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Introduction

Several procedures for the analysis of folded plate structures have been
developed [7,8,9, 16,22, 23, 25] for the determination of stresses throughout
such structures. Many folded plate roofs have been built based on these analyses
and have apparently performed quite satisfactorily. Some experimental studies
[2,8,15] have also been performed and, in general, indicate results for stresses
which agree satisfactorily with those obtained from theoretical analyses. To
the writers’ knowledge however, no analysis has been presented previously to
indicate the possibility of buckling in a folded plate structure. A possibility
exists that some sort of buckling could take place under the action of live loads
smaller in magnitude than the service loads obtained by conventional tech-
niques, especially for structures with large length to depth ratios. Such buckling
as may occur could be either a general instability of the entire structure
accompanied by a distortion of the cross-section (analogous to lateral instability
of long beams), or a local buckling of the individual plate elements. This paper
is concerned solely with the latter problem. Only single span, single-cell,
simply supported structures subjected to uniform load on the horizontal pro-
jection are considered herein.
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General Description of the Local Buckling Problem

An individual plate element of a folded plate structure may be considered
to be elastically supported along its longitudinal edges and simply supported
along its transverse edges. Such a plate is subjected to uniform normal and
tangential loads which give rise, through the structural action of the folded
plate system, to internal normal shears and moments, and to in-plane forces,
shears and moments. Following BLEICH [3], the buckling may be considered
to be caused essentially by the in-plane forces. To correctly perform the ana-
lysis, all of these in-plane forces should be taken into account at the same time.
In order to simplify this extremely complex problem, the local plate buckling
is assumed to be caused primarily by either transverse in-plane forces or by
the combined action of shearing and longitudinal in-plane forces. The first
case is denoted ‘“Transverse Buckling’’ and may be expected to occur for
relatively low values of the span to depth ratio of the structure. The second
case is denoted ‘‘Shear-Longitudinal Buckling’’ and may be expected to occur
for relatively large values of the span to depth ratio. Such an analysis is an
approximation at best and should be thought of as merely a first step in a
general treatment of this problem. It is hoped that the analysis presented
herein will provide sufficient insight into the problem to indicate possible
directions for further refinement.

Transverse Buckling Analysis

The procedure used herein to determine the load corresponding to trans-
verse buckling in an individual plate element of a folded plate structure is
based upon Rayleigh’s Principle [20] and it utilizes a deflection field which
merely satisfies the boundary conditions for an individual plate. To find such
a deflection field, a general folded plate analysis may be used. Of the many
folded plate analyses available only a few [9, 22] are sufficiently general to be
applicable to a buckling analysis. The one used in this study is the method of
GoLDBERG and LEVE [9]. The following assumptions are implicit in this method:

1. The structural system is assumed to act as a combination of slabs on elastic
foundations at the ridges for “out of plane’’ deflections and as plates or
beams for “‘in plane’’ deflections. :

2. The plate elements are assumed to be supported on end diaphragms which
are perfectly rigid parallel to the plane of the diaphragm and are perfectly
flexible normal to the plane of the diaphragm.

3. The thickness of each plate is small compared to its other dimensions.

Small deflections are assumed throughout.

5. The material is assumed to be perfectly homogeneous, isotropic, and elastic.

-
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With these assumptions an “elasticity solution’’ is obtained which relates
the internal forces and deformations to the applied loads.

Fig. 1 shows a typical plate element together with an z, y, z coordinate
system. Positive orientation for the internal forces and deformations are also
shown in this figure. The loads, forces, and deformations are expressed as

Fig. la. Coordinate system for +z
typical (¢th) plate.

