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Die verbesserte Seilpolygonmethode zur numerischen Lösung von
Differentialgleichungen zweiter Ordnung

Improvement in the M ethod of the Funicular Folygon for the Numerical Solution
of Differential Equations of the Second Order

Amelioration de la methode du polygone funiculaire pour la resolution numerique
des equations differentielles du second ordre

F. STÜSSI

Prof. Dr., Ehrenpräsident der IVBH

1. Problemstellung

Die Konstruktion von Kräfte- und Seilpolygon zur Berechnung der
Biegungsmomente eines Balkens ist grundsätzlich auf Einzellasten orientiert.
Übersetzen wir die graphische Konstruktion in die Sprache der Rechnung, so
finden wir zwischen den Lasten F und den Momenten M den Zusammenhang

M — M M — Miv± m iv± m_1 ^
±v± m+1 iv± m _

A xm A xm+1

oder für konstante Feldweiten A x

-Mm_1 + 2Mm-Mm+1 PmAx.

Ist der Balken durch eine stetige Belastung p belastet, so treten die Knotenlasten

K(p) an Stelle der Einzellasten F; dabei ist es anschaulich, von der
Vorstellung eines indirekt belasteten Balkens auszugehen. Hier ist somit

-Mm_1 + 2Mm-Mm+1 AxKm(p). (1)

Die Momente M gelten in den Knotenpunkten; das Seilpolygon liefert uns
das Sehnenpolygon zur wirklichen Momentenfläche bei direkter Belastung.
Die Knotenlasten K (p) sind bei gegebenem Verlauf der Belastung p mit den
Mitteln der Baustatik (als sekundäre Auflagerkräfte) einfach zu bestimmen.

Zwischen den Momenten M und der Belastung p eines Balkens besteht die
Beziehungö M" -p;
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wir können mit y M, y" —p die Gleichung (1) auf die Form

Vm-i -2ym + ym+i AxKm (y") (2)

verallgemeinern. Wir nennen diese Beziehung die Seilpolygongleichung; sie ist
streng gültig, unabhängig vom Verlauf der Belastungsfunktion y".

Diese Seilpolygongleichung soll nun zur numerischen Lösung der totalen
Differentialgleichung zweiter Ordnung

y" + by' ±cy±F (x) 0 (3)

verwendet werden. Bei einer solchen Lösung ist der entscheidende Schritt der,
die Ableitungen y" und y' zu eliminieren bzw. durch die gesuchte Funktion y
selbst auszudrücken und damit die zu lösende Differentialgleichung (3) in ein
Gleichungssystem mit aufeinanderfolgenden Werten ym_1, ym, ym+1 usw. zu
übersetzen. Die Elimination der zweiten Ableitung y" mit Hilfe der
Seilpolygongleichung (2) gelingt, wenn wir in Gleichung (3) die Funktionswerte y, y',
y" und F (x) durch die entsprechenden A x-fachen Knotenlasten ersetzen:

AxKm(y") + AxKm(by')±AxKm(cy)±AxKm(F) 0;

durch Einsetzen von AxKm(y") nach Gleichung (2) folgt

ym-1-2ym + ym+1 + AxKm(by')±AxKm(cy)±AxKm(F) 0. (4)

Wir haben nun noch die Knotenlasten Km(byf) und Km(cy) durch eine
möglichst kleine Zahl von Funktionswerten y möglichst zutreffend auszudrücken.
Dabei ist es offensichtlich naheliegend, sich auf drei aufeinanderfolgende
Werte ym-1, ym und ym+1 zu beschränken, um ein möglichst einfach lösbares

Gleichungssystem zu erhalten. Durch drei Punkte ist eine quadratische Parabel

y a0 + a1 x + a2 x2 (5)

bestimmt; wir nennen diese Kurve y, aus der die Knotenlasten Km(by') und
Km(cy) berechnet werden sollen, die Knotenlast-Kurve für das Doppelfeld von
m— 1 bis m+1. Legen wir den Koordinatenursprung in den Punkt m (Fig. 1),

y0.Ax

My)

My)

ym+i

Xm-I

m+1 x

t Km(y)

Fig. 1.
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so finden wir die Koeffizienten a0, ax und a2 aus der Bedingung, daß die Kurve
durch die drei Punkte mit 2/m_l5 ym und ym+1 gehen soll, aus

x 0: ym =ao>
x Ax: ym+1 a0 + a1Ax + a2Ax2,

x —Ax: ym_1 a0 — a1Ax-\-a2Ax2
zu

a°~^' ai~ 2Ax ' a*~ 2Ä^2 ' (5a)

Bei der Berechnung der Knotenlasten ist zu beachten, daß nur die symmetrischen

Anteile von y bzw. y' dazu Beiträge leisten, weil antimetrische Anteile
sich herausheben. Es ist somit

m+1 / x \
AxKm(cy) 2Ax^ysym\l-j^dx.

