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Effective Column Length in Unsymmetrical Frames

Longueur de flambement des cadres asymetriques

Knicklänge in unsymmetrischem Böhmen

KUANG-HAN CHU HSUEH-LIEN CHOW
Ph. D., Professor of Civil Engineering, Structural Engineer, Westenhoff and

Illinois Institute of Technology, Chicago, Novick, Inc., Chicago, Illinois
Illinois

Introduction

In the design of bulding frames, the slenderness ratio of any column is
determined by its effective column length rather than its actual unbraced
length. The ratio K of the effective column length to the actual unbraced
length is of great concern to designers working with unbraced frames. This is
because K is always less than 1.0 in braced frames but it is usually greater
than 1.0 for unbraced frames subject to lateral sway. The value of K for
unbraced frames is usually determined by the alignment chart given in the
AISC Manual of Steel Construction [1]. This chart is based on an equation
(given in the Guide to Design Criteria for Metal Compression Members [2])
which is the buckling equation for columns in a symmetrical reetangular
frame subjected to symmetrical vertical loads at the tops of the columns [3].
As shown in Fig. 1, the frame is assumed to be braced in the direction
perpendicular to its plane with moments of inertia of the colums (which resist
bending in its plane) I'C IC and subjected to loads P' P. Note that the
moments of inertia of the beams are not equal (rb + Ib) and the column bases
become fixed if I'h oo hinged if I'h 0.

Since the AISC alignment chart is based on symmetrical frames symmetri-
cally loaded, the question arises as to what will be the value of K if P' + P
and I'c + Ic. In this paper, the basic buckling equation will be derived and a
chart which gives a coefficient for modifying the K values given by the AISC
chart will be presented. Since coefficients given by the chart are average
values, some errors can be expected in the modified K values obtained. How-
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ever, the maximum error of the modified K will be at most about 20 per cent
and for most pratical cases less than 10 per cent.

p p'= p

lb

Ic Ic

lb

Ic L

i

Fig. 1. Symmetrical frame
symmetrically loaded.

Mij §1 R

r e
Mji

Fig. 2. Notations for the slope
deflection equation.

Bückling Equation

The slope deflection method will be used in the derivation of the buckling
equation. The slope deflection equation for a member ij subject to an axial
load P (Fig. 2) as given in Standard textbooks [4, 5] may be written in the
following form [6, 7].

Mij=2^(2adi + b0j-cB), (1)

in which M^ moment at end i (Mjt at end j), positive clockwise,

E modulus of elasticity,

I moment of inertia about an axis perpendicular to the plane
of the frame,

L length of the member,

6i,6j slope at ends i and j respectively, positive clockwise,

B slope of the chord, positive clockwise,

A\L end deflection/length of member,

4(w^+cot4- <f) cot (f>

4>

4(r=^t^-cot4
2a+b=

and 4>
2 r ei

ü
1 — (f> COt (/)

(2a)

(2b)

(2c)

(3)
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For small values of <f>

a 1 —

b 1 +

(2(j>)2 11 (2<

30 25000

(2cf>)2 13(2^

for <f> 0

60

a b 1.

25000

(4a)

(4b)

(4c)

Letting K be the ratio of the effective column length to the actual unbraced
length, then P at buckling becomes the critical load Pcr given by

and

Px er

<t>

¦EI
(KL^_

2 r ei
Referring to Fig. 3, let

P' =AP(0^A^1)
ei _ IJLC

^B — Tf IT '
1bl-Lb

(5)

TT

~2K' (6)

rc =«/e(og«gi), (7a,b)

(8a,b)

Gj, ccGB, (8c,d)

in which Ic and I'c are moments of inertia for the columns, Ib and I'h are the
same for the beams, Lc and Lb are the lengths of the columns and beams

respectively as shown in Fig. 3. With the coefficients a1,b1. ete. for the

Lc

Fig. 3. Unsymmetrical frame
unsymmetrically loaded.

P AP
ib>aMbi e

/ "eA
rc=0<ic o^^i

f 0±A±\
2 H

0B ^b • al • bl

%

members as indicated in Fig. 3, the slope deflection equations for members
AA' and AB are

2EIh
MAA> )(2aieA + b16A),

^ab =24^(2a2SA + b2eB-c2B).