Fig. 1b. Plate element and associated forces
and displacements.

trigonometric series in the x-direction. For the ith plate, the relationships
for the pertinent internal forces and deformations for a mode m of the trigono-
metric series are [26]:
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In the above My,., Np,., Np,,, Np,, are the internal forces induced by
the applied loads and the condition of fixity at the edges and may be expressed
for mode m as follows [9]:
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In Egs. (1) the terms A4,, through 4,4, reflect the influence of the ridge
deformations for mode m on the internal forces and deformations in the sth
plate. These terms are:
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In the above, 8;, W, B;;,, 4;, and 0, W,;, y;, 4, are the maximum values
for a given mode m of the rotation, normal, transverse and longitudinal dis-
placements at edges j and k respectively of the ith plate. The plate coefficients
D Dlza szw Alma Azmr )‘3m> A4m? }‘5m7 A6m> )‘7m7 )‘Smﬁ ) kcm) khrw Vis B1i> Ma4>
Mais Psi> Meis Mqs are defined in the Appendix.

w; is a solution of the homogeneous plate equation which satisfies the
boundary conditions at the edges of the plate. In addition to the above,
expressions can also be determined for M, M, , @, and @, .

Using the deflection field, w;, the total strain energy of bending, U, for a
load on the ith plate is calculated along with the total external energy of
the transverse loads, 77,,. The change in strain energy from the previous
value as the load is increased by a specified increment is U, . The corresponding
change in the external energy is 7;. The total external energy associated with
the normal load is i, and the energy change as the load is increased by a
specified increment is ;. The change in kinetic energy associated with the
increase in load is V.

Following the principle of the conservation of energy [20],

o+ Ty = Ui+ V. (3)

If U;,—T;=<0 all energy associated with the normal load is converted into
kinetic energy. The requirement for buckling is then that

T,z U,. (4)
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According to Rayleigh’s Principle [20], the energies U, and W, calculated
using deflection fields which satisfy only the boundary conditions at the edges
of the plate will yield a possible solution to the buckling problem if Eq. (4) is
satisfied. The solution obtained will be the correct one if and only if the deflec-
tion field also satisfies the equilibrium equation for the true buckled shape.
Otherwise the solution obtained will be merely an upper bound.

The equation for the average external energy of the transverse force is,
approximately,

1 0
TT":_Zf [Ny,(;;) dxdy. | (5)

0 —bie

Substituting the deflection function, w; for mode » given by Eq. (le), and
the transverse force, N, for a different mode m given by Eq. (1b), into Eq. (5)
yields [26]:
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The total external energy is obtained by summing Eq. (6) over as many
modes m and n as desired. Note that the coefficients 4,,, 45;, A;;, A5; are
determined for mode n and 4;;, 44;, 4,;. Ag; are determined for mode m.

The equation for the internal strain energy of bending, U, using linear,

small deflection theory is:
2 32 82u) 82/w' 2
—2(1 —v, v Y.
) 20| (57 - () s
(7)

DH{(a;ﬁ

Substituting the deflection function, w, for mode m into Eq. (7) gives [26]:

ap.
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In the above,
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In the derivation of Eq. (6), the cross terms involving (Ua—wyi) (%i;z) with

m +n were omitted. The subscripts m and » indicate the mth and nth Fourier
terms. Numerical results have indicated that this is justified as the series for
w; converges very rapidly compared to the series for N, . It was felt that the
approximation involved in the method did not justify a further refinement in
the external energy Eq. (6). For the internal energy, the cross terms have
no effect.

In order to perform the numerical operations necessary in the analysis a
computer program was written in FORTRAN IV for the IBM 7040 computer.
This program was subsequently modified to run on the IBM 360-40 computer
with FORTRAN IV level E. This program also includes an option whereby
only a stress analysis is made. The data to be read into the program consists of:

1. Number of plates, maximum mode of the trigonometric series.

2. Boundary conditions at outside edges (either fixed or free).

3. Number of points where final stresses are to be calculated.

4. Controls for the type of output desired (i. e. stress results or buckling results).
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5. Initial length, overall depth, incremental change in length.

h;, b;, E;, v;, inclination and unit weight for each plate.

7. Initial uniform load on horizontal projection, load increment, maximum
load.

=

Briefly, the program carries out a stress analysis for some load level using
the method outlined by GOLDBERG and LEVE [9], calculates 4,; through 4,4,
T, and Uy, for each plate and stores the energy values. The load is then
incremented and the process repeated which results in new values for 77, and
Up,. The differences between old and new values of 7}, and U, are calculated
and thus values of 7, and U, for each plate are obtained. Eq. (4) is tested for
each plate and if it is not satisfied the load is once again incremented and new
energy differences are obtained. This process continues until Eq. (4) is satisfied
for some plate at which time the non-dimensionalized buckling load (gq,/E)
is printed out. The entire analysis is then repeated for as many structure
lengths as desired which finally yields a curve of buckling load versus length
to depth ratio.