Nehmen wir zunächst konstante Koeffizienten c für das Doppelfeld von m — 1

bis m+1 an und führen wir die Abkürzung

ein, so ist

_cAx2 _ I2y
y~ 12 ' C~Ax2

AxKm(cy) 2Axj^ \(a0 + a2x2)\l--^xjdx,

12v
AxKm(cy) 2—r^- a0Ax a2Ax*

12

und durch Einsetzen der Koeffizienten a0 und a2 aus Gleichung (5 a) ergibt sich

AxKm(cy) =yym-1+10yym + yym+1. (6)

Analog folgt aus y'sym ax mit der Abkürzung

bAx 2ß

m+1
Ax

die Knotenlast Km(by') zu

AxKm(by') 2Ax^ ja^l-^dx 4ß°^
m

oder nach Einsetzen von ax

AxKm(by') ß(ym+1-ym-1). (7)

Die Knotenlast Km (F) der Belastungsfunktion F (x) läßt sich mit den bekannten

Mitteln der Baustatik immer genügend genau bestimmen; ist F (x) eine
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stetige Kurve, so kann ihre Knotenlast mit der Parabelformel analog zu
Gleichung (6) bei nicht zu großen Intervallen mit guter Genauigkeit zu

AxKm(F) ^-(Fm_1+10 Fm + Fm+1)

berechnet werden.
Damit folgt aus Gleichung (4) durch Einsetzen der Knotenlasten A x Km (c y)

und AxKm(by') die Grundgleichung zur Lösung der Differentialgleichung (3)

ym-1(l-ß±y)-ym(2+10y) + ym+1(l+ß±v)±AxKm(F) 0. (8)

Die zu lösende Differentialgleichung (3) ist damit in ein leicht auflösbares
dreigliedriges Gleichungssystem übersetzt.

Neben dieser Grundgleichung müssen noch die Band- oder Anfangsbedingungen

formuliert werden. Bei den in der Baustatik vorkommenden Bandwertaufgaben

sind normalerweise die beiden Randwerte yA und yB gegeben; dies
ersetzt uns die entsprechenden Bestimmungsgleichungen. Ausnahmsweise
können auch y'A und y'B gegeben sein; wir benötigen dann eine Beziehung, um
aus y'A (bzw. y'B) den Wert von yA (bzw. yB) berechnen zu können. Bei
Anfangswertaufgaben nach Gleichung (3) sind am Anfang des Integrationsbereichs in
der Regel die beiden Werte y0 und y'Q gegeben; wir benötigen dann eine
Beziehung, um neben y0 auch den Wert von yx (s. Fig. 1) zu berechnen. Bei der
Aufstellung einer solchen Randbedingung «y^ gegeben» ist es zweckmäßig,
nur die beiden Funktionswerte y0 und y± zu verwenden, aber zur Formulierung
der Knotenlastkurve als quadratische Parabel auch den gegebenen Randwert
y'$ der ersten Ableitung der gesuchten Funktionen y beizuziehen.

Zur Formulierung der gesuchten Randbedingung «y'Q gegeben» gehen wir
aus von der aus der Baustatik bekannten Beziehung zwischen Querkraft Q,

Biegungsmoment M und Belastung p im Randfeld von 0 bis 1:

Qo=^^ + Ko(P)

oder in allgemeiner Formulierung mit M y, Q M' =y', p —y"

y'QAx y1-y0-AxK0(y"). (9)

Wir ersetzen y" nach der zu lösenden Differentialgleichung (3),

V" -by' + cy+F(x),
und erhalten damit

y^Ax=y1-y0 + AxK0(by')±AxK()(cy)±AxK0(F). (9a)