For equilibrium at Joint A, X^a MAA, + MAB 0, yields

2(a1 + GAa2)dA + GAb29B + b16A,-GAc2B 0.

(9a)

(9b)

(10a)
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Similarly with 2 MB 0, 2 MA, 0 and 2 mb' °> one obtains

GBb2dA + 2(a,1 + GBa2)6B + b,1dfB-GBc2B 0,

b16A + 2(a1 + ocGAa2)6A + ocGAb2dB-ocGAc2B 0,

b[0B + ocGBb2'OA + 2(a{ + ocGBa2\)8B-ocGBc2'B O.

The shear equilibrium equation

MAB + MBA + MA,B, + MB,A, + PLcB + P'LcB 0

gives c26A + c2dB + occ26A + occ2dB-2[c2 + occ2-(l+X)(f>2]B 0,

L2Pin which

Let

From Eq. (11)

^-tEI,'
2[c2 + occ2-(l+\)<f>2] =d.

Z=^(6A + dB) + °^(e'A + 9'B).

Since there is no axial force in the beams AA' and BB',

ax b± a{ b{ 1.

Substituting Eqs. (14) and (15) into Eqs. (lOa-d), yields

(2 + GAW1)0A+ GAW2dB + (l-GAWb)6'A- GAW&6'B 0,

GBW26A + (2 + GBW1)dB- GBW,d'A + (l-GBWb)d'B 0,

{l-GAWh)6A- GAW56B + (2 + GAW3)6'A + GAWidB 0,

-GBW5dA + (l-GBW,)dB+ GBWie'A + (2 + GBWa)d'B 0,

in which W1 2a2-^, W* b,
d

W3 2oca'2-
M2)2

d ' W, xbZ-
d ' w,= <xc2c2

d '

(10b)

(10c)

(lOd)

(IIa)
(IIb)

(12)

(13)

(14)

(15)

(16a)

(16b)

(16c)

(16d)

(17a,b)

(17c-e)

The buckling equation is obtained by setting the determinant of the
coefficients of the unknown ö's in Eqs. (16) equal to zero, or

2 + GAW1 GAW2 1-GAW5 -GAW5
GBW2 2 + GBWx -GBW5 1-GBW5

l-GAWh -GAWh 2 + GAW3 GAWi
-GBW5 1-GBW5 GBW, 2 + GBW3

0. (18)

Expanding and rearranging Eq. (18), one obtains

3 V1 + (2 U, V1-Üs V2-U5 Vz-U, Vt-U9 V5) GA

+ (U2 V1-Ui V2- U6 V3-U8 Vi-Uw V&+ V6) GA 0,
(19)
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in which
Ut =WX+W3+W5, U2 WXW3-W*,
Ua W2 + 2W5, U4 ^W^-W^Ws,
U5 Wi + 2W5, u6 w3w5-wiw5,
U7 =2W, + W6, Us =WlWi-W£,
U9 2W2+Wb, uw=w2w3~w*,
U^^WM-Wf.

V1 3 + 2GBU1 + GBU2, V2 GBUS + G%U6

V3 GBU3 + G%Uiy Vt GBU7 + G%Ua

(20a-k)

(21a-f)
V, GBU9+G2BU10, V, G2BV\X.

In Eqs. (20), the IPs are obtained from Eqs. (17a-e) with a2,b2, etc. obtained
from Eqs. (2a-c) and (4a,b), using

t-Siri-h <22»>

for a2, b2 and c2, and

?-?'-f-J^-nr^ <22b>

for a2, b2 and c2.

Special Cases

The following special cases may be obtained from the general buckling
Eq. (18) or (19)

a) If GA 0, (Ib oo), then in Eq. (19), p^ 0or
3 + 2GBU1 + G%U2 0. (23)

b) If GA oo, (Ib 0), then in Eq. (19), the coefficient of G\ 0, hence

U^-U^-U^-U^-U^V. + V^O (24a)

G%(Ul~2UiU,-Ui-Ul0-ül1)
+ GB(2U1U2-UiU5-U3Ue-U,U8-U9U10) + 3U2 0. b)

c) If P P' and IC I'C then A= 1, a= 1, Wx= W3 and W2 Wt. Consider the
case 6A d'A and QB — ti'B.