Shear-Longitudinal Buckling Analysis

The effect of in-plane shearing and longitudinal stresses on the buckling
of a plate element is based upon the work of Luxpquist and STOWELL [12, 17,
18]. The following approximations are employed in applying the previously
developed plate buckling equations to the folded plate element.

1. The element is divided longitudinally into strips. Each strip is assumed
to be simply supported along its transverse edges and to be elastically supported
with regard to rotation along its longitudinal edges. The deflections, w;, along
the longitudinal edges are assumed to be zero (see Fig. 2).

bl‘ Txyo
J 03(0._‘_.._‘_4_‘__;_.__\_._\4

bﬂ‘ E}_ strip in ith plate *_’\_\ —{Eo}o
i > X

b. D2 N
ir2 wjassumed
zero along
$ these lines

4
y

-

Fig. 2. Strip element of typical (¢th) plate.

2. Each strip is assumed to be acted upon by constant shearing and longi-
tudinal stresses obtained by averaging the actual stresses over its width and
length.
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3. The rotational stiffness along an edge, S, is defined by the equation,

M

for each mode and M, and 6 are given by Egs. (1a) and (1f).

4. With regard to shear buckling, the length to width ratio of the strip is
assumed to be infinite.

5. The critical shearing and longitudinal stresses are [12, 18]:

Tx?lcr_ 12(1_1/%)61,'2]68) (10)
w2 B, h?
e T (- “”
in which k, and k, are the shear buckling and longitudinal buckling coefficients
which depend upon the stiffness of the restraining medium. These are set
forth in the Appendix.
6. The interaction of shear buckling and longitudinal buckling is assumed

to be given with sufficient accuracy by the following formula [17, 19]:

2
(Ta;ya) +£€q_21’ (12)
o

T
TYer Ter

in which 7., and o,, are respectively the average shearing and average longi-
tudinal stress in a strip.

The average shearing stress for a strip 7., is determined by integrating
the shearing stress ., over the half length and width of the strip and dividing

by the half area, or,
al2 by

2 N,
Txya—%—{f Jm:; 5 dx dy. (13)
b

(
14

.....

N, is expressed by Eq. (1d) for a given mode m of the trigonometric series.
Substituting this function in Eq. (13) yields:

m+3
Twl/a = b:wm:; “.T(QllicOSh - +Q12i COShT
. b, ; . b, .
+Q13ismhmﬂ 21+Q14ismhmw M‘*'Cpi)’ (14)

4 a !’
where Qi = b3 (20, A0+ Dy Asz) +—— Dy (Ayg;—Ays4);

mar

!’ a ’
Qro; = —b1;(2C,; A+ D1y A43,) —mDm (Ayg;—As5:)5
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b,; and b,; correspond to values of y at edges 1 and 2 of a strip and b; is
the strip width.

The average longitudinal stress o, for a strip is determined by integrating
the longitudinal stress over the length and width of the strip and dividing by
the strip area as:

a ba;

1 1 1 _ -
O'xazﬁjJ\J\m%Z .'dexdy =; MZ E(G:rli_!‘azzi)’ (15)

where G, ., G,,, are the maximum longitudinal stresses for mode m at edges
1 and 2 of the strip respectively. This expression is obtained using a linear
distribution of o, in the y direction which is a valid approximation even for
the smallest length to depth ratio (approximately five to one) considered in
this work.

The values of 5, ., G,,, are determined from Eq. (1¢) by substituting for
y the values of b,; and b,;, for « the value a/2, and by dividing by 4;.

A computer program was written in FORTRAN IV level E for the IBM
360-40 computer to perform the necessary calculations in this analysis. The
following data is needed for the program:

Number of plates, maximum mode of the trigonometric series.

Boundary conditions at outside edges.

Controls for desired output.

Maximum number of strips for calculation of critical stresses in the half
width of each plate.

Initial length, overall depth, incremental change in length.

6. h;, b;, E;,v;, inclination and unit weight for each plate.

