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Die verbesserte Seilpolygonmethode zur numerischen Lésung von
Differentialgleichungen zweiter Ordnung

Improvement in the Method of the Funicular Polygon for the Numerical Solution
of Differential Equations of the Second Order

Amélioration de la méthode du polygéne funiculaire pour la résolution numérique
des équations différentielles du second ordre

F. STUSSI
Prof. Dr., Ehrenprésident der IVBH

1. Problemstellung

Die Konstruktion von Krifte- und Seilpolygon zur Berechnung der Bie-
gungsmomente eines Balkens ist grundsitzlich auf Einzellasten orientiert.
Ubersetzen wir die graphische Konstruktion in die Sprache der Rechnung, so
finden wir zwischen den Lasten P und den Momenten M den Zusammenhang

Mm_Mm—l _ Mm+1—M
Axm Axm—l—l

m_ p

m

oder fir konstante Feldweiten 4 x
- m—1+2Mm—Mm+1=PmAx'

Ist der Balken durch eine stetige Belastung p belastet, so treten die Knoten-
lasten K (p) an Stelle der Einzellasten P; dabei ist es anschaulich, von der
Vorstellung eines indirekt belasteten Balkens auszugehen. Hier ist somit

_Mm—1+2Mm—Mm+1=Ame(p)' (1)

Die Momente M gelten in den Knotenpunkten; das Seilpolygon liefert uns
das Sehnenpolygon zur wirklichen Momentenfliche bei direkter Belastung.
Die Knotenlasten K (p) sind bei gegebenem Verlauf der Belastung p mit den
Mitteln der Baustatik (als sekundire Auflagerkrifte) einfach zu bestimmen.

Zwischen den Momenten M und der Belastung p eines Balkens besteht die
Beziehung M= —p;
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wir konnen mit y=M, y” = — p die Gleichung (1) auf die Form

ym~1'—2ym+ym+1 = Ame (y”) (2)

verallgemeinern. Wir nennen diese Beziehung die Seilpolygongleichung; sie ist.
streng giiltig, unabhéingig vom Verlauf der Belastungsfunktion y”.

Diese Seilpolygongleichung soll nun zur numerischen Losung der totalen
Differentialgleichung zweiter Ordnung

y' +by' tey+ F(x) =0 (3)

verwendet werden. Bei einer solchen Losung ist der entscheidende Schritt der,
die Ableitungen y” und y’ zu eliminieren bzw. durch die gesuchte Funktion y
selbst auszudriicken und damit die zu losende Differentialgleichung (3) in ein
Gleichungssystem mit aufeinanderfolgenden Werten v,,_1, ¥, Ym+1 USW. ZU
iibersetzen. Die Elimination der zweiten Ableitung y” mit Hilfe der Seilpoly-
gongleichung (2) gelingt, wenn wir in Gleichung (3) die Funktionswerte ¥, y’,
y” und F (x) durch die entsprechenden 4 z-fachen Knotenlasten ersetzen:

dz K, (y")+dzK, by )+dxK,, (cy)+dx K, (F)=0;
durch Einsetzen von 4z K,, (y”) nach Gleichung (2) folgt
Ym-1=2YmtYmr+ 4 K, by )t Az K, (cy) t Az K, (F) =0.  (4)
Wir haben nun noch die Knotenlasten K,, (by’) und K,, (cy) durch eine mog-
lichst kleine Zahl von Funktionswerten ¥ moglichst zutreffend auszudriicken.
Dabei ist es offensichtlich naheliegend, sich auf drei aufeinanderfolgende

Werte vy, 1, ¥,, und y,,.; zu beschranken, um ein moglichst einfach l6sbares
Gleichungssystem zu erhalten. Durch drei Punkte ist eine quadratische Parabel

Y =ay+ta,x+ayx? (5)

bestimmt; wir nennen diese Kurve y, aus der die Knotenlasten K,, (by’) und
K,, (cy) berechnet werden sollen, die Knotenlast-Kurve fiir das Doppelfeld von
m—1 bis m+ 1. Legen wir den Koordinatenursprung in den Punkt m (Fig. 1),

y y / ;
ﬁ/ Ym+l

Ym

& M

@- —— i
o] 1 x m-1 m mtl b3
Ax ——4 I"———- DX ot AX ——-—| )
Ko ly) y Km(y)

Fig. 1.
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so finden wir die Koeffizienten a,, ¢, und a, aus der Bedingung, daf} die Kurve
durch die drei Punkte mit vy,,_,, v,, und y,,., gehen soll, aus

x =0: Ym = Qg
x=dx: Y, =0+adx+a,dx?
x=—-dx: y, ;=a—a,dx+a,dx?
zu
— 2
Ao = Yum> a, = ?/m+21A 'Zm——l, ay = Ym1 2Ay'$2+ym+1 (5&)

Bei der Berechnung der Knotenlasten ist zu beachten, dal nur die symmetri-
schen Anteile von y bzw. y’ dazu Beitrige leisten, weil antimetrische Anteile
sich herausheben. Es ist somit

m+1 x
dx K, (cy) =24 xfcysym(l—ﬂ)dx.