Die Knotenlasten K0 (by') und K0(cy) sind nun wieder mit Hilfe einer
Knotenlastkurve y zu bestimmen, für welche wir wieder eine quadratische Parabel,

y a0 + a1x + a2x2, (10)
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einführen. Mit Koordinatenursprung im Anfangspunkt 0 ist

_ _ / _ yi~yo~yo^x
ao — 2/o' ai — 2/o j a2 — ^x2

und damit

x~^y)+{'yi~yo)jy (10a)

und y' y<>y'Ax) + {yi~yo)Ä7f (10b)

Damit ergeben sich die gesuchten Knotenlasten zu

* rr s ä \ l, «\, a 12y[y0Ax ,Ax2 yx2~\
AxK0(cy)=Axyy[l-^dx AxJ^^^ + y^ — + (y1-yQ)—^

AxK<)(cy) 5yy0 + yyx + yy'(iAx (11)

und AxK0(by') Axbjy'(l~-T—\dx Ax~z^-

v 2ß 2ß ß
AxK0(by') --fy0+-fyi+7iyödx.

y0Ax
|

y1-y0
6

(12)

Durch Einsetzen in Gleichung (9a) erhalten wir die gesuchte Randbedingung
zu

-2/o(l + 2£+5v) + Vi(1 + 2£ + v) -2/o^^(l -£+"y)±J a:#„(*") 0. (13)

Für stetigen Verlauf des Belastungsgliedes F (x) kann die Knotenlast in
Analogie zu Gleichung (11) mit

AxK0(F)^A^(5F0 + F1 + F^Ax)

eingesetzt werden.
Wir haben noch den Fall veränderlicher Koeffizienten b und c zu

untersuchen. Ist der Koeffizient c veränderlich, so führen wir eine Knotenlastkurve
cy als quadratische Parabel ein:

cy a0 + a1x + a2x2.

Für ein Doppelfeld von m — 1 bis m+1 mit Koordinatenursprung in m ist

n — n oi n —
Cm+1 Vm+l ~ Cm-1 g/m-1 _ _ Cm+1 ym+1 ~ ^ Cm y^n + Cm-1 2/m-l

a0-omym9 ax- ^- a2- ^2
und wir finden für symmetrische Anteile von cy die Knotenlast zu

AxKm(cy) 2jcysym(l-£c]jdx 2 A x2{^ + ^^j,
(6a)

AxKm(cy) ym_1 ym_1 + 10 ym ym + ym+1 ym+1

c A oft1

mit y wie bisher.
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Für das Anfangsfeld mit Koordinatenursprung im Anfangspunkt 0 ist

(cy)' cy' + c' y ax + 2a2x.

Setzen wir mit genügender Genauigkeit

/ Ci cn

Ax '

so finden wir für x 0

coyo+c^2i~y° ai

und damit für x Ax

ciyi c02/o+ \c0y^ + ^j^yJAx + a2Ax2,

a2Ax2 c± (y1-y0)-c0y!lAx.
Damit ergibt sich nach kurzer Zwischenrechnung die gesuchte Knotenlast zu

AxK0(cy) (4:y0 + y1)y0 + y1y1 + y0yoAx. (IIa)

Für veränderliche Koeffizienten b setzen wir die Knotenlastkurve y als Parabel
ein. Für das Doppelfeld von m — 1 bis m +1 ist damit nach den Gleichungen
(5) und (5a)

y' a1-\-2a2x.

Für den veränderlichen Koeffizienten b setzen wir linearen Verlauf über das

Doppelfeld voraus:

m+ 2Ax

Aus by' (&m + *5H!^
kann die gesuchte Knotenlast unter Einführung der Abkürzung ß zu

AxKm(by') -ßm-1t2ßmym-i-ßm+1~ßm-1ym+ 2ßm+Jm+1ym+i V*)

berechnet werden.
Für das Anfangsfeld erhalten wir unter der gleichen Voraussetzung des

linearen Verlaufes von b in zu früher analoger Berechnung

AxK0(by') =P^(y1-y0) + y^Ax^7^. (12a)

Durch Einsetzen dieser Werte der Knotenlasten ergeben sich nun die
Bestimmungsgleichungen für veränderliche Koeffizienten. Die Grundgleichung
lautet
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(8a)

