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Grid Analysis of Orthotropic Bridges
Analyse des ponts orthotropes par la théorie des treillis

Tragerrostberechnung orthotroper Briicken

CONRAD P. HEINS, Jr. CHAI HONG YOO
Assistant Professor, Civil Engineering Research Graduate Assistant, Civil En-
Department, University of Maryland, gineering Department, University of
College Park, Md., U.S.A. Maryland, College Park, Md., U.S.A.
Introduction

Various analytical techniques have been proposed [1, 2, 3, 4, 5] for the ana-
lysis of orthotropic bridge structures. Most of the techniques, however, con-
centrate on the analysis of the stiffened deck and floor beams and neglect the
interaction of the main girders. In addition to this structural assumption, the
St. Venant and warping rigidities are not considered in the study of floor
beams.

It is therefore proposed that a grid technique [6], utilizing an equivalent
orthotropic plate analysis and finite differences [3, 7], be applied in analyzing an
orthotropic bridge structure. This analysis will include both bending and
torsional (St. Venant and warping) rigidities for all structural members in the
system. The resulting equations are evaluated by a computer, permitting any
variation in loadings and stiffnesses. |

Equivalent Plate Equations

A series of interacting grids or beams, subjected to some external load g,
will develop internal moments and shears. Examination of an element of the
grid system, Fig. 1, describes these froces. The spacing of the grids in the x and
y direction will be assumed to be n A and A, respectively. All of the forces acting
on the grid can now be distributed over the grid spacing, thus creating an
equivalent plate system, as shown in Fig. 2.
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Fig. 2. Equivalent Plate Forces.

Plate Equation. — Summing forces in the z direction and moments about
the x and y axis will give three equilibrium equations. These three equations
can be reduced to the following general equilibrium Eq. (1).

12 M, (1’ PMyp, 1 62MTx) 1 2M,

X o2 n) dxdy 3 oxdy =-1 (1)

nX dy:

The relationship between the moments (bending and torsion) and vertical
deformations is now required. The bending moment and curvature equations
are well known and are defined as:

2w

M, =-E1,%5, (2)
0% w

My Z—EI'UE—?—/E' (3)

The general torsional equation, as given in reference [7], relating total torque
to rotation of a beam along the x or y axis is:

ML, =M5"+Mp=GK,®' —EI,D". | (4)
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This equation is then transformed into force by unit of width and deformation
by assuming the derivatives of rotation as follows:

Twist along x axis: D = _Pw (5a)
& : T 2xoy

Twist along y axis: o = P (5b)
&Y ’ v oyox

Taking the derivatives of Eq. (5a), (5b) and substituting these derivatives and
@, and @, into (4) gives:
MT K

2w I o*w

_ lx wr
A ¢ A 6x8y+E A oxdoy’ (6)
My Ky Pw I,, ow 7
nA nA 0yox nA dy3ox’

Taking the proper derivatives of Eq.(2), (3), (6), and (7), in accordance with
Eq. (1), and substituting these derivatives into Eq. (1), gives the following sixth
order partial differential equation:

ot w ot w P w ot w 2w
Tox Toxtoy®: y3x28y4+2H8x28y2+DyW_q’ (8)
. _ Elac _ Elwx _ Ktx Kty
where: D.’l: = ) . Ox = ) , 2H = G(T W), (9)
p =2l o _Elw
o nA’ v nA

Force Equations. — Utilizing the previous equations, the general force equa-
tions on each beam corresponding to Fig. 1, can now be evaluated.