Nehmen wir zundchst konstante Koeffizienten ¢ fiir das Doppelfeld von m —1
bis m + 1 an und fithren wir die Abkiirzung

_ode 12y
YT 19 = Aa2

ein, so ist
m+1

2 X
daKp(oy) = 24w ;Y [(ay+ayat)(1- 47 ) da.

X

3
Az K, (cy) = 2 12y[a0Ax+ azdx]

dx 2 12

und durch Einsetzen der Koeffizienten a, und a, aus Gleichung (5a) ergibt sich
Ame(Cy) = YY1t L0V Y+ Y Y- (6)

Analog folgt aus y;,,, =a,; mit der Abkiirzung

be 28
A= b= 4z
die Knotenlast K,, (by’) zu
m+1
Az K, (by) J ( )dx—él:,Bale

oder nach Einsetzen von a,
Ame (by’) = B(ym—i-l_ym—l)' (7)

Die Knotenlast K, (F) der Belastungsfunktion F (z) 148t sich mit den bekann-
ten Mitteln der Baustatik immer geniigend genau bestimmen; ist F (x) eine
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stetige Kurve, so kann ihre Knotenlast mit der Parabelformel analog zu
Gleichung (6) bei nicht zu groflen Intervallen mit guter Genauigkeit zu

A x*
Az K, (F) = 5 (B, 1+ 10 B+ By 0)
berechnet werden.
Damit folgt aus Gleichung (4) durch Einsetzen der Knotenlasten 4 x K, (cy)

und dx K, (by’) die Grundgleichung zur Lésung der Differentialgleichung (3)
Ym1 (L=Bty) =y, (2F 10y) ¥ 1 +BEy) A K, (F) =0.  (8)

Die zu l6sende Differentialgleichung (3) ist damit in ein leicht auflésbares
dreigliedriges Gleichungssystem iibersetzt.

Neben dieser Grundgleichung miissen noch die Rand- oder Anfangsbedin-
gungen formuliert werden. Bei den in der Baustatik vorkommenden Randwert-
aufgaben sind normalerweise die beiden Randwerte v, und y, gegeben; dies
ersetzt uns die entsprechenden Bestimmungsgleichungen. Ausnahmsweise
kénnen auch y’; und y3 gegeben sein; wir benétigen dann eine Beziehung, um
aus y', (bzw. y3) den Wert von y 4 (bzw. y5) berechnen zu kénnen. Bei Anfangs-
wertaufgaben nach Gleichung (3) sind am Anfang des Integrationsbereichs in
der Regel die beiden Werte y, und y, gegeben; wir bendtigen dann eine
Beziehung, um neben y, auch den Wert von y, (s. Fig. 1) zu berechnen. Bei der
Aufstellung einer solchen Randbedingung «y, gegeben» ist es zweckmafig,
nur die beiden Funktionswerte y, und ¥, zu verwenden, aber zur Formulierung
der Knotenlastkurve als quadratische Parabel auch den gegebenen Randwert
Yo der ersten Ableitung der gesuchten Funktionen y beizuziehen.

Zur Formulierung der gesuchten Randbedingung «y, gegeben» gehen wir
aus von der aus der Baustatik bekannten Beziehung zwischen Querkraft @),
Biegungsmoment M und Belastung p im Randfeld von 0 bis 1:

M, —M
Qo = Mldx*o*'Ko (p)

14

oder in allgemeiner Formulierung mit M =y, @Q=M'=y’', p = —y

Yodx =y, —y,—Adx K, (y"). (9)

Wir ersetzen y” nach der zu lésenden Differentialgleichung (3),

y'=—-by' FcyF F (),
und erhalten damit

Yodx =y —yo+dx Ky (by )+ dxK,(cy) + Az K, (F). (9a)

