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Application of the Bending Theory Regarding Hyperbolic Paraboloid
Shells with Straight Edges. Finite Difference Solutions

Application de la theorie de flexion aux coques en forme de parabolo'ides hyper-
boliques avec bords droits. Solutions de la difference finie

Anwendung der Biegetheorie auf hyperbolische Paraboloidschalen mit geraden
Kanten. Endliche Differenzen-Lösung

J. STAGEBOE
Siv. Ing., Oslo

Introduction

Shells of cylindrical and positive gaussian curvature have been in use for
many years. Practical interest in the hypar shell, however, occur only during
the last twenty years. Investigations of the stresses in hypar shells appear to
be receiving increasing attention from structural research engineers, both
because of the economical uses of this type of shells and the striking architectural

forms possible.
A great number of papers have been published on the membrane theory

of the hyperbolic paraboloid shells [1,2,3]. The membrane theory gives the
interesting answer that the shear force Nxy in the direction of the straight
asymptotic lines is given without integration as function of the external load
and without influence of the edge conditions. Thus for constant load in the
plan area the shear force Nxy is constant all over the shell. The fact that for
anticlastic shells the effect of disturbances is great in direction of the straight
asymtotic lines shows that the membrane theory may be completely inade-
quate.

Shells of positive curvature, not too shallow, with no concentrated external
loads have the important advantage that the membrane theory already gives
a good approximation for the stress distribution in the shell. The bending
stresses are confined to small zones along the boundaries. The calculation of
the edge disturbances can for this type of shells be superimposed on the
membrane state of stress.
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For anticlastic shells, when the edge and the asymtotic lines coincide, the
boundary disturbances may be completely different. The boundary effects

can, in this case introduce stress forces which differ greatly from the membrane
forces, and the bending stresses are not insignificant in comparison with
membrane stresses. These boundary effects are no longer confined to a narrow
zone along the edge.

For shells with negative curvature the differential equations for the
membrane forces are of hyperbolic type, and in most cases the Solution for the
boundary conditions can not be prescribed in the usually way.

Hence it is necessary and essential to consider the complete bending theory
for a proper design of hyperbolic paraboloid with straight edges.

Levy-type Solutions are used [4] to determine boundary disturbances in
hyperbolic paraboloid shells with straight edges, but a set of unrealistic
boundary conditions is used, because it otherwise is impossible to satisfy all
conditions by every individual term of an infinite Fourier series.

To obtain realistic boundary conditions the writer in this paper solves the
three differential equations for the displacements by means of finite difference
approximations. The boundary equations are established for boundary
conditions which occur in practical design. The numerical calculations are restricted
to shallow hyperbolic paraboloids square in plan for the following boundary
conditions:

1. The shell is hinged to vertically supported edge members of constant and
linear variable stiffness.

2. The shell is supported upon elastic edge members supported at the corners
only.

The rise of the edge members are x/5 and x/4. To test the convergence the
plan area of the shell is divided into 6x6, 8x8 and 12x12 meshes. The linear
system of equations varies between 32 and 119 unknown and are solved with
a high speed digital Computer.

Notation

curviliniear coordinates

cartesion coordinates

Position vector of any points on the middle surface of the
shell

Covariant base vectors of the surface

Zß JÜ Jo \ Symmetrie metric surface tensors
aocß aaaß i j

xx
x2 J

X

y
z z(x,y)
f r \Xxx2)

dr
dx„

- K1)
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,x; consf.
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Fig. 1.

^o' x2 consf.