Let Wx W{, W2 Wi, W5 Wi (25a-c)

for this particular case. Eq. (18) becomes

Z + GA(Wi-Wi) GA(Wi-Wi)
GB(Wi-Wi) 3 + GB(Wi-Wi) ^^

or S + 3(GA + GB)(Wi-Wi) + GAGB[(Wi-Wir-(Wi-Wif] 0. (26b)
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Note that W^-W^ 2ia2-^\ -|(cot<£-tan<£) <£cot2<£, (27a)

Wi'-Wi'^-a^ -|(cot^ + tan<£),

in which

Eq. (26b) becomes

J AI JL2\ 4<£3cot<£
d Hc2-^) l_<f>cot4>.

9 + 3<l>cot2<l>(Ga+GB)-GAGB<t>2 0.

(27b)

(27c)

(28)

With <f> ^7fy, Eq. (28) is identical to the equation given in Guide to Design

Criteria for Metal Compression Members [2].

d) If I'c 0 (oc 0) and Pf+ 0 (X + 0), then cj>' oo and TT3, TF4 and W5

become indefinite. There will be no Solution for Eq. (18). The structure will
buckle since there is a load on a column of zero flexural rigidity.

However, if Fc 0 and P' 0, then a 0 and Ws= W± W5 0.

Let Wx W{, W2 W2" (29a, b)

GAW2" 1 0

for this particular case. Eq. (18) becomes

2 + GAW{
GBW2" 2 + GBW{ 0 1

1 0 2 0

0 10 2

or

with

9 + 6 (GA + GB) Wi' + 4GAGB [(Wir - (TT/)*] 0

W2" b2-^=Wi-Wi

and d 2(c2-c/>2)
2<f>*cot<j>

l—<f> cot <f)'

(30a)

(30b)

(31a)

(31b)

(31c)

The case of I'c 0 and P' 0 is equivalent to the case with the member
A' B' omitted and the ends A' of AA' and Bf of BB' supported on rollers
(see Fig. 4a). It can be seen that Eq. (30b) is the same as Eq. (26b) for the
symmetrical frame symmetrically loaded if 2 GA and 2 GB are used instead of
GA and GB. The same result is obtained if 2 Lb is used instead of Lb. This is
because in the present case the points of inflection of the beams are at the
ends A' and B', whereas in the symmetrical case, the inflection points are
located at the midspan of the beams (see Fig. 4b).
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a)

P' 0

na

ic=o

^ Lb/2 | Lb/2

Ic=Ic

b)

Fig. 4. Comparison of the deflection pattern of the case P' 0 and I'c=0 with the symmetrical
case.

e) For the case of P P' and / /; (A 1, a 1, Wx W3 and W2 W5)

without the restriction of 9A 0A and #b #b> & can De shown that Eq. (18)

may be reduced to

{1-(GA + 0B)(W1+WS) + GA GB [(Wt + Wbf -(W2- W,n ¦

• {9 + 3 (ö4 + GB) (Wx - W6) + GA GB [(W1 - Wbf - (W2 - W6)*]} 0.
(32)

Setting the terms in the second pair of braces equal to zero results an equation
which is identical to Eq. (26b) for antisymmetrical buckling. Setting the
terms in the first pair of braces equal to zero would result an equation for
symmetrical buckling. Since K values for symmetrical buckling is always less

than 1 while that of the antisymmetrical buckling always greater than 1

(equal to 1 if Ib Ib cc). The buckling load will be governed by the
antisymmetrical case instead of symmetrical case.

Solution of the Buckling Equation and Presentation of Results

Eq. (19) may be solved very simply in the following manner. If the values
of a, A, and GB are given, values of GA may be determined for any assumed
values of K. Since the equation for GA is quadratic, negative and complex
Solutions must be discarded. Also some false or physically meaningless roots
must be rejected.