(13a)

y^i(i-k=4^±r-i)-y-^
+ ym+i (l + -^±^ ± ym+1) ± J *tfm (*-) 0,

während sich die Randbedingung «y'Q gegeben» zu

-yo(l+^+(4yo +yi))+yi(l+^±yi

-y^Ax(l-^f^ + y0]j±AxK0(F)

ergibt.
Damit ist die «normale» Seilpolygonmethode rekapituliert, wie ich sie vor

längerer Zeit zur numerischen Lösung von in der Baustatik vorkommenden
Differentialgleichungen vorgeschlagen1) und weiter ausgebaut habe2). Bei den
in der Baustatik vorherrschenden Aufgaben (Berechnung verankerter
Hängebrücken, gemischte Torsion usw.) genügt die Genauigkeit der Methode den

Anforderungen der Bemessungspraxis durchaus, wenn die Intervallgröße Ax
nicht zu groß gewählt wird. So kann bei Randwertaufgaben ohne Dämpfungsglied

by' festgestellt werden, daß der Fehler unter 0,1% liegt, sofern y^0,05
ist. Der Fehler variiert annähernd mit y2. Etwas ungünstiger liegen die
Verhältnisse bei Anfangswertaufgaben, bei denen sich die Fehler relativ ungünstig
fortpflanzen, und vor allem bei großen Dämpfungskoeffizienten b. Wohl kann
man durch Wahl genügend kleiner Feldweiten A x die Fehlergröße in
gewünschten Grenzen halten, doch kann es dabei vorkommen, daß dadurch die
Zahl der zu lösenden Gleichungen unerwünscht groß wird.

Es ist deshalb für solche Fälle (und auch um die Fehlergröße zutreffend
zu beurteilen) erwünscht, die Seilpolygonmethode zu verbessern. Da in den

aufgestellten Gleichungen die zweiten Ableitungen y" in aller Strenge eliminiert

sind, können die auftretenden Fehler nur von einer ungenauen Erfassung
der Knotenlasten K (cy) und K(by') herrühren; damit ergibt sich, daß eine

Verbesserung der Genauigkeit durch eine Verbesserung der Knotenlastkurven
anzustreben ist.

2. Verbesserte Knotenlastkurven

Die in den Gleichungen (5) und (10) eingeführten Knotenlastkurven sind
quadratische Parabeln

F. Stüssi: Die Stabilität des auf Biegung beanspruchten Trägers. Abh. IVBH,
Band 3, 1935.

2) S. z. B.: F. Stüssi: Grundlagen des Stahlbaues. Springer-Verlag, Berlin 1958. Oder
F. Stüssi: Numerische Methoden der Baustatik. Schweiz. Bauzeitung, 79. Jg., Heft 17,
1961.
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y a0 + ax x + a2 x2

als höchste algebraische Kurven, die durch drei Werte ym_l9 ym, ym+\ oder
2/o> 2/i > 2/o eindeutig bestimmt werden können. Differenzieren wir diese Kurve
y, so erhalten wir der Reihe nach

y' ax + 2a2x,
y" 2a2,

y'" 0.

Differenzieren wir dagegen die zu lösende Differentialgleichung (3) (für
konstante Koeffizienten b und c)

y"' -by" + cy' + F'(x), (3a)

so können wir offensichtlich den Grund für die erwähnten Ungenauigkeiten
erkennen: das Verschwinden der dritten Ableitung y'" der Knotenlastkurve
steht im Widerspruch zur zu lösenden Differentialgleichung. Damit ergibt
sich aber auch die gesuchte Möglichkeit zur Verbesserung der Knotenlastkurve;

diese muß so gewählt werden, daß der aufgezeigte Widerspruch
verschwindet. Dies ist dadurch möglich, daß wir die neue Knotenlastkurve y aus
Gleichung (3a) durch dreimalige Integration bestimmen, wobei wir die Werte
y" und y' aus der bisherigen Knotenlastkurve Gleichung (5) bzw. (10)
entnehmen. Wir führen die Untersuchung zuerst für das Doppelfeld von m — 1

bis m+1 durch. Für die Belastungsfunktion F (x) setzen wir in diesem Bereich

F Fm + f1x + ftx*

mit fl ~ 2Ax ' k 2A~x~2 '

es ist also F' f1 + 2 f2 x.