Die Knotenlasten K, (by’) und K, (cy) sind nun wieder mit Hilfe einer Knoten-
lastkurve y zu bestimmen, fiir welche wir wieder eine quadratische Parabel,
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einfithren. Mit Koordinatenursprung im Anfangspunkt 0 ist

, —Yo—Yod x
o = Yo> @ = Yo, @y = L yAO xgyo
und damit
, 2 x?
U} =y0+yo(x—ﬂ)+(y1~yo)d—xz (10a)
, , 2x 2x
und y = yo(l_ﬂ)+(yl_y0)d_x—z' (10Db)

Damit ergeben sich die gesuchten Knotenlasten zu

_ 1 x B 12y [y, dx 4 x? 4 a?
AxKo(cy)—Achfy(l—ﬂ)dw—A ¥ 2[ 5 TYo 15 T (WY 5 |

Az Ky(cy) = dbyyo+yy,+yyedx (11)

oz Blyedz  y1—Y
und dxKy(by') = Axbfy(l A )dx—AxA 6 tTT3 |’

, 2
AxKo(by)=—§§yo SByl gyoﬁx

(12)

Durch Einsetzen in Gleichung (9a) erhalten wir die gesuchte Randbedingung

- _yO(H%gJ_r5y)+y1(1+%¢7)_y34x(1_§¢y) LAz Ky (F)=0. (13)

Fiir stetigen Verlauf des Belastungsgliedes F (x) kann die Knotenlast in
Analogie zu Gleichung (11) mit
A x?

dx Ky (F) = ST

(6 Fy+ F,+ Fy Ax)

eingesetzt werden.

Wir haben noch den Fall verinderlicher Koeffizienten &6 und ¢ zu unter-
suchen. Ist der Koeffizient ¢ verinderlich, so fithren wir eine Knotenlastkurve
cy als quadratische Parabel ein:

cy =ag+a,xr+a,xt

Fiir ein Doppelfeld von m —1 bis m + 1 mit Koordinatenursprung in m ist

ay = €, Y P Crit1Ym+1— Cm—1Ym—1 Qo = Cnt1Ymi1— 2 ConYm + Co—1Ym—1
0 Smm 1 24z ’ 2 24 x2

und wir finden fiir symmetrische Anteile von ¢y die Knotenlast zu
m+1

_ __x__ _ 2cmym a2Ax2
Ame(cy)—mecysym(l Ax)dx-?dx( 5 T3 ),

(6a)
4 me (Cy) = Ym-1Ym—t loymym+7m+1ym+1

. cdx?
mit y = 1—290 wie bisher.
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Fiir das Anfangsfeld mit Koordinatenursprung im Anfangspunkt 0 ist
g =2Cy Yo Und
(cy) =cy' +c’'y=a,+2ayz.

Setzen wir mit geniigender Genauigkeit

r _ 6176

c
Adx ’

so finden wir fiir x=0
, C;—C
60y0+-—~1Ax°y0 = 0y

und damit fiir x =4«

, €1 —¢C
clyl=coy0+[coy0+—1d7°y0]dx+a2dx2,

ay d2? = ¢; (Y1 —Yo) —Co Yo d x.
Damit ergibt sich nach kurzer Zwischenrechnung die gesuchte Knotenlast zu
dxKy(cy) = (4v0+y) Yo+ v1¥1+veysdz. (ILa)

Fiir verdnderliche Koeffizienten b setzen wir die Knotenlastkurve y als Parabel
ein. Fiir das Doppelfeld von m —1 bis m + 1 ist damit nach den Gleichungen
(5) und (5a)

Y =a,+2a,x.

Fiir den verdnderlichen Koeffizienten b setzen wir linearen Verlauf iiber das
Doppelfeld voraus:

_ bm+1 — bmAl
b=5b,+ oAz
Aus by = (b +-b~31’—“—_bi”;1x (a; +2a,)
Y m 24 x 1 2
kann die gesuchte Knotenlast unter Einfithrung der Abkiirzung B = ng zu
’ m— +2 m m+1 " Pm— 2 mt
Ame(by) =._E_];§_£ m’—l_B +133m 1ym+ B 3Bm+1ym+1 (73)

berechnet werden.
Fiir das Anfangsfeld erhalten wir unter der gleichen Voraussetzung des
linearen Verlaufes von b in zu frither analoger Berechnung

A Ky(by) =Pt Priy, ) ysa0Pibo, (12a)

Durch Einsetzen dieser Werte der Knotenlasten ergeben sich nun die
Bestimmungsgleichungen fiir verinderliche Koeffizienten. Die Grundgleichung
lautet
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Y1 (1 _B_mi;% + 7m~1) — Y (2 + Bm+1*‘ﬁm 1-— 10ym)

(8a)
by (L4 2P P )5 40K, (F) =0,
wihrend sich die Randbedingung «y, gegeben» zu
+ -
_90(1+BO i 470+71))+91(1+ﬁo B1+’}’1)
(13a)

—yédx(l 25 ’BOJ—ryO)+AxK0(F) =0

ergibt.