It is noted that Eq. (18) is symmetrical with respect to GA and GB. Hence
GA and GB are interchangeable. Thus Eq. (23) may be regarded as an equation
for GA when GB 0 and Eq. (24) as an equation for GA when GB oo.

Various methods of presenting the results were tried. It was found that for
a given pair of oc and A values, the ß values defined by the following equation
remain approximately constant for various values of GA and GB.

K
ß

Kn
(33)

in which K is the ratio of effective length to actual unbraced length for a given
pair of oc and A values corresponding to a pair of specifies GA and GB values
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(referring to the stronger column) and K0 is the value of K for A oc 1

(symmetrical case) with the same values of GA and GB.
The ratio ß is determined in the following manner. For given values of oc,

A and GB, using Eq. (19), GA is obtained for some assumed value of K. Using
the same GA and GB, K0 is determined from Eq. (28) by Newton's method
for solving transcendental equations. Then ß is determined from Eq. (33). All
computations were carried out on an IBM 360 Computer.

For a given pair of oc and A values, an average value of ß is determined for
various values of GA and GB. A set of curves of the average ß versus oc for
various values of A is plotted in Fig. 5. This figure is to be used in conjunction
with Fig. 6 which is reproduced from the AISC Manual [1]. With known values

1

J"
L

p 1

In
P'=XP

Ic

lb\
\\ k L.

i

\ sh e K(0*A*l,0£<Xil)
KoU--l,«=l wrth &A and

Gethe some as forK)
V AN\
v y\ l,

\\ \\ s\ \\ N

\\ \\ ^ \" *\\w \v A

\ \\V C* •i q

\ \\V 38-lT^

^N\"^~^v "0 £^\>
\j

-o

QXL

1

GA

• CO
ioqo—
5ao-
30JD-

200—

10D—
9.0—
8.0—
7.0—
6.0—
5.0—

4.0—

3.0-

02 03 04 05
o—•

.CO
^20.0

-f-io.o
5.0

-- 4.0

3.0

2.0

Gß

i—OO
-100.0- 50.0

30.0
20.0

7.0
6.0
5.0

4.0

3.0

— 2.0

1.0

>— 0

Fig. 5. Curves of average ß versus a for
various values of A.

Fig. 6. Chart for the determination of KQ.
(After AISC Manual of Steel Construction.)

of A, oc, GA Sind GB, the value of K will be given by ßK0 with ß determined
from Fig. 5 for a given oc and A and K0 from Fig. 6 for given values of GA

and GB.
Since average values of ß are used in the plotting, some errors can be

expected. It was found that the error increases as a of A decreases (i.e., as the
frame or loading becomes more unsymmetrical). For very small value of oc,

the error may reach 20 per cent. However, the maximum error is 11.3% for
a 0.3, 8.9% for a 0.5, 4.5% for a 0.75 and 1.1% for a=1.0. For most
practical cases, the error will be less than 10 per cent since a is seldom less

than 0.5.

It should be noted that the estimated errors are maximum values. For the
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ordinary ranges of GA and GB, ß will be near the average and the error will
be much smaller. In case precise K values are needed, Eq. (19) may be solved
by the method of linear interpolation (false position) using as first approximate
values of (l±e)K in which e is a small fraction representing an estimated
error and K is determined from Figs. 5 and 6.

Numerical Examples

Various problems may be solved by using the charts presented herein
intelligently. For readers not familiär with the use of the AISC Chart, examples
will be shown for both the case of ß= 1 (for A= 1 and a= 1) and the case of

Example 1. A ten story frame is shown in Fig. 7 (a). The moments of inertia
of the columns and beams are as shown in the figure. It may be noted that the
ratio of GA and GB at all joints are equal.

