contraire, si la variation est brusque
comme dans le cas d’un alésage pour boulon, I’effet de la concentration des
efforts ne peut étre ignoré. Dans I’analyse de ce dernier cas, on adopte la
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méthode considérant des éléments finis étendue au domaine élastique-plastique
et basée sur la théorie du fluage. Les mesures expérimentales concordent de
maniére satisfaisante avec les résultats théoriques.

Zusammenfassung

Analytisch und experimentell ist die Verformungsfdhigkeit von Stahl-
elementen untersucht worden, deren Querschnitte kontinuierlich dndern. Ist
die Querschnittsinderung allméahlich, so kann die Spannungskonzentration
vernachlissigt werden, ist die Anderung jedoch schroff wie im Falle eines
Nietloches, dann kann sie nicht vernachlissigt werden. Fiir die Berechnung
des letzteren Falles wurde die fiir den elastisch-plastischen Bereich auf Grund
der Flietheorie erweiterte Endlichen-Elementen-Methode angewandt. Die
Ubereinstimmung der Theorie mit den Versuchsergebnissen ist zufrieden-
stellend.
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