Damit ist die «normale» Seilpolygonmethode rekapituliert, wie ich sie vor
langerer Zeit zur numerischen Losung von in der Baustatik vorkommenden
Differentialgleichungen vorgeschlagen!) und weiter ausgebaut habe?). Bei den
in der Baustatik vorherrschenden Aufgaben (Berechnung verankerter Hinge-
briicken, gemischte Torsion usw.) geniigt die Genauigkeit der Methode den
Anforderungen der Bemessungspraxis durchaus, wenn die Intervallgrofie 4 x
nicht zu groB3 gewéihlt wird. So kann bei Randwertaufgaben ohne Dampfungs-
glied by’ festgestellt werden, dal3 der Fehler unter 0,19, liegt, sofern y <0,05
ist. Der Fehler variiert annidhernd mit y%. Etwas ungiinstiger liegen die Ver-
hiltnisse bei Anfangswertaufgaben, bei denen sich die Fehler relativ ungiinstig
fortpflanzen, und vor allem bei grofen Dampfungskoeffizienten . Wohl kann
man durch Wahl geniigend kleiner Feldweiten 4z die FehlergroBe in ge-
wiinschten Grenzen halten, doch kann es dabei vorkommen, daf3 dadurch die
Zahl der zu l6senden Gleichungen unerwiinscht grofl wird.

Es ist deshalb fiir solche Félle (und auch um die FehlergroBle zutreffend
zu beurteilen) erwiinscht, die Seilpolygonmethode zu verbessern. Da in den
aufgestellten Gleichungen die zweiten Ableitungen y” in aller Strenge elimi-
niert sind, konnen die auftretenden Fehler nur von einer ungenauen Erfassung
der Knotenlasten K (cy) und K (by’) herriihren; damit ergibt sich, da} eine
Verbesserung der Genauigkeit durch eine Verbesserung der Knotenlastkurven
anzustreben ist.

2. Verbesserte Knotenlastkurven

Die in den Gleichungen (5) und (10) eingefiihrten Knotenlastkurven sind
quadratische Parabeln

1) F. StUssi: Die Stabilitdat des auf Biegung beanspruchten Tragers. Abh. IVBH,
Band 3, 1935.

2) 8. z. B.: F. Sttss1: Grundlagen des Stahlbaues. Springer-Verlag, Berlin 1958. Oder
F. S1Ussi: Numerische Methoden der Baustatik. Schweiz. Bauzeitung, 79. Jg., Heft 17,
1961.
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Y = ay+a,x+a,x?

als hochste algebraische Kurven, die durch drei Werte v,,_;, ¥, ¥mi1 Oder
Yo, Y1, Yo eindeutig bestimmt werden konnen. Differenzieren wir diese Kurve
¥y, so erhalten wir der Reihe nach

Yy = a;+2a,x

”

y = 2a2,

"

y' = 0.

Differenzieren wir dagegen die zu losende Differentialgleichung (3) (fiir kon-
stante Koeffizienten b und c)

Y= —by' Toy T (2) (32)

so konnen wir offensichtlich den Grund fiir die erwéhnten Ungenauigkeiten
erkennen: das Verschwinden der dritten Ableitung %" der Knotenlastkurve
steht im Widerspruch zur zu lésenden Differentialgleichung. Damit ergibt
sich aber auch die gesuchte Moglichkeit zur Verbesserung der Knotenlast-
kurve; diese muf} so gewihlt werden, dafl der aufgezeigte Widerspruch ver-
schwindet. Dies ist dadurch méglich, dafl wir die neue Knotenlastkurve y aus
Gleichung (3a) durch dreimalige Integration bestimmen, wobei wir die Werte
y” und y’ aus der bisherigen Knotenlastkurve Gleichung (5) bzw. (10) ent-
nehmen. Wir fithren die Untersuchung zuerst fiir das Doppelfeld von m —1
bis m + 1 durch. Fiir die Belastungsfunktion F (z) setzen wir in diesem Bereich