(GA) a,tA

(GB) at B

(GA) SitC

(GB) at D

(WILc IJLC
(Ib/2)ILb Ib/Lb'

[(IJ2) + (IJ2)]ILC IJLC
hlh h\W
IJh h\Lc

[(Ibl2) + (Ibl2)]ILb h\W
(Ie + Ie)ILe IJLe
(h + h)\Lb Ib\Lb

• \/z :b/2 lb/2

Ic
2

Ic
2

Ic
B lb

C

Ic

D Tb

Ic
lb

Ic
2

Ic
lb

Ic

lb
Ic Ic

*2

_l

Ic

lb
Ic

lb
Ic

lb

Ic
2

@

o ¦-T r

Lc
2

Ic
2

lb 'lb 'lb

Ic

lb

Ic

lb
-

Ic

lb
2

Ic

Ib/2
Ic

Jb/2

Ic

h/z
Lc
2

4

(a)
* 4 4

n Spc ns (5

4
L b

[

p/2 p/2 p/2

lb/2

(b) *

-±4

(c) Identical with(a) except Column

Bases are fixed as shown

-h—lb l\>

Ic
lb

Ic
lb

Ic

% 1

Ic

IT 1

n Spans (3) Lb

Fig. 7. (a) Frame solved in example 1. (b) A unit of the frame shown in (a). (c) Frame solved in
Bleich's book.
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The problem may be treated as a superposition of the basic frame as shown
in Fig. 7 (b). Noting that ß=l and K K0, from Fig. 6, connecting a straight
line between the given values on the GA and GB scale and finding the inter-
cepts on the K0 scale, one can easily determine the values as shown in Table 1.

Table 1. K values for the ten story frame shown in Fig. 7

K K0

1

1.31

2

1.59

3

1.83

4

2.05

The values in Table 1 check very well with the curve given in Bleich's book
[4] for the Solution of the frame as shown in Fig. 7(c). The frames shown in
Fig. 7 (a) and Fig. 7 (c) differ only in the degree of fixity of the bases of the
bottom story columns. However for tall buildings the effect of base fixity of
the columns in the bottom story will be negligible.

Example 2. The problem as shown in Fig. 8 (a) was solved by Johnson [8].

IIL 21IL _
1

(Ga)A)AD,CF

(GB)AD,CF

2//(*£)
(J + 2l)jL

— (Ga)be — 2-2 7/(1 L) 3
0.33,

(GA)

(G
A)DG,EH. FI
B)DG,EH,FI

2//(*£)
— ((*b)ad,cf,be 1'

0.

(2I + ±I)IL_3(^b)be- 2.27/(f i) ~ 3 '

From Fig. 6, K K0=l.2l for columns AD, CF and BE and K K0=l.l5
for columns DG, EH, FI. The given Solution is P 7.10 EI rr2EI with£2 {KL)2
ül 1.18 which is exactly equal to the average of 1.21 and 1.15. The frame

may be treated as a superposition of two frames shown in Fig. 8(b). It may
be pointed out that the results are good primary because the column stiffness
is proportional to the loading.

P 2P P P P P P

21

21 41 21 2

21

I
p

+

1 2

I
P

21

1 2

(a) (b)

Fig. 8. Frame solved in example 2.

F

I
1

' I
P2

L

I I
W '

L

x
'

L

Fig. 9. Frame solved in example 3.

Example 3. The previous example shows that very good results can be
obtained by using the AISC Chart for well proportioned reetangular frames.
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This example will show the amount of error involved in applying to some
other cases. Fig. 9 shows a frame which has been solved in reference 9. The
given values of EI/L2 is 100T and the Solutions are PX 400T and (P1 + P2)

S01T corresponding to K K0 tt^4:.0 1.56 and tt//8.07 1.10 respectively.
From Fig. 6, the K value for the top column is 1.24 for GA \ and GB=l
and that for the bottom column is 1.15 for GA=l and GB 0. Consider the
fact that column stiffness is not proportional to loading, the errors involved
are reasonable.

Example 4. The four cases shown in Fig. 10 were solved by Zweig [10].
A comparison of the results will be of interest. For cases I and III, GA GB 0

Case i

I=CO IrOO I-co [«OD

1 I I I I ©< I I <X

_._J-b
m

4
1. ^ ¦!

*
Lb ' Lb *

Case II Case III

Fig. 10. Frames solved in example 4.