7. Initial uniform load on horizontal projection, load increment, maximum
load.

R

=
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For a given load and strip width the stresses throughout the structure and
the coefficients A4, through 4,4, for each plate are determined. For each strip
in the structure the edge stiffnesses and the minimum average shear and
longitudinal buckling coefficients as given by LuxNbpQuUisT and STOWELL
[12,17,18] are calculated. The values of 7., and o, obtained from Eqs. (14)
and (15) for each strip are determined and the interaction equation, Eq. (12),
is applied. If the equation is not satisfied for any strip, the load is increased
and the entire procedure is repeated. When Eq. (12) is satisfied for some strip
the value of the buckling load (¢,,/E) is stored and the process is repeated for
a new strip width. The new value of the buckling load obtained is compared
to the previous value and the smaller is retained. When the minimum buckling
value is determined the process is terminated.

The above analysis is repeated for different structure lengths to obtain a

bar ., &
curve of 7 VS5

Results of Buckling Analyses

Five examples of folded plate roofs were analyzed using the above proce-
dures. These are shown in Figs. 3 and 4. Fig. 3 shows the cross-sections of
two full scale concrete roofs. Fig. 4 shows the cross-sections for three types
of small scale, aluminum model folded plate roofs.

Dimensionless critical load versus span to depth ratio curves for these
structures obtained from the computer programs described previously are
presented in Figs. 5 through 9. The curves for transverse buckling were obtained
using three modes of the trigonometric series. The load tolerance was + 2.5 psf.
In each case the theory indicated that the inclined plates buckled first. The
computer running time was approximately one hour for each curve.

The curves for shear-longitudinal buckling were obtained using three modes
of the trigonometric series and aload tolerance of + 5 psf. The computer running
time for each curve was approximately two hours. The Type I roofs exhibited
buckling in the top plate due primarily to the longitudinal stresses. In the
Type II roofs the inclined plates buckled under the combination of shearing

A

Ah=1.97", v=0.2. Unit weight = 1501b/ft3. £~ =1.97", v=0.2. Unit weight = 150 1b/ft3.

Fig. 3a. Concrete roof, type I cross-section. Fig. 3b. Concrete roof, type II cross-section.
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h=10.0625", v=1/3. Unit weight = 170.5 lb/ft3.
Type I cross-section Fig. 4. Aluminum model roofs.

and longitudinal stresses for span to depth ratios less than about eight to one.
For larger ratios the center plates buckled under the action of longitudinal
stresses. The Type III roofs buckled under a combination of shearing and
longitudinal stresses. The optimum number of strips for inclined plate buckling
was two and for the center plate buckling was one.

From Figs. 5 through 9 comparisons between the transverse and shear-
longitudinal critical load curves indicate that transverse buckling predominates

B
300+ B
A - "transverse buckling" " o
. Au ] 9 A - "transverse buckling-
& — “slhiar - lgng ikl B — "shear - longitudinal
buckling T
3.00 1 buckling
ki

o 2

9 c'[uJ

© 200+ ©
o 8

g 3

= L2001

3 5

— v

= @

S @

2 s

2 ‘B

s 5

g 1.00T §

£ © 100t

=

L
0 5 o 15 20 0 5 0 15 20
span to depth ratio T span to depth ratio -g—
Fig. 5. Critical load versus span to depth Fig. 6. Critical load versus span to depth

ratio for type I concrete roof. ratio for type II concrete roof.



230 S. E. SWARTZ - S. A. GURALNICK

B
A-"tra ing" B
0804 nsverse buckling 8801
B — "shear-longitudinal . o
© buckling” o A - “transverse buckling
o ‘s b B~ "shear-longitudinal
. - A buckling”
ofw olw
g 0601 _ 0601
S 3
= | —
(8] o
= 5
S T
© 0401 «» 0401
o >
S 5
2 ‘@ r
o &
5 £
0207 © o020t
0 5 10 5 20 0 5 10 15 20
P
span to depth ratio ) span to depth ratio %
Fig. 7. Critical load versus span to depth Fig. 8. Critical load versus span to depth
ratio for type I aluminum model roof. ratio for type II aluminum model roof.
B
A —"transverse buckiing"
160+ B — "shear - longitudinal
o buckling
Q
oluw
T 120+
2
©
L
5
a
$ 080t
c
o
‘»
oy k
(i
E
©
0404
0 5 10 5 20

span to depth ratio §

Fig. 9. Critical load versus span to depth
ratio for type III aluminum model roof.

for span to depth ratios less than about fifteen to one for Type I and II struc-
tures and ten to one for Type III structures.