F = Fm+f1x+f2x2

: _ Fm+1_Fm—1 _ Fm+1_2Fm+Fm+l.
it h=""%az + =" ggm
es ist also F'=f+2fx
Fiihren wir wieder die Abkiirzungen

_ 2B _ 12y
"=4e T4
ein, so wird
m 218 —
y = 2“2+A 2(a1+2a2x)+(f1+2]‘2x)

und wir erhalten durch Integration der Reihe nach

" 4Ba 12
y' =20C,— B 2xF y(a1x+a2x2 (frx+fa2?),

dz T dx2
2Ba, - 12y (a, 22 aya3\ _ [(fi2% fya®
y' =C+20w——p e Ax2(2 + 3)+(2 * 3)’
2Ba x3 v _(fx®  fyat
y =Co+0Cx+Cyx%— sz A 2(2a1x3+a1x4)+( 16 + 12)
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Die Integrationskonstanten €, C; und C, sind so zu bestimmen, dafl die neue
Knotenlastkurve y wieder durch die drei vorgeschriebenen Punkte mit den
Ordinaten y,, . ¥,, und y,,., geht. Wir erhalten

firx=0: y, = 0C,,

fire=4x: y,.1 =

2 3 4
ym+OIAx+C2Ax2_‘2—Ba}2Ax“i'}’(2alﬁx+dzﬁx2)1(flAﬁx +f2f2x)a
fire=-dz: vy, ,=
2 3 9
ym—014x+02ﬁx2+£0;22d—x¢7(—2a141x+a241xZ)Tr(_Me’;x +f2f2x)'

Aus den beiden letzten Gleichungen erhalten wir durch Addition

4
?/m+1—2?/m+ym*1 =) 202A .’L‘2$'y2a24 x2 F 2&%
und durch Subtraktion
E'Ba2—sz f1A x3

F2y2a,dxF2 .

Ymi1—Ym = 20, dx—2 6

3
Damit ergeben sich die beiden noch gesuchten Integrationskonstanten

2 4 x?
C,= al—l—?ﬁazdxianli f1‘6£’

A a?
Cy = ay i'}/azifzﬁ-

Durch Einsetzen finden wir die verbesserte Knotenlastkurve zu

2/8 3 23
' ym”l“%””?“z“(”‘axz) ahid, (x‘ﬁ)

xt f14 x? %5 fad 2 x1
2 1 _ 2 _ 2
iyaz(x sz)i 6 (x sz)i 12 (x sz)'

(14)

Zur Berechnung der Knotenlast K,, (cy) sind nur die symmetrischen Anteile
von ¥y zu beriicksichtigen; es ist wie frither

m+1
dxz K, (cy) = QAxcfysym(l—Aﬁa;) dx

oder mit

x? )J_rfzdx2(x2— &t )

Ysym = ym+a2x2iya1(x2—4x2
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wird

4 _ Aa®
2Ky (0y) =24, 517 12 Tr% gyt g

32 A 22
Az K, (cy) = i'y(ym_l—}-lOym-l-ymH)_{__gL(ym+1_2ym+ym__1)i'Yleo '

12'y[ymAx+a2Ax3 Adax® [, 42 éﬁ"]

(15a)
Analog folgt aus

, 28 3 a? f4 x? 3 x?
ysym =a1+3‘a2Ax(I—Ax2)j2'yal (]. sz)—-t 1,6 (]. sz)

die Knotenlast

2/8 a,dx 25
62

Ame (by,) = B (ym—kl_ym—l)'}'_?;

Adzx
T

2
£2ya dx fidzx Ax],

14 + 6 4
(ym+1—2ym+ym—l)

A4 x3
+ By (ym+1 —ym—l) + "ﬁjl—(iw“'

(15D)

Setzen wir zur Abkiirzung

2 3,}/ _BZ 3,},2
§+*+I3% Gr—§+?ilg)’
sowie
_ 2 2
AR, (F) = 2K, (F)+ P22 (R~ )+ YO (2 B, + F, ),

12 20

a2y () = A2 [0, (1-p222) 4 1, (105 52) 4 1 (148227,

so kann die Grundgleichung fiir konstante Koeffizienten wie folgt geschrieben
werden:

ym-—l(l _/gi7+€l)_'ym(2$ 107+€l+€r)+ym+1(1 +Bi7+€r) j’_Ame(F) = 0.
(16)
Auch in der Randbedingung «y, gegeben» sind die in Gleichung (9a) vor-

kommenden Knotenlasten gegeniiber Gleichung (13) durch Einfithrung einer
verbesserten Knotenlastkurve zu verbessern. Wir setzen auch hier

y/// — _byﬂicyliFl(x)
und fithren die Ableitungen %’ und y” nach den Gleichungen (10) ein:

, 2x , 2
Yy = (yl_yo)d—gg‘f‘yo (1 —ZE)’

n 2 ! 2
Yy = (%‘3/0)@‘%@-
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Setzen wir noch (analog zu y’)

, 2
F' = (F— F)A 2+F( ﬂ)’

"o_ B —Yo _ 2y0\ - 12y [, ¥1—Y% ' 2z
Y = "4z sz da) da |* 42 T l*ﬂ)

L

so wird

A x2 dx

oder etwas anders geordnet

mo_. Y1— Yo 4B 24')/
Y =7 A (Axidxzx
; 12 F, — F, Fy
Ax [Aﬁ*d Y(M‘Q”)]T”[Q 2x20x+Ax(l_2x)]

Durch dreimalige Integration unter Beachtung der Integrationskonstanten
finden wir die verbesserte Knotenlastkurve y bzw. ' und wir kénnen daraus
die gesuchten Knotenlasten K,(cy) und K,(by') berechnen. Wir verzichten
hier auf die Wiedergabe der zwar nicht schwierigen, aber doch eher umstédnd-
lichen Zwischenrechnung und begniigen uns mit dem Ergebnis. Setzen wir

B* | 3y* 8By . _ B ¥ By
€_9+5—15’ “©“=9 " 5%3
sowie
= _ Adx® 4/9 3y 4 3y " B vy
AxK"(F)_W[E’(E’ 15" 5)+F( 15i?)+E’Ax(1+T5i5)’
so lautet die gesuchte Bestimmungsgleichung
2 2
_?/0(1'*‘_;‘*—‘57/+€0)+?/1(1+”3£i7’+60)
(17)

—y(;Ax(l—gTLy—i—éo) +A4xK,(F)=0.

Es zeigt sich aus der Durchfiihrung dieser Rechnung, dal es wohl kaum
moglich sein diirfte, bei der Berechnung der Korrekturglieder der Gleichungen
(16) und (17) gegeniiber den Gleichungen (8) und (13) veranderliche Koeffizienten
auf einfache und iibersichtliche Weise zu beriicksichtigen. Bei verinderlichen
Koeffizienten b und c¢ diirfte es deshalb angezeigt sein, diese Korrekturglieder
fir die Mittelwerte von b und ¢ im Bereich von m — 1 bis m + 1 fiir die Grund-
gleichung bzw. im Bereich des Anfangsfeldes fiir die Randbedingung zu be-
stimmen und diese in die Gleichungen (8a) und (13a) einzusetzen. Da diese
Korrekturglieder an sich klein (aber sehr wirksam) sind, wird ein solches
Vorgehen keine wesentliche Einbufle an Genauigkeit zur Folge haben.
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Es soll noch kurz auf die Anwendung der verbesserten Methode an einem
Zahlenbeispiel hingewiesen werden. Wir wéihlen dafiir ein von M. G. SALVADORI
und M. C. BArRON?) angegebenes Anfangswertproblem aus der Elektrotechnik,

Yy +7,0(1+0,5s8inz)y’+36y = cosbx
mit den Anfangsbedingungen y,=0, y,=0. Wiahlen wir 4 £=0,10, so ist

0,102
=~ = 0,03.
5= 0,03

B =0,35(1+0,5sinx), y = 36

Wir verzichten darauf, die Zahlenrechnung hier vorzufiihren und beschrianken
uns darauf, in der folgenden Tabelle den Verlauf von 8 und von — F (x) =cos 6
mit den Ergebnissen y der verbesserten Gleichungen (8a) und (13a) zusammen-
zustellen.

® B —F (x) Yy ® B —F (z) Y

0 0,350000 1,000 0 0,7 0,462739 | —0,49026 -0,016874
0,1 0,367470 0,82534 0,003751 0,8 0,475538 0,08750 —-0,018747
0,2 0,384767 0,36236 0,009985 0,9 0,487083 0,63469 -0,014444
0,3 0,401716 | -0,22720 0,012602 1,0 0,497257 0,96017 —-0,005560
0,4 0,418149 | -0,73739 0,009051 1,1 0,505962 0,95024 0,004769
0,5 0,433900 | -0,98999 0,000501 1,2 0,513107 0,60836 0,013022

0,6 0,448812 | -0,89676 | —0,009475 usw.