Case IV

and K0=l. For cases II and IV, GA 0, GB oo and K0 2. The values of ß
for various values of A and a from Fig. 5 are listed in Tables 2 and 3.

Table 2. ß values for cases I and II
X r2 0.16 0.49 0.81 1.0

ß 0.76 0.86 0.95 1.0
ß (Zweig) 0.765 0.864 0.951 1.0

Table 3. ß values for cases III and IV

oc r2 0.16 0.49 0.81 1.0
ß 1.27 1.08 1.02 1.0

ß' rß 0.508 0.756 0.918 1.0
ß' (Zweig) 0.532 0.812 0.946 1.0

Error 7% 7% 3% 0°/u /o

It should be noted that the notations A and oc are respectively corresponding
to f2 and r2 given in reference [10] and the ß values can easily be derived from
the K values given therein. Also for cases III and IV, the critical load in
reference [10] is related to the weaker column, thus

P EI 'EI Hence ß' =rß.(ß'K0L)2 (ß'K0L)2 (ßK0L)2'

It can be seen that for cases I and II, the ß values checks very well and for
cases III and IV, the errors are within the maximum values stated previously.
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Example 5. This example shown in Fig. 11 (a) was also solved by Zweig [10].

It would put a severe test of the versatility of the proposed method. This
frame may be treated as a superposition of the frames shown in Fig. 11 (b)
and the equivalent frame is as shown in Fig. 11 (c). The conditions of the
column bases, however, are dissimilar and can not be replaced by a single

100 OO 350/2 350/2 100 100

*-b2 .j, Lfc3 4, Lj?4_

I0VF49 I2VF65 I2\AF65 12^65 I0W""49

Llb=oo

273 175/2

(a)

Llb oo

175/2 533/2

Llb=oo

533/2 175/2

Lrb=oo

+ (175/2 273

(b)

(c)

650
/ 350 \

-- U |50 400
1 + 150/

A C

533
273
273

1=1079
B

^Ib/LtfCO

D'
* 4

200]
+ 200

(d)
1079 1

D"

Fig. 11. (a) Frame solved in example 5. (b) Superposition of frames. (c) An equivalent frame.
(d) Final equivalent frame.

beam. Nevertheless since column CD' has GA 0, GB co and K0 2 (from
Fig. 6), it may be replaced by a column of C"D" with GA GB 0 and K0 1

if In>, n»C"D"
ICD' 350

— 87.5 in4 as shown in Fig. 11 (d). Noting that A

400/650 0.615, a 87.5/1079 0.081, and GA GB 0, one obtains ß=1.24
and K0 1 from Figs. 5 and 6 and K ß K0 1.24. The answer given in reference

[10] is 3.14/2.46 1.28. The error is only 3% although the oc value is very
small in this case.

Discussion of Results and Conclusions

The following conclusions may be reached particularly with reference to
Fig. 5.

1. Note that for A=l, on the average, j8=1.08 for a 0.5 and /3=1.15 for
a 0.3. This means that for equal loads, if the stiffness of the column on one
side is only 50 per cent of the stiffness of the column on the other side, the
K value is only slightly higher than the K0 value for the symmetrical case.

2. For equal loads (A= 1), K will be significantly higher than K0 only when
oc is small (say oc < 0.3).

3. With the exception of A 0, if the loads and stiffness are in the same
proportion (A a), the average ß will lie between 0.9 and 1.0.



EFFECTIVE COLUMN LENGTH IN UNSYMMETRICAL FRAMES 13

4. With the exception of A 0, ß will be greater than 1.0 only when A> oc.

5. When there is no load on the weaker column (A 0), ß will have values
lying between 0.8 and 0.7 for 0.3 ^a^ 1.0 with a smaller ß corresponding to
a larger oc.

6. As bointed out previously, there will be no Solution for the case a 0

and A + 0. However, for a 0 and A 0 roller supports are assumed for the
beams, with the weaker column omitted. The K value may be obtained from
the AISC alignment chart using 2 Lb instead of Lb in Computing the values of
GA and GB.

1. As pointed out previously, the maximum error in using Fig. 5 would be
less than 9 per cent for a 0.5. It may reach 20 per cent for small values of oc.