As is to be expected, the results indicate that folded plate structures with
small span to depth ratios have very high buckling loads; but as the span to
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depth ratio increases the buckling load decreases rapidly. Beyond a span to
depth ratio of approximately ten to one the transverse buckling curves decrease
very slowly whereas the shear-longitudinal curves decrease at a higher rate.

Conclusions

An analysis of folded plate structures to predict loads at which its plate
elements will buckle has been presented. This problem was treated by intro-
ducing the approximation that one of two types of stress patterns would
create the buckled state; that is, either transverse in-plane stresses would
cause buckling or else a combination of shearing and longitudinal in-plane
stresses would. In reality, all of these stresses acting together will cause
buckling.

The energy method employed in the transverse buckling analysis will
always lead to an upper bound estimate of the critical load. In applying this
method, the effect of the surface loads was essentially neglected. As reported
by BrLEeIcH [3], the surface load on a plate may increase or decrease the buckling
strength depending upon the deflection pattern in the buckled state and the
end conditions.

The shear-longitudinal buckling analysis presented herein utilizes the work
of others. The formulas for critical shearing stress, critical longitudinal stress,
and the interaction between the two are based upon the energy principle and
upon the assumption that constant stresses pertain throughout the region of
interest. This results in a prediction of constant length between the nodal
points of the buckled surface. In the actual case, the stresses vary in a non-
linear fashion along the length of the structure but were, for purposes of
simplification, assumed to be constant throughout each plate. This approxi-
mation has been used previously in treating the problem of local buckling of
beam flanges and webs [3].

In summary, the following conclusions may be drawn from this study:

1. Folded plate structures of practical dimensions, subjected to uniformly
distributed, surface loads, may, in some instances, exhibit local plate buckling.

2. As a consequence of the above statement, it appears likely that present
design methods for folded plates which do not take into account the possibility
of buckling may be unconservative.

3. The type of local buckling which predominates depends upon the span
to depth ratio and the geometric properties of the cross-section. Results
obtained in this study indicate that buckling will be caused mainly by trans-
verse stresses for small span to depth ratios and by shearing and longitudinal
stresses for large span to depth ratios.

4. There are many parameters that affect the buckling strength which
should be considered in addition to those used in this study. Among these are
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plate thickness, plate inclination, shape of cross-section, presence of inter-
mediate stiffeners, multiple-cell cross-sections and type of surface load. Some
of these topics will be considered in subsequent reports.
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Appendix I. Notation

Force-displacement coefficients for +th plate.
12(1—v2)°
B}
24 (1+v;)
B b
2(1+v) "
E.mm
2(1+vy)a”
Young’s Modulus and Poisson’s Ratio respectively for
the ¢th plate.

Internal moments, forces, shears in the ¢th plate.

Internal moment, forces, shears in the ¢th plate corre-
sponding to fixity at the ridges.

Coefficients in external energy equation, internal energy
equation and average shear equation.

= Coeflicients in expressions for @, ,—@14;-
= Change in internal strain energy and external energy of

transverse forces respectively in sth plate.

= Length of structure.
= Width of +th plate.
= Width and edges of longitudinal strip in ith plate

respectively.

= Depth of roof cross-section.
= Thickness of ith plate.
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7,k = The edges of the i¢th plate corresponding to y =30, and
y= —%b,; respectively.
k = Plate longitudinal stress buckling coefficient.

w2 (bi\2 1 )tzz €\ (b} A\2rl € 4¢€ 2¢e(A\2
B [ (5) +6+ () e+ (+3) 5+ ) [0+3) - 5]+ %)

- 72 €2 4e 1 € 1 1 €\2
(1) +3(1+5)

120 =
In the above,
4 8,b;
€ = —#_D,L- )
A = half wave length of assumed buckled surface,
M
Sy = Té’
kg = Plate shearing stress buckling coefficient.
1 bi\? 1 A\2 o 5 -
= Sin2g0[(7\—) m-l*(b—:) 10829+ Oy (14 2sin (p)]

In the above,

o1 1 1 2\ 1
“ls—=)tela =) T2
of 7 2 N (A4, L
6(120 ﬂ2+8)+€(2—w2 T3

5 2 1 4 1
2 - = s s s
€ (24 'rrz)+€(2 77'2) +

NE e W
€ 120 772+8 €2—-172
and,

Cosp = JCy+VC2+C,,

where
3 b

so,

10,0,

)
¢, = oo

= o,cotho,.