Vergleichsrechnungen zeigen, dafl die verbesserte Seilpolygonmethode bei
gleicher IntervallgroBe Az in bezug auf die erreichte Genauigkeit anderen
numerischen Methoden?*) mindestens gleichwertig und der von SALVADORI-
BAroN selber angegebenen Losung deutlich iiberlegen ist.

3. Weitere Verbesserungen

Die verbesserte Knotenlastkurve Gleichung (14) ist grundsétzlich erst eine
verbesserte Anndherung an die genaue Knotenlastkurve. Eine weitere Ver-
besserung kénnten wir dadurch erhalten, daBl wir, ausgehend von Gleichung
(14), die verbesserten Ableitungen von ¥’ und y” zur Bestimmung von y” der
neuen Knotenlastkurve verwenden und uns so der genauen Kurve in suk-
zessiver Approximation immer weiter anndhern. Diese Berechnung ist an sich
nicht schwierig, wird aber umstédndlich und wenig iibersichtlich. Wir diirfen

3) M. G. SaLvaDpoRrI, M. L. BAroN: Numerical Methods in Engineering, Prentice Hall,
2. ed., 1961, p. 134.

4) S.z.B. F. StUssi: Zur numerischen Losung von linearen totalen Differential-
gleichungen. Festschrift fiir H. Beer und K. Sattler, Springer-Verlag, Wien-New York,
1965.
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auf diese Weiterfiihrung fiir den allgemeinen Fall der Gleichung (3) verzichten,
weil die untersuchte Verbesserungsstufe schon sehr wirksam ist und weil
notigenfalls durch eine Verkleinerung der IntervallgroBe 4« die gleiche Ver-
besserung der Genauigkeit erreicht werden kann wie durch weitere Verbes-
serungsstufen. Auch ist es durch Vergleichsrechnungen mit verschiedenen
IntervallgroBen moglich, die erreichte Genauigkeit zu iiberpriifen und gege-
benenfalls zu verbessern.

Dagegen diirfte es von Interesse sein, die weiteren Verbesserungen fiir die
vereinfachte Differentialgleichung

y' tey+ F(x) =0 (3a)

fir den Fall F” (x) =0 (gleichm&Big verteilte Belastung) zu untersuchen, weil
dieser Fall in der Baustatik besondere Bedeutung besitzt.
Zunachst vereinfacht sich fir 6 =0 die Losung dadurch, dafl hier

€ =€,=¢€

wird, und die Grundgleichung 148t sich allgemein fiir konstante Koeffizienten
¢ in der Form

Yn1 L2y +€) =4, 2F10y+2€)+yp(liy+e)+ da K, (F) =0 (16a)

anschreiben. Fiir das Korrekturglied e finden wir durch wiederholte Berech-
nung den Wert

3%, 29° 3yt 18y% 1520298

_ N ” 18
T Ty 25 T 385 ' 875875 18
oder auch
342 10 1, 6 15202
LAl P ST S 4y ... 18
=75 (1i217’+57 AT R ) (18a)

Die Reihe konvergiert bei grofleren Werten von y nur relativ langsam, doch
1aBt sich die Konvergenz dadurch verbessern, daf3 wir den reziproken Wert
des Klammerausdruckes von Gleichung (18a) einfithren. Wir erhalten damit

1
— 2 0654
€ = 0000 50,476195 1 0,02676 1% + 0,00457 1% 1 0,00065 53

(18b)

Die Randbedingung «y, gegeben» lautet fiir den untersuchten Sonderfall

—Yo(1 F5y+e)+y, (1 i')’*"%)‘?/édm(l*_"}’—éo)i-/-‘xKo(F) = 0. (17a)

Dabei ist €y =€ und

1
s = 2 ) .
¢ = 0,200y 0,28571 y — 0,0040872 F 0,00032 /3

(18¢)
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Zur Veranschaulichung der mit diesen weiteren Verbesserungen erreichbaren
Genauigkeit sei noch das Anfangswertproblem

y”iy:o

untersucht. Wir kennen dafiir die genauen Losungen; es ist ndmlich fiir

a) ¥ +y=0: y,=0, y,= 1,0: y=sinz,
b) Yo = 1,0, yo= O Y = COS X,
c) ¥'—y=0: y,=0, y;= 1,0: y=Sinhz,
d) Yo= 1,0, yo= 0: y = Coshuz,
e) Yo =10, yo= 1,00 y =e*,