8. By intelligently using the concept of considering GA (similarly GB) as
the ratio of 2 ^J-^c an(^ 2 ^0/A> instead of the ratio of IJLC and Ib/Lb, the
reetangular frame studied may be considered to represent any story of a

multistory, multibay frame as shown in the numerical examples.

Notation

a see Eq. (2a)
a1,a[,a2,a2 values of a for members as shown in Fig. 3

b see Eq. (2b)
b1,b[,b2,b2 values of b for members as shown in Fig. 3

c see Eq. (2c)
c1,c'1,c2, c2 values of c for members as shown in Fig. 3

d see Eq. (13)
e a small fraction representing an estimated error
E modulus of elasticity
GA,G'A,GB, G'B see Eq. (8a-d)
/ moment of inertia about an axis perpendicular to the plane

of the frame
Ib, I'b moment of inertia of top and bottom beams respectively
Ic, I'c moments of inertia of columns as shown in Fig. 3

K ratio of effective column length to actual unbraced length
KQ K for the symmetrical case A a 1

L length of a member
Lb, Lc lengths of beam and column respectively
M{j moment at end i of the member i j
P, P' column axial loads (P'^P)
B A/L chord slope of a member
U1 to U1X see Eqs. (20a-k)
Fxto VQ see Eqs. (21a-f)
W1 to W5 see Eqs. (17a-e)
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Wi, Wi, Wi W' s for the symmetrical case A a= 1

W{, Wi' W" s for the case A a 0

7^//c(0^a^l)
ß K/Ko using the same GA and GB for K and K0
A deflection of one end of a member with respect to the other end
6t slope of a member at end * rotation at Joint i
A P'IP (OgAgl)

^ T1WÜ

+' tOp.
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Summary

In this paper, the basic buckling equation is derived for an unsymmetricaliy
loaded unsymmetrical reetangular frame which may be considered as repre-
senting a portion of a multistory multibay frame. The ratio, K, of the effective
column length to the actual unbraced length may be considered as equal to
value of K0 obtained by the alignment chart given in the AISC Manual of
Steel Construction multiplied by a coefficient jS. A chart which gives average
values of ß is presented. For most practical cases, the maximum error of the
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K values obtained from this chart in conjunction with the AISC chart will be
less than 10 per cent. Numerical examples are given for illustrating the use
of the charts presented.

Resume

Dans cet article, les auteurs etendent l'equation generale du flambement
au cas d'un cadre rectangulaire asymetrique et change asymetriquement que
l'on peut considerer comme une portion d'un cadre ä plusieurs etages et ä

plusieurs ouvertures. Le rapport K (longueur de flambement sur longueur
theorique) peut etre considere comme egal ä la valeur de K0, obtenue par les

diagrammes du manuel de l'AISC pour la construction metallique, multipliee
par un coefficient ß. On donne un diagramme indiquant des valeurs moyennes
de ß. Dans la plupart des cas, l'erreur maximum des valeurs K obtenues a
l'aide de ce diagramme et de celui de l'AISC est en dessous de 10%. Pour
montrer l'utilisation des diagrammes, on a apporte des exemples numeriques.

Zusammenfassung

In diesem Beitrag wird die Grundknickgleichung für einen unsymmetrisch
belasteten, unsymmetrisch gebauten und rechteckigen Rahmen hergeleitet,
der als Ausschnitt eines vielstöckigen und mit vielen Öffnungen versehenen
Rahmens aufgefaßt werden kann. Das Verhältnis K der Knicklänge zur
geometrischen Länge kann gleich dem Wert K0, den man aus dem Schaubild
des AISC-Handbuchs für Stahlkonstruktionen herausliest, multipliziert mit
einem Beiwert ß gesetzt werden. Ein Diagramm für durchschnittliche Werte
von ß ist abgebildet. Für die meisten praktischen Fälle liegt der maximale
Fehler des Wertes K, den man aus dem Schaubild für ß und K° der AISC
erhält, unterhalb zehn Prozent. Numerische Beispiele sind beigefügt worden,
um die Anwendung der Schaubilder zu zeigen.
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