Führen wir wieder die Abkürzungen

b -2l c=^7Ax' Ax2
ein, so wird

y'"= ~2y2 a*T iSK+2aa x) T (/i+2 u x)'

und wir erhalten durch Integration der Reihe nach

y» 2Cz-^j^x + ^(a1x + a2x2) + (f1x + f2x*),

1 si cm-1 2ßa2 9_l2yia1x2 a2xz\_lf,x2 f«x3\
y' =C1 + 2C2x-^x2 + jy^ +^ + {h_ + h_^

y =C0 + C1x + C2x2-^tT-^(2a1x3 +a^)T(f^ + ^).
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Die Integrationskonstanten C0, C1 und C2 sind so zu bestimmen, daß die neue
Knotenlastkurve y wieder durch die drei vorgeschriebenen Punkte mit den
Ordinaten ym_1, ym und ym+1 geht. Wir erhalten

fürx 0: ym C0,

fürx Ax: ym+1

r, a n a 9 2ßa2Ax2_ /rt A A 9^_if1Ax3 f2dx*\
ym + CxAx + C2Ax2 ^-| + y(2aiAx + a2Ax2)+\^~ + ^-)>

füvx=-Ax: ym_1

r, a „ a o 2ßa2Ax2 n A A 9X_/ UAx3 f2Ax2
ym-C1Ax + C2Ax2 + ^J-^2 + y(-2a1Ax + a2Ax2) + \^-,^- + ,^Y¥

Aus den beiden letzten Gleichungen erhalten wir durch Addition

ym+i-2ym + ym-i 2C2Ax2 + y2a2Ax2+2f^j^

und durch Subtraktion

rt„ A 2ßa2Ax2_^ 0 A _JxAx*
ym+i-ym-i 2C1Ax-2-?-l +2y2a1Ax+2!-^-.

Damit ergeben sich die beiden noch gesuchten Integrationskonstanten

2 ß Ax2
Ci a1 + -^a2Ax±2ya1± /x——,

A x2
C2 a2±ya2±f2-^-.

Durch Einsetzen finden wir die verbesserte Knotenlastkurve zu

2 2ß A I X* \ 0 / x3 \

/ 9
X4 \ /^Ja?2/ X3 \ /2Zlx2/ 9

X* \
(14)

Zur Berechnung der Knotenlast Km(cy) sind nur die symmetrischen Anteile
von y zu berücksichtigen; es ist wie früher

m+1 I rjß \

AxKm(cy) 2Axcjysymll--^\dx

oder mit

2/SJ/m ^m + a2«2±ral(a; J^2j± ~12~\X J^j
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wird

AxKm(cy) 2Ax^ ymA x a9Ax3 Ax3 f9Ax2 A x3

3 y2 yfAx*AxKm(cy) ±y(ym-i + i0ym+ym+i) + ~-(ym+i-2ym + ym-i)±JL^r-—./m+1/ •

pi \&m-ti - zm ¦ &m-i/ — in
(15a)

Analog folgt aus

a I, 3^2\ o I, 3^2\ /i^*2/, 3^2\2i8

die Knotenlast

2/s2/m — al + o a2'

2ß\axAx 2ß Ax Ax fxAx2 Axa tz /l /v ^^ 2ß[a,Ax 2ß Ax n Ax
AxKm(by') 2Ax^\-^r +^a2— ±2ya1— ±

i82

AxKm(by')=ß (ym+1 - ym_^> + — (ym+1 - 2 ym + y^)
0/ Zl #3

(15b)

Setzen wir zur Abkürzung

ß2 3y2 j82 3y2
€' % + -f:F^ ^ ^-^-t±ßr

sowie

A x Km (F) A x Km (F) +^f (Fm+1 - Fmy ±^f (Fm+1 -2Fm + Fm_J,

AxKm(F) ^Fm_1{l-ß±^yFm{lOT^) + Fm+1{l+ß±^

so kann die Grundgleichung für konstante Koeffizienten wie folgt geschrieben
werden:

ym-i^-ß±y + ^)-ym^T10y + €l + er) + ym+1(l+ß±y + €r)±AxKm(F) 0.