äa Contravariant base vectors of the surface

"11 ^22

^22

1.11

*12

aQ

&„« _ da3

Unit normal vector

ä3^—^ Second fundamental form of the surface (symmetric$dx

b b11b22-b212

p tensor)

aß 2 \dxt

*12

eil

"OLp

IX
H«ßpx $[a«xw

_^22

X,Y,Z
N(ocß)

2»*
8a«g\

dxj ay-—- Cristoffel symbol of the second kind
dxo J

ya

(oeß)

(aß)

ia^v*
)/a(X0Lv0C

w

alxvx u

fa11 vx u
i\a^v2

+ aaP aßx + v (e^P eßx + eaA e^)] Symmetric tensor

External loads in curvilinear coordinates
External loads in cartesian coordinates
Stress resultants directed along the covariant base vectors
Stress couples about the contravariant base vectors
Stress couples about the covariant base vectors
Shearing forces in the direction of the normal vector

Displacements in the direction of the covariant, contra-
varient and normal base vectors respectively

Voc aocßvß

1) Greek indices ränge over the values 1,2.
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|a Covariant differentiation

()' H)
dx

()•
dy

h Shell thickness

E Young's modulus (Ec edge member)
V Poisson's ratio

D= Eh
l-V2

Eh*B
12(l-v2)

l Base length (square in plan)
(p Slope of the edge members

l
c

2tgcp
F Cross-sectional area of the edge member
J Moment of inertia about the horizontal axis through the

centroid c

e Distance from the centroid of the edge member to the
middle plane of the shell

F
OL ~ h*

ß
e

~h
l

Y ~h
]?2

8
J

s
P ~1

X
£

1

y
V i

t/ u
T

V
V

T

w w
Wl

(s mesh distance)
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General Shell Equations

The three equations for the displacements in general curvilinear coordinates
for thin elastic shells may be written very compactly in tensor notation when
using the same symbols as Greest-Zerna [5]:

^H-ßPx[vp\Xoc-vx\poi-2(bpXw)\J+pß 0,

D (1)

TH«ßPx(vp\x + vx\p-2bpXw)baß-BH«ßPxw\pXaß + p^ 0.

To be suitable for practical applications the following approximations are
introduced in (1): The equations refer to thin elastic shells. In the two first
equations of equilibrium in the tangential directions of the curvilinear coordinates,

the contribution of shearing forces are neglected. In the expressions for
stress couples all members concerning the curvature of the shell are neglected.

These simplifications are for thin shells introduced by Wlassow [6] and
Green-Zerna [5]. In the particular case of a circular cylindrical shell the
equations (1) give the Donnel equation.

Neglecting terms in the covariant differentiation of the same order as the
approximations done in the shell equations, they may be written in developed
form:

ß=l:
884,1-3/"* —i-2r2 ^-r2 dVl

82v1
CJ X-t CJ Xn

dx2 "~11dx1 X1dxx ndx

-(|£-«/l,»u-«l»u)-»u£J

\dxx dx2J L \dx1 dx2l dx2 dx1

-2ri2d^-z(^-2r\2b11-2ri2b12\w-b11~-2b
dxx \dx2 x A / dx2

dw
12~äx~i.

(2 a)

Xo

-(ri2+ri2)p-r2i2|^-2rf2^2-ri2|^1l +#1222 \^sna^v 22 12,8x1 2i8xx 128x2 12dx2] [8x1 -28x2

^y^fr7^-(^-^Al-my^y]y=o
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and correspondingly for ß 2

[iP"*6U + 2ffiau612 + #2211622] |J-bnw\

+ [W™ blt + 2 H™2 b12 + #*222&22] H|| + |^-2 6ia «;]

(2b)

+ [Ä1122 6U + 2 #1222 612 + i?2222&22] ¦]

DT U«i u3«? n8xl8x2\

+ 4^ [8x\8x2 6{lll + Il2)8xf8x2 61ll8x18x2 61l28x\\

+ [2 #"22+4 tf^2] UJm - (4 r}a+r22)^— (4 r?2+nj -^\8x\8x\ s ' dx\8x2 8x1

(2c)

dx2

8_w_
1118x1 22 + 4 #1222 f 8iw o/jn rax g3w

3r2 g*w
L^77ä4~a(il2+y22,äi77ä4 ^iv12 0*1

6l22dx\8x2yn [da* b
22dxx8x\ bl228x: +£-•

Where "11 "12

yarl ya9̂22

V9 ^ILtt + 4?l=v
(3)

iax

and the tensor J?a^8:

fiiiu (a11)2, H1112 H1211 a^a12, H1122 H2211 (a12)2 + -,a

#1222 #2212 a12a22? #1212
1

(a12)2 + a^a22 a\'
(4)

#2222 (a2

Stress resultants:

Stress Resultants and Stress Couples

^ß) I>i^ßH^7vp\x-bpXw) (5a)
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or:

+ ^22(f||-^2^-ri2t;2-622^

Stress couples:

or

w

Mtdi)* mL

M{12)=-m12ia.