Bending Moment Equations:

M, = —Dwag—xu;, (10a)
_ My=—Dy%2yi§. (10b)

Shear Equations:
v, = —Dy%—ﬂx%-i—é’x%. (11b)
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Reaction Equations:

B, =-D, [23;: + %Ij aisau;z - 1(;: ajzgvyz B gz 825;24], (12a)
By =D, [393;:+ i)lj azsau;z - gZ aya:g)xz - gz 525324]' (12b)
Torsional Moment Equations:
My =-H, [aizguy—%g%] (13b)
M$T = —H, %%] (14a)
My, = C, [5*%], (14b)
M§T - _H, [%g’?/] ~(15a)
My, =C, [5;%] (15b)
Rotation Function @”:
@ = —52;%, (16a)
@7 = —a_;g’_x. (16D)

where the constants associated with Eqs.(10) through (16) are defined by
Eq. (9) and the following Eq. (17):

K, tx
A b

Kty

HGL‘:G H.

H, =@ (17)

Solution of Orthotropic Plate Equation

The solution of the differential equation (8) is obtained by use of the finite
difference technique. This technique requires the selection of discrete points
throughout the equivalent plate element.

Examining Fig. 3, a set of coordinates and points are described on a plate,
with mesh spacings of nA and A along the x and y axes respectively. These
spacings also correspond to the grid spacing described in Fig.1. Using the
difference relationships for the partial derivatives, the finite difference solution
of the differential equation (8) is obtained and results in Eq. (18).
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Fig. 3. Typical Mesh Pattern Array.

wo[6mt+6 (B/x)2+8n2B+12 A4+ 12n2 B]

— 4 (, +w;) [n2 B+ (BJo)? +2 A + 6/4 72 B]

—4 (w,+wy) [2B+nt+6/44+2n%B)

+ (Wy, +wp) [(Bla)? + 2 A] + (g + wpp) [0* + 2 m? B] (18)

+ (Wap+ Wop + Wy + wy) [202 B+ 4 A + 40? B]
gniat
D H

Yy
where o« =H|VD,D,, B=H/D,, A=0C/ /2D, B=0C,/D,  (19)

2 p—
-4 (wall + Wy + Warr + wbr’r) ~n®B (waar + Waar — Wy + wbbl) -

The force equations, (10) through (15), and rotation functions Eq. (16), can
also be evaluated in finite difference form. Defining the following constants:

— HC‘I — 0@/ i 'H e 01/
¢yw = —D;a ny - Asz’ gy - T);, Gy = )\2 Hy, (20)
H c, i %)
Dy = _Df? Nx = W’ §e = "ITT" €z T3z }w]m

Equations (1) through (16) are described in a finite difference mesh pattern
as shown in Figs. 5 through 18.

These relationships are now used to modify the general Eq. (18), in order to
accommodate the various boundary conditions for a bridge structure. The

modifications and the resulting load-deformation mesh patterns will now be
described.
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Mesh Patterns

The general structural problem which will be evaluated consists of a series of
interconnected deck, floor beam, and main girder comprising a bridge system.
This bridge is simply supported at two ends and has two free supports, as

described in Fig. 4.
Six general finite difference mesh patterns are therefore required to accom-

modate this model.

Mesh Condition 1. General Interior Load Point

The general mesh pattern for any load point completely within the bound-
aries is described in Fig. 19, and is Eq. (18), written in mesh pattern form.

-n28 = n*+2n2B H -n28
s M H e H
(Bro)%2A ;;‘if@;ﬁgg; _GnItgﬁ/g):;gnZB ;;gff;i‘:;:;: (B/o)% 24 .w=°'[’)_;"‘
SOy Iy vl s B < o e

-n28 ] n4+2n28 ﬂ -n2B

Fig. 19. Mesh Condition No. 1.

Mesh Condition 2. Load Point Adjacent to Stmple Support

This type of loading requires three boundary conditions in order to express
the three mesh points beyond the boundary relative to known mesh points.
This relationship can be obtained by the expression M, = 0. Applying this
equation along the simple supports, at three locations, and substituting these
relationships into Eq. (18) or Fig. 19 gives mesh condition 2, Fig. 20.