(16)

Auch in der Randbedingung «y^ gegeben» sind die in Gleichung (9a)
vorkommenden Knotenlasten gegenüber Gleichung (13) durch Einführung einer
verbesserten Knotenlastkurve zu verbessern. Wir setzen auch hier

y'" -by"Tcy' + F'(x)

und führen die Ableitungen y' und y" nach den Gleichungen (10) ein:

2x ,/ 2x\
y -(yi-y«)j^+y.(i-j^).
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Setzen wir noch (analog zu y')

F'=(F1-F0)
2x

Zhr2 +*(-£)•
so wird

2_ß

A.
ß Lyi-yo 2y'Ajuy\2yi-y*r\v'U 2x\
x\ Ax2 Axj + Axy Ax2 x + y»y Ax)

2x+24i?^o(l Ax

oder etwas anders geordnet

,„ yi-yol^ß h ^Y:

+

Ax2 \Ax
2/o

Ax -f^(Ax-2x)Ax Ax2X ' Ax2 X + Ax[ ¦2x)

Durch dreimalige Integration unter Beachtung der Integrationskonstanten
finden wir die verbesserte Knotenlastkurve y bzw. y' und wir können daraus
die gesuchten Knotenlasten K0(cy) und K0(byf) berechnen. Wir verzichten
hier auf die Wiedergabe der zwar nicht schwierigen, aber doch eher umständlichen

Zwischenrechnung und begnügen uns mit dem Ergebnis. Setzen wir

€o "9 +
j82 3y2 8ßy

5 "±"15
_ß2 y ßy

tft — ^ ZT IL *.

sowie

AxK0(F)

so lautet die gesuchte Bestimmungsgleichung

=^[yyyi)y>yy7)^*H4
-y0 (i+^ + 5y + e0) +2/1(1 + 27±y+e^

-y^Ax{l-^ + y + i0]j±AxK0(F) 0.
(17)

Es zeigt sich aus der Durchführung dieser Rechnung, daß es wohl kaum
möglich sein dürfte, bei der Berechnung der Korrekturglieder der Gleichungen
(16) und (17) gegenüber den Gleichungen (8) und (13) veränderliche Koeffizienten
auf einfache und übersichtliche Weise zu berücksichtigen. Bei veränderlichen
Koeffizienten b und c dürfte es deshalb angezeigt sein, diese Korrekturglieder
für die Mittelwerte von b und c im Bereich von m — 1 bis m+1 für die
Grundgleichung bzw. im Bereich des Anfangsfeldes für die Randbedingung zu
bestimmen und diese in die Gleichungen (8 a) und (13 a) einzusetzen. Da diese

Korrekturglieder an sich klein (aber sehr wirksam) sind, wird ein solches

Vorgehen keine wesentliche Einbuße an Genauigkeit zur Folge haben.
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Es soll noch kurz auf die Anwendung der verbesserten Methode an einem
Zahlenbeispiel hingewiesen werden. Wir wählen dafür ein von M. G. Salvadori
und M. C. Baron3) angegebenes Anfangswertproblem aus der Elektrotechnik,

y" +1,0 (1 + 0,5 sinx) y' + 36y cos6x

mit den Anfangsbedingungen y0 0, yQ 0. Wählen wir Ax 0,10, so ist

0,102
ß 0,35(1 + 0,5 sins), y 36

12
0,03.

Wir verzichten darauf, die Zahlenrechnung hier vorzuführen und beschränken
uns darauf, in der folgenden Tabelle den Verlauf von ß und von — F (x) cos 6 x
mit den Ergebnissen y der verbesserten Gleichungen (8 a) und (13a) zusammenzustellen.

X ß -F(x) y X ß -Fix) y

0 0,350000 1,000 0 0,7 0,462739 -0,49026 -0,016874
0,1 0,367470 0,82534 0,003751 0,8 0,475538 0,08750 -0,018747
0,2 0,384767 0,36236 0,009985 0,9 0,487083 0,63469 -0,014444
0,3 0,401716 -0,22720 0,012602 1,0 0,497257 0,96017 -0,005560
0,4 0,418149 -0,73739 0,009051 1,1 0,505962 0,95024 0,004769
0,5 0,433900 -0,98999 0,000501 1,2 0,513107 0,60836 0,013022
0,6 0,448812 -0,89676 -0,009475 usw.