f) Yo =10, yo=—1,0: y =e"*

Alle diese Funktionen lassen sich somit aus der Rekursionsformel

24+10y+2€
Ym+1 = W?/m—?/mﬂ

und der Randbedingung
—Yo(LF5y+e)+y1(Lty+te)—yoda(1Fy—¢&) =0

berechnen.
Wir wéhlen ein sehr groBles Intervall,

Az =1,20, y=0,12,

Fiir den Fall 4" +y =0 wird

e = 0,0091598, ¢, = 0,0029823,
Yn+1 = 0,7247155 Yn = Ym—1>
Yy, = 0,3623578y,+ 0,776699 y 4 z,

wihrend sich fir y” —y =0 die Werte

e = 0,0081701, ¢, = 0,0027845,

y, = 1,810656 y,+ 1,257885y, 4

ergeben. Die Ergebnisse der Berechnung sind in der folgenden Tabelle zusam-
mengestellt,
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T Yg=-5In x Yp=COS & Yye.=Sinh z yq="Cosh « Ye=e% Yyr=e 7%
0 0 1,000000 0 1,000000 1,000 1,000

1,2 0,932039 0,362358 1,509462 1,810656 3,320117 0,301194
2,4 0,675463 -0,737394 5,466230 5,556947 11,023177 0,090718
3,6 -0,442520 -0,896758 18,285457 18,312778 36,5698236 0,027324
4,8 -0,996165 0,087499 60,75110 60,75932 121,51042 0,008230
6,0 -0,279416 0,960170 |201,71317 201,71562 403,42880 0,002479

Ein Vergleich mit den Tabellenwerten in Ingenieurhandbiichern zeigt, daf3
unsere verbesserten Gleichungen eine erstaunlich gute Genauigkeit besitzen.
Die Bedeutung der verbesserten Seilpolygonmethode liegt selbstverstédndlich
nicht darin, dal wir damit vorhandene Tabellenwerte mit groBer Genauigkeit
nachrechnen konnen, sondern darin, daBl sie uns erlaubt, solche Probleme
. numerisch zutreffend zu losen, fiir die keine gebrauchsfertigen Tabellenwerte
oder genaue analytische Losungen existieren.

Zusammenfassung

Die Seilpolygongleichung eignet sich deshalb gut zur numerischen Lésung
von Differentialgleichungen zweiter Ordnung, weil die zweite Ableitung y” der
gesuchten Funktion y durch Bildung von Knotenlasten in aller Strenge elimi-
niert, bzw. durch Funktionswerte y ausgedriickt werden kann. Durch die Ein-
fithrung von Knotenlasten geht die zu l6sende Differentialgleichung in ein
dreigliedriges Gleichungssystem tiber. Ungenauigkeiten kdnnen bei grosseren
Intervallen zwischen aufeinanderfolgenden Knotenpunkten dadurch entstehen,
dass die Knotenlasten von y (und auch von y’) mit der « Parabelformel» fiir y
nicht genau, sondern nur angendhert durch drei aufeinanderfolgende Funk-
tionswerte y erfallt werden konnen. In der vorliegenden Untersuchung wird
eine wirksame Verbesserung der Genauigkeit entwickelt.

Summary

The funicular polygon equation is suitable for the numerical solution of
differential equations of the second order, because it is possible to eliminate,
in a correct manner, the second differential coefficient y” of the function, v,
that is sought, by means of nodal loads respectively to express it by means of
the dependent variable, y. By the introduction of nodal loads, the differential
equation, for which a solution is to be found, is converted into a system of
equations with three unknowns. As the nodal loads for y (and for y’), calcu-
lated with three values of y and by means of the parabola formula, are only
approximate, some degree of inaccuracy becomes apparent, when the inter-
vals between the points become considerable. The present study establishes a
definite improvement in the exactness,
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Résumé

L’équation du polygone funiculaire est & sa place pour la résolution numéri-
que des équations différentielles du second ordre, parce que l'on peut
éliminer de maniére exacte la deuxiéme dérivée y” de la fonction cherchée y au
moyen des charges nodales, soit ’exprimer par la fonction y. Par 'introduction
de charges nodales, on transforme I’équation différentielle & résoudre en un
systéeme d’équations & trois inconnues. Comme les charges nodales pour y (et
pour y’) calculées avec trois valeurs de y et a l'aide de la formule de la
parabole ne sont qu’approximatives, une certaine inexactitude apparait lors-
que les intervalles entre les points deviennent grands. La présente étude déve-

lopre une nette amélioration de I'exactitude.
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