Mesh Condition 3. Load Point Adjacent to Free Support

This condition also requires three boundary conditions, in order to relate
interior and exterior points. The relationship for all three boundary conditions
is M, = 0 at each required point along the free edge. Applying this equation
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Fig. 21. Mesh Condition No. 3.
and substituting the results into Eq.(18) gives the final mesh condition 3,
Fig. 21. ‘
Mesh Condition 4. Load Point on a Free Support

This loading condition requires eight boundary conditions. The boundary
conditions that were used are:

1. M, = 0 for five mesh points.
2. R, = 0 for one mesh point.

3 (22 = 1 (ﬁ—uz) + Bﬂ ne mesh point
‘\o=z),” 2\ex), " \ez),| © pomne.

4 (3—7’0) _ 1 [(32—0) + (—a—w)] one mesh point
“\eyl, 2|\aoy/, Y /n .

The first two types of boundary conditions, for a free edge, are self-explan-
atory. The last two conditions are relationships relating the slope at a given
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point to the sum of the average slopes surrounding that point. These slope
equations were required in order to express all exterior points relative to the
interior points. The results from all of the eight boundary conditions, and their
substitution, gives mesh condition 4, Fig. 22.

n2+2n28 - -2n%8
-an®B+4n* | | 425 48028 _
+2A+8n%B) 8 " 2A
LD.PT.
"F:n4 +z(ﬁ/a)2+enﬁ| -[8n2B+4 (B/a)? 2 qnér¢
we - / +4A PR,
+4A+120%8 +8A+12n28] sifral Dy
-(4n%B+4n* 2 2 _
+2A+8n%8) 4n%B +4A+8n%B f—~ 2A
n*+2n28 I -2n2g
\ 7/

Fig. 22. Mesh Condition No. 4.

Mesh Condition 5. Load Point Adjacent to a Simple and Free Support

This load condition requires six boundary conditions. As utilized in mesh
conditions 2 and 3, the moments M, = 0 along the simple support and M, = 0
along the free support are used. The solution of these conditions, when sub-
stituted into Eq. (18), results in mesh Fig. 23.

(
LD.PT.
2 2
-2 (20284 B/ | [ setvs18/e)2, -4ln'Be(B/)” | | (gr240

+2A+(5/2) n°8] +8n28+10A+10n%B +2A +(5/4)n?B]

2n?B+2A | | -4(n2B+n%+5/aA | | 2n2B8+4A & Ly A

+4n28 +2n2B) +4n28 Dy
-n28 }—- n%+2n2B - -n2B

Fig. 23. Mesh Condition No. 5.

Mesh Condition 6. Load Point Adjacent to a Simple Support on a Free Support

There are ten boundary conditions that are required for this loading condi-
tion. The required relationships are:
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1. M, = 0 at two points.
2. M, = 0 at four points.
3

(el 2l(@), ()

(), = 2lE), + (5]

L RN

6. R, = 0 at one point.

RO| = DO = DO -

t

The solution of these ten equations, and their relationships, results in mesh
condition 6, Fig. 24.

LD, PT.
Sn4+2(B/a)? - 8n2B-4(B/a)? 2
| | 2(B/a)+4A
+8n2B+4 A+10n2B -8A-10n28 :
4)4
-4n?B-an?* 2 2 we 22
+4A+8n28 -2A E
-24-8n2B AP Oy
n%+2n28 -2n?8

Fig. 24. Mesh Condition No. 6.

With all of the required mesh patterns defined and developed, the solution
of any given loaded bridge grid system can be solved. The generation of the
required equations and their solutions has been accomplished by a computer
program (8). The evaluation of deflection at each grid point will then permit
evaluation of each force at that grid point. The force equations (10) through
(16), as described in Figs.5 through 18, have also been modified to account
for the boundary conditions, and these various equations are then evaluated by
a computer program. The two basic computer programs that have been written
will evaluate deflections and then forces.