Vergleichsrechnungen zeigen, daß die verbesserte Seilpolygonmethode bei

gleicher Intervallgröße Ax in bezug auf die erreichte Genauigkeit anderen
numerischen Methoden4) mindestens gleichwertig und der von Salvadori-
Baron selber angegebenen Lösung deutlich überlegen ist.

3. Weitere Verbesserungen

Die verbesserte Knotenlastkurve Gleichung (14) ist grundsätzlich erst eine
verbesserte Annäherung an die genaue Knotenlastkurve. Eine weitere
Verbesserung könnten wir dadurch erhalten, daß wir, ausgehend von Gleichung
(14), die verbesserten Ableitungen von y' und y" zur Bestimmung von y'" der

neuen Knotenlastkurve verwenden und uns so der genauen Kurve in
sukzessiver Approximation immer weiter annähern. Diese Berechnung ist an sich
nicht schwierig, wird aber umständlich und wenig übersichtlich. Wir dürfen

3) M. G. Salvadori, M. L. Baron: Numerical Methods in Engineering, Prentice Hall,
2. ed., 1961, p. 134.

4) S. z. B. F. Stüssi: Zur numerischen Lösung von linearen totalen
Differentialgleichungen. Festschrift für H. Beer und K. Sattler, Springer-Verlag, Wien-New York,
1965.
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auf diese Weiterführung für den allgemeinen Fall der Gleichung (3) verzichten,
weil die untersuchte Verbesserungsstufe schon sehr wirksam ist und weil
nötigenfalls durch eine Verkleinerung der Intervallgröße A x die gleiche
Verbesserung der Genauigkeit erreicht werden kann wie durch weitere
Verbesserungsstufen. Auch ist es durch Vergleichsrechnungen mit verschiedenen
Intervallgrößen möglich, die erreichte Genauigkeit zu überprüfen und
gegebenenfalls zu verbessern.

Dagegen dürfte es von Interesse sein, die weiteren Verbesserungen für die
vereinfachte Differentialgleichung

y"±cy±F(x) =0 (3a)

für den Fall F' (x) 0 (gleichmäßig verteilte Belastung) zu untersuchen, weil
dieser Fall in der Baustatik besondere Bedeutung besitzt.

Zunächst vereinfacht sich für 6 0 die Lösung dadurch, daß hier

wird, und die Grundgleichung läßt sich allgemein für konstante Koeffizienten
c in der Form

ym-i{l±y + €)-ym(2?10y + 2e)+ym+1(l±y + e)±AxKm(F) 0 (16a)

anschreiben. Für das Korrekturglied e finden wir durch wiederholte Berechnung

den Wert

3/2/3/18/15202/e=^~±^T + ~25~±W+^75875~+*'* (18)

oder auch

1 +—y + -v2 + —y3H y4+ • • • (18a)
\ -217 57 ~777 525525 r /

v

Die Reihe konvergiert bei größeren Werten von y nur relativ langsam, doch
läßt sich die Konvergenz dadurch verbessern, daß wir den reziproken Wert
des Klammerausdruckes von Gleichung (18a) einführen. Wir erhalten damit

€ 0,600y l ;zQ;47619y + 0;Q2676y2±0,00457 y3 + 0,00065/'
* 8 '

Die Randbedingung «y'Q gegeben» lautet für den untersuchten Sonderfall

-y0(l + 5y + e0) + y1(l±y + e0)-y^Ax(l+y-e0)±AxK0(F) 0. (17a)

Dabei ist e0 e und

g0 0>20Qy2r^0;28571y_0)00408y2TO>ooQ327- (18c)



214 F. STÜSSI

Zur Veranschaulichung der mit diesen weiteren Verbesserungen erreichbaren
Genauigkeit sei noch das Anfangswertproblem

y"±y 0

untersucht. Wir kennen dafür die genauen Lösungen; es ist nämlich für

a) y"+y Q- 2/0 °> yo= ^0: y $mx,

b) y0=l,o,yQ= 0: y eosx,

c) y"-y o> y0 °> y'*= 1?0: 2/ Sinhx,

d) 2/0=l,0, i/o= 0: y Coshx,

e) 2/o i,0, 2/o !>0: 2/ ex>

f) 2/o=lA ^=-1,0: y e-*.