M(21) m12 i~a~,

M,(22) :

Mai) "p^f! (m11 a12 -m12 a11),

-^(12) a (m11 a22 — m12 a12) '

Jf(21) a (to12 a12 — m22 a11),

^(22> y-
22 /OT,21 „12(to21 a12 — m22 a11).

ml."ß =-BH<*ßp*w\pX

L \#xf 8xx 8x2j

(5b)

(6)

(7)

(8a)

(8b)

+ 2^12(^_ri2^_r22^)+^22&_r|2^_ri2^\.\dxxdx2 y dxx dx2J \dx% dx2 * dxj

Cartesian Coordinates

y y, r xi1 + yi2 + z(x,y)i3,
z =z(x,y).

The geometrical quantities for this coordinate-system can be compiled in
the following table:
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Geometrical quantities

1 2 3

ax 1 0 z'

ä2 0 1 z'

«la l + (z')2 z'z

a2a z'z l + (z')2

ala l + (z)2
a

z'z'
a

a20L
z'z l + (z')2

a a
z' z 1

a3 iä "7a 7ä

ä[ 0 0 z"

a[ a2 0 0 z"

a2 0 0 z"

bloc
z"
ia

z"
ia

b2oc
z-
ia

z"
ia

rii z z

a
z' z"

a

•^a2
z'z"

a

z' z"
a

¦* 22
z'z"

a

rf!
z'z"

a

a l + (z')2 + (z •)2

(9)

p1 Xa11+Ya12 + Z-,

p2= Ya22 + Xa12 + Z-,a

po
Z-Xz'-Yz

ia
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The Shell Equations for the Hyperbolic Paraboloid with Straight Boundaries

In this form the middle surface of the hyperbolic paraboloid shell is defined
in cartesian coordinates by

z(x,y)=^- (Fig. 2).
e

iiZ

A

/!

/
\L

Fig. 2.

By means of the general equations (2a-c) and the table (9) we can easily
establish the shell equations for the displacements:

Geometrial quantities from table (9):

n - 1 4-^- 4- — h — h — Pa — ra — 0 h - T1 — -^— V2 — -^—+ c2 + c2' 0^~°22-111-^22-«» °12~ciä' 12~c2a' 12~c2a'

y*

1 +

a

a,9

,12

^2/
aoo 1 +

x"

1+^
7.22

and the tensor H"fo* (4):

#z2r

#1111 #1122
+ av

#1222 _ H1212 ^ + I«d-v)

#1112

#2222

a?2/ 2/sc*

1 + 2 er-o*

These quantities substituted into (2), neglecting 4 order terms and using (3)
we have:
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42/„--^ + (3-)(^-'*-J«')-(H-)(5-'-^*-f *¦•+«")

l^(-Ä)-l[-(-Ä)-^-f]
and equally for the second equation.

The third equation:

The difference compared with the work by Bongard [7] is due to the simplifi-
cations in the third equation for the expressions for the stress couples and is

insignificant. The two first equations are somewhat simpler than in [7] but
of the same accuracy.

The same geometrical quantities substituted into (5) (7) (8) together with
(3) gives the stress resultants and stress couples:

#(11) Nx

D[ytyyy7-^fy7'+y+2xy¦]•

^(22) Ny

D y^yyy-^fyy^^ii«]. (ii)

tf (12) ~ tfxy —

-M(12) MX B[tl-^w" -(l+vf-y-w" + (i_^)v«;"],
(12)
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Ä<M)-Jf|W-B(l-v)[^+^--(l-^-jJ)^+^W»].
(12)

When neglecting the quadratic terms in (10) (11) (12) we obtain the equations
for the shallow hyperbolic paraboloid:

„ l/t x 1,, 1-v X+Z7
u"+-(l-v)u +-(l+v)v' —w ^

1 1 1-v Y +ZT
V+^(l-v)v"+-(l+v)u'- —w' -^ (13a-c)

(\-v)\u +v'-—j-—A2w
Xy+Yx-Zc

D

Stress forces:

Stress couples:

Nx =D(u' + vv'),

Ny =D(v+vu'),

Nxy=D^l(u+v'-2fj.