Stresses

For any given bridge system and loading, the deflections are obtained by
solving the set of simultaneous difference equations, as represented by mesh
conditions 1 through 6. The solutions of these equations yields deformations at
each respective girder mesh point. These deformations are then utilized to
evaluate forces, given by Eqgs. (10) through (16). With these forces, the stresses
throughout the system can be determined by the following equations:
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Bending:

where:
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M
Obx,y = x’y, (21)

S
M, Eq. (10a), Fig. 5,

M, Eq. (10D), Fig. 6.

detail A

- Normal Warping: Owsyy = B Wy, @y or EW,, &, (22)
where: &, Eq. (16a), Fig. 17, @, Eq. (16Db), Fig. 18.
St. Venant Shear: Ty = M’%ﬁ—t— or M’%',T—t—, (23)
o Ktac v Kty
where: M%Z Eq. (14a), Fig. 12, M5T Eq. (15a), Fig. 15.
¥ Sws Sws
Warping Shear: Tuwwy = M% ~ or M% L, (24)
i 1, t1,,
where: MY, Eq. (14b), Fig. 13, My, Eq. (15Db), Fig. 16.
Bending Shear: Towy = V, 9 or V 9y (25)
bew T TE T8 vI,
where: V. Eq. (11a), Fig. 7, V, Eq. (11b), Fig. 8.
ASacy
~{ |- 3/8" 60"
Lte] detail A
o
8
o A
® A |ea
K e
section B-B
3" 2" 3"
1 1
I 50.0' IJ- | ] e
X — 16
! ~ o /546‘
B  detoilB L& |
RrTTroo®
detail B
L~
= Fig. 25. Bridge Structure.




GRID ANALYSIS OF ORTHOTROPIC BRIDGES 87
Bridge Solution

The following will describe the analysis of a hypothetical orthotropic
bridge, subjected to a given truck loading. This structure, Fig. 25, consists of a
cellular deck framing into transverse floor beams and two outside main longi-
tudinal girders. The stiffnesses of the various elements of the bridge systems
were evaluated at the respective intersections of the grid nodes, described in

2p, 2P, 2P, Plea P23
L) ! L}
20.35 13.0 2.0'++|_4.25 l T
A
L 40.0' .___40.0
{ 1
¢

longitudinal loading position P, = 16.0%

i 9° P, 16.0" 4 L

P3= 4.0X

transverse loading position

Fig. 26. Loading Condition.
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©
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Fig. 27. Forces and Distortions along Floor Beam No. 4.
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Fig. 4. A total of 165 grid points were selected for this analysis. The stiffnesses,
D, D, H, H,C,and C, were then computed for the

a) Longitudinal Deck

b) Transverse Deck

¢) Transverse Floor Beam
d) Longitudinal Main Girder

at the respective points, as listed in Ref. [8].

With these stiffnesses and specified loading, Fig. 26, the bridge deflections at
each grid point were determined. These deflections were then used to evaluate
forces in the system.

Fig. 27 describes the resulting deflection 4, shear V,, bending moment
M,,., torsional moments M$T, M, and torsional function @, along floor
beam number 4. Similar results were obtained for the remaining girders 1
through 7, for this loading case.

Fig. 28 describes similar results for the left main longitudinal girder.

These data are typical of the values obtained for the many loading cases
which were investigated (8). From these data the resulting stresses, as prescribed
by equations (21) through (25) throughout the system, can then be evaluated.

(o)]/\ /\ | /\ /\ @y 107 [1/in.2]
oo ’ o
VA

O.OJ\/ \/ \/ - M1y [K-in./in]
0‘2. /

O M-Sr;.[K- in./in]
002 \/ \/

Vy [K/in]

00 Mg, [K-in./in.]
200.4
00 4O [ind
0.54
o . 2 3 4 5 6 7 8 9 10w

Fig. 28. Forces and Distortions along Left Main Girder.
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Nomenclature

Mesh point load intensity — force per unit area

Horizontal rectangular coordinates. The origin of coordi-
nates is always at the left corner of the simply supported
edge of the plate. The z-axis is always parallel to the pair
of simply supported edges of the plate

Vertical coordinate, positive downward

Deflection of the plate, positive downward

Spacing of a grid in the y direction — in.