Alle diese Funktionen lassen sich somit aus der Rekursionsformel

_ 2±10y + 2e
ym+i i 1 1

ym ym—i
1 X y + €

und der Randbedingung

-yo(l + 5V + e0)+y1(l±Y + €0)--yoAx(l + y--€0) 0

berechnen.
Wir wählen ein sehr großes Intervall,

Ax=l,20, y 0,12.

Für den Fall y" + y 0 wird

€ 0,0091598, e0 0,0029823,

ym+1 °>7247155*/m-2/m-l>

y± 0,3623578*/0 + 0,776699^^ %,

während sich für y" — y 0 die Werte

€ 0,0081701, e0 0,0027845,

ym+i 3,621311l2/m-^/m_1,

y1 1,810656^+1,257885^/0^^

ergeben. Die Ergebnisse der Berechnung sind in der folgenden Tabelle
zusammengestellt.
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X ya s\nx 2/b cos x yc Sinh x yd Cosh X ye e* yf e-*

0 0 1,000000 0 1,000000 1,000 1,000
1,2 0,932039 0,362358 1,509462 1,810656 3,320117 0,301194
2,4 0,675463 -0,737394 5,466230 5,556947 11,023177 0,090718
3,6 -0,442520 -0,896758 18,285457 18,312778 36,598236 0,027324
4,8 -0,996165 0,087499 60,75110 60,75932 121,51042 0,008230
6,0 -0,279416 0,960170 201,71317 201,71562 403,42880 0,002479

Ein Vergleich mit den Tabellenwerten in Ingenieurhandbüchern zeigt, daß
unsere verbesserten Gleichungen eine erstaunlich gute Genauigkeit besitzen.
Die Bedeutung der verbesserten Seilpolygonmethode liegt selbstverständlich
nicht darin, daß wir damit vorhandene Tabellenwerte mit großer Genauigkeit
nachrechnen können, sondern darin, daß sie uns erlaubt, solche Probleme
numerisch zutreffend zu lösen, für die keine gebrauchsfertigen Tabellenwerte
oder genaue analytische Lösungen existieren.

Zusammenfassung

Die Seilpolygongleichung eignet sich deshalb gut zur numerischen Lösung
von Differentialgleichungen zweiter Ordnung, weil die zweite Ableitung y" der
gesuchten Funktion y durch Bildung von Knotenlasten in aller Strenge eliminiert,

bzw. durch Funktionswerte y ausgedrückt werden kann. Durch die
Einführung von Knotenlasten geht die zu lösende Differentialgleichung in ein
dreigliedriges Gleichungssystem über. Ungenauigkeiten können bei grösseren
Intervallen zwischen aufeinanderfolgenden Knotenpunkten dadurch entstehen,
dass die Knotenlasten von y (und auch von y') mit der «Parabelformel» für y
nicht genau, sondern nur angenähert durch drei aufeinanderfolgende
Funktionswerte y erfaßt werden können. In der vorliegenden Untersuchung wird
eine wirksame Verbesserung der Genauigkeit entwickelt.

Summary

The funicular polygon equation is suitable for the numerical Solution of
differential equations of the second order, because it is possible to eliminate,
in a correct manner, the second differential coefficient y" of the function, y,
that is sought, by means of nodal loads respectively to express it by means of
the dependent variable, y. By the introduction of nodal loads, the differential
equation, for which a Solution is to be found, is converted into a system of
equations with three unknowns. As the nodal loads for y (and for y'), calculated

with three values of y and by means of the parabola formula, are only
approximate, some degree of inaccuracy becomes apparent, when the inter-
vals between the points become considerable. The present study establishes a
definite improvement in the exactness,
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Resume

L'equation du polygöne funiculaire est ä sa place pour la resolution numerique

des equations differentielles du second ordre, parce que l'on peut
eliminer de maniere exacte la deuxieme derivee y" de la fonetion cherchee y au

moyen des charges nodales, soit l'exprimer par la fonetion y. Par l'introduction
de charges nodales, on transforme l'equation differentielle ä resoudre en un
Systeme d'equations ä trois inconnues. Comme les charges nodales pour y (et

pour y') calculees avec trois valeurs de y et a l'aide de la formule de la
parabole ne sont qu'approximatives, une certaine inexaetitude apparait lorsque

les intervalles entre les points deviennent grands. La presente etude
developpe une nette amelioration de l'exactitude.
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