Mx B(w" + vw~),

Mv B(w" +vw"),
Mxy B(\-v)w'\

(14)

(15)

Introducing non-dimensional coordinates and displacements we obtain the
three basic equations (13a-c) in ordinary finite difference form (see Fig. 3):

4 1-v
8(3-1/)

4(l-v
U + (\+v)

-1 1

1 -1
V-S0(\-v)ptgcp

1

-i
w

¦X-Zr]2tg(p
E 8(l-v2)p2y,

(16a-b)

4(l-v)-
8

8(3-v) 4 (1-v)
8

V + (l+v)
-1 1

1 -1
ü

80(l-v)Ptg9~^T^W=-Y-Z^2<P8(1_vz}E P2Y,
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1

-l
u+ iQ1 v-\soptg<p\w

10

12(l-v)PV*g9>

1

2 -8 2

1 -8 20 -8 1

2 -8
1

2

w
Xij+r£-z 2tg<p

Ä

(16c)

2(l+v)py.

i ^y

0,2

s

-1,1 0,1 1,1

A

s

\f

-2,0 -i.o 0 1,0 2,0 X

-1,-1 o,-i 1,-1

0,-2

Fig. 3.

The two first equations (16a-b) are used at all points except the edge points.
For these must be used equations with approximately the same accuracy.

Equally for the third equation (16 c) for points near the edge. Similar finite
difference equations may of course be established for the equations (lOa-c).

1. The Cross Sectional Area of the Edge Member is Constant

Boundary Conditions

The edge member has bending rigidity in vertical direction. The torsional
rigidity is neglected. Continuity and equilibrium conditions for shell and
edge member (Fig. 4):

Equilibrium in ^-direction:

Nx D(u' + vv') 0, u' -vv
Equilibrium in ^/-direction (see Fig. 3):

(17)

Nxy N-c FEcv7
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V^
X\\ isXX \ n: ^^ \ x xX N

<y\ \ \\\\ \\ N-^

^gV//W///Wi%Z?2.
Fig. 4.

Same deformation shell edge member:

v vc — ew'.

We have thus the expression for the shear force:

Nxy FEcv"+eFEcw'~.

The normal force acting at the controid of the edge member:

(18)

Nc=FEc(V+eW)=T^(Ny-vNx)+ pjg c(My-vMx). (19)

From (18) and (14c) (or (11c) when not neglecting the quadratic terms) we
find the expression:

2FEC,^ .2«; OM ,eFEc
V=7ü7{l+^V -u+7r+2{l+v)yurw

Vertical equilibrium:

Mv =UQv-eNxy)dy,
M'v Qy-eN'xy Kx + g-eN'xy EcJw~",

with Rx B[w'" + (2-v)w'"].

(20)

(21)

(22)

Expressions (18) and (22) substituted into (21) we obtain the following equation:

w'" + (2-v)w'"
12 (1

Ec
}Eh3 (J + e2F)w"" + 12(l-v2 EceF

Eh3
* 12d-v2)^. (23)

Before establishing the boundary equations we compile for later use various
difference expressions. The differential expressions or quotients L[f] are
expanded in a Taylor-series with boundary conditions M[f]. Generally L[f]
and M [/] are partial differential expressions in / (x, y) and the expansion is to
coincide with the differential expressions to as high an order as suitable [9]:

2 L [f\n 2 Ks L + M [f]ik + higher Taylor terms. (24)
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In that way we obtain:

/; =^(-/_1+/o)+|/;'+(«2)!