Spacing of a grid in the x direction — in.

Ratio of grid spacing

The moment of inertia in the z direction of a plate or
girder — in*

The moment of inertia in the y direction of a plate or
girder — in*

Torsional Constant of a plate or girder in x direction — in*
Torsional Constant of a plate or girder in y direction — in*

Modulus of elasticity of the material of the plate or girder
— ksi

Modulus of rigidity of the material of the plate or girder
— ksi '

Measure of the bending stiffness of a plate or girder in
x direction — K in?/in.
Measure of the bending stiffness of a plate or girder in
y direction — K in?fin.
Measure of the torsional stiffness of a plate or girder in
x direction — K in?/in.

Measure of the torsional stiffness of a plate or girder in
y direction — K in?/in.

) Measure of the total torsional stiffness of a plate or gir-
der — K in?/in.

The warping constant of a plate or girder in x direction

— in$

The warping constant of a plate or girder in y direction

— in®

Measure of warping stiffness of a plate or girder in « direc-

tion — K in%/in.
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Measure of warping stiffness of a plate or girder in y direc-
tion — K in*/in.

Dimensionless ratio

Dimensionless ratio

Dimensionless ratio

Dimensionless ratio
Dimensionless ratio
Dimensionless ratio
Dimensionless ratio
Dimensionless ratio
Dimensionless ratio
Dimensionless ratio
Dimensionless ratio

Dimensionless ratio

Bending Moment in the x or y direction — K in/in.

Total twisting moment, in the z or y direction — K in/in.
St. Venant’s twisting moment in the x or y direction —
K infin.

Warping twisting moment in the x or y direction — K in/in.
Shearing force per unit width in the x or y direction — K /in.
Reaction in the x or y direction — K /in.

The section modulus of the cross section in the x or y
direction — in3

The warping statical moment at a point s on a cross section
in the x or y direction — in*

The normalized warping function at a point s on the cross
section in the x or y direction — in?

Unit twist in the x or y direction — radians

The second derivative of unit twist in the z or y direction
_in~2
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O, y The bending stress in the x or y direction, due to plane
bending — ksi

Cway The warping normal stress in the x or y direction — ksi

Toe,y The bending shearing stress in the x or y direction, due to
plane bending — ksi

TSle,y Pure torsional shearing stress in the x or y direction — ksi

Tomy The warping shearing stress, in the z or y direction — ksi
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Summary

The relationship between deformations and internal grid forces; bending,
torsion (St. Venant and warping), shear, and applied external forces is obtained
by an equivalent orthotropic plate technique. The resulting differential equa-
tions are then solved by finite differences and various computer programs, as
applied to a bridge structure.

The results of a hypothetical bridge analysis are presented.

Résumé

La relation entre les déformations et les forces internes du treillis, la flexion,
la torsion (St.-Venant), le cisaillement et les forces appliquées extérieures est
obtenue au moyen d’une technique équivalente de plaques orthotropes. Les
équations différentielles résultantes sont ensuite résolues pour des différences
finies au moyen de différents programmes d’ordinateur et appliquées a des
constructions de ponts.

On présente les résultats de I'analyse d’un pont hypothétique.
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Zusammenfassung

Die Beziehung zwischen Verformung und inneren Kriften, Biegung,
Drillung (St.-Venant- und Walbkraft-), Schub und aufgebrachten #duBeren
Kriften wurde durch eine dquivalente Methode fiir orthotrope Platten erhal-
ten. Die erhaltene Differentialgleichung ist sodann mittels endlicher Differen-
zen und verschiedenen Computerprogrammen geldst sowie fiir Briicken ange-
wendet worden.

Die Ergebnisse einer hypothetischen Briickenberechnung liegen vor.
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