C, =

C, = 2

o0

03 =

ka

k,, = o, tanhe,,.

m,n = Trigonometric mode numbers.

Pui > Pii = Loads acting on the ¢th plate in the z and y directions
respectively.

9> Y9or = Uniform vertical live load and live load corresponding
to buckling respectively.

w;, 0 = The z component of displacement and the rotation in the

R
1th plate respectively.
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The maximum values of the z, ¥, z components of dis-
placement and the rotation at edges j and k respectively
of the ¢th plate.

Coordinate directions in the ¢th plate.
mm b,
2a -

a,, sech o, +sinh a,,) 71,
o, csch a,, — cosh o, )71,
o, esch o, +cosh o, )71

1 —1
nSech o, —sinh o, )1

a,, csch o, + p; cosh o, )71
a,, esch o, — p; cosh o, )71
o, sech a,, + p;sinh o, )71
3—v;
14w,
2
1—v,’
1+v,
1—v,~
2v,
1+v,~
2
1+v,’
1—v,
l+w'
3+v;
1+v,

= Stress components in plate.
= Buckling longitudinal and shearing stresses and average

longitudinal and shearing stresses respectively for a
longitudinal strip.
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Summary

An approximate analysis of an arbitrary, single-cell, folded plate structure
to predict the transverse load at which one or more of its individual constituent
plates will buckle is presented. The problem is treated by introducing the
approximation that one of two types of stress pattern may induce buckling;
that is, either transverse in-plane stresses or a combination of shear and longi-
tudinal in-plane stresses. The energy method employed in the transverse
buckling analysis will always lead to an upper bound estimate of the critical
load. In the shear-longitudinal buckling analysis, the equations for critical
shearing stress, critical longitudinal stress, and the interaction between the
two are based upon the energy principle and upon the assumption that constant
stresses pertain throughout the region of interest.

Résumé

Une analyse approximative des voiles prismatiques unicellulaires quel-
conques permet aux auteurs de prévoir la charge transversale a laquelle une
ou plusieurs de ses plaques constituantes deviendront instables. Le probléme
est simplifié en supposant que le voilement peut étre provoqué par les deux
types de répartition des tensions suivants: soit par des tensions transversales
planes, soit par une combinaison de tensions de cisaillement et de tensions
longitudinales. La méthode énergétique appliquée & 1’analyse du voilement
transversal meénera toujours & une limite supérieure de la charge critique.
Dans 1’analyse du second cas (tensions de cisaillement et tensions longitudi-
nales), le principe de I’énergie et la supposition de tensions constantes d’un
bout a l’autre de la région intéressante permettent d’établir les équations
pour la tension de cisaillement critique, la tension longitudinale critique et
leur interaction.

Zusammenfassung

Es wird eine Naherungslosung der Querlast, unter der ein oder mehrere
Einzelscheiben ausbeulen, fiir ein beliebiges, einzelliges Faltwerk angegeben.
Das Problem wird fiir die Naherung behandelt, daf3 eine oder zwei Spannungs-
formen Beulen verursachen, entweder ebene Querspannungen oder eine Ver-
bindung von Schub- und ebenen Léngsspannungen. Im ersten Fall fiihrt die
Energiemethode fiir Querbeulen immer zu einem oberen Wert der geschiitzten
Beullast. Im zweiten Fall des Schub-Léingsbeulens fulen die Gleichungen fiir
die Beulschub-, Beullingsspannung sowie das Zusammenwirken derselben auf
dem Energieprinzip unter der Voraussetzung, dal die Spannungen im wirk-
samen Bereich konstant bleiben.
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