/o =2^(-/-2 + 8/_1-7/0)+^ + (S2),

f0" =i(/_3-6/_2+15/_1-10/0)+5/; + (S2),

fo" =3^(-/-2 + 9/o-8/1)+?/i + (S2),

f'°" =ir^(-5/-2+9/-i-3/o-/i)+i^/i'+(^2)>
1 18

fo" =irs3(7/-3-39/_2 + S7/_1-25/0)+IT^/;' + (S2),

1 12
/o"'=TÖ^(-/-3 + 16/-2-54/-i + 64/o-25/1) + Tf-?/i' + («2),

10 s 10s2

12
fo" -r* (~ 6 U + 36 /-3 - 84 /_, + 84 U - 30 f0) +—2f0' + (s2)

5 s' 5 s2

/;"'=6^(-9/-4 + 56/_3-144/_2 + 216/_1-119/0)+^/; + (s2))

f'o'" 127i{~Sf-3 + S2f-2~ 108/-i + 192/o- !13/i) +1(/')i + (*3)•

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

-15
-26
136

-26

96

-354
96

-4
-50 -
240

-50 -
-4

25
104

119

•104
25

2lJ2/0s4

+ 24 «» [/'" +(2-v)/'"]„+(«•),

7(J2/0 + J2/_u)s*

f+y
-8
16

-8

36

-72
36

2

-80
156

-80
2

-2
52

-100
52

-2
(35)

9

-13
-42

76

-6

154

-344
136

-219 82

f + y

l
-l -4

4

14

-30
12

-21 6

552

-344
56

-30
-219 -21

154 14

-6 76

-13
-42

9

4 -4
-1 1

+ 12*»[/"' + (2 -*)/'"]„ +12s3 [/•- + (2 -v)/"Xu+ («•), (36)
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10J2/0S4 -1 16

20

-94
20

10

-80
V

20-^16
-65+1/30

20-1/16
V

204

-80
10

/+12(/"+v/--)10s2 + (s«), (37)

12J2/0s4 -3 32

24

-156
24

12

-96 24

-161
24

360

-96
12

/ + 60/;0s + (s°), (38)

10J2/0s4
-1 16

20

-94
20

65 20

208 65

-94 20
16

-1

f+12(K0 + fö1)s2+(s«), (39)

12 J2/0s4
-3 32

24 -
-156

24 -

-161 24

-161
24

480

-156
32

-3

/ + 60(/i0 + /ö1)s+(s«), (40)

12J2/0s4
-3 32

24

-156
24 -

-78 24

-161
24

364,8

-112,8
19,2

-1,2

/ +60/;os+14,4/^ + ^6). (41)

The difference expressions (34) (38) (40) are well suited for clamped boundary
conditions.

For completeness we add the following difference expressions:

i
2-8 2

^2/o*4 1 -8 20 -8 1

2-8 2

1

1 -2 1

AT*4 -2 4 -2
1 -2 1

/ + (*

/+(*6), (42)

(43)
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fö" =-i(/-2-4/_x + 6/0-4/1 + /2) + (^),

fo" =2^(-/-2 + 2/^-2/1 + /2) + (s2),

/»" =2T3(-3/-x+10/o-12/1 + 6/2-/3) + (s2),

/+(«*),4/-s2
-1 1

1 -1
/-

4/;-s2

1 -4 3

-1 4 -3
/+(«*),

/o' =t2-(/-i-2/o + /i) + («2),

/o ^(/i-/-i) + (*2),

/; =^(3/o-4/_1 + /_2) + («2).

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

Boundary Equations

The boundary condition (20) differentiated and substituted in the basic
differential Eq. (13a), we obtain:

FEc(\+v)2 eFEc(l+v)2 2v X~Z\
/KOX

Introducing the difference expression (26) according to the boundary condition
(17), and the finite differences (44) (45) (49) and (50) the boundary equation
{52) may be written in difference form:

-1 8-7 U + 2v
-1

U +

1

Ecoc(l+v2)
Epy

-2

2

-1

V + 3v
-1

1

V

+
20Ecocß(l+v)2

1

-4
6

-4
1

Ep2y2
W + 40ptg(pi/

1

-i
w c

~~E

(53a)

2/>2y(l-v2).
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Repeating the procedure for the basic differential Eq. (13b) with the same
boundary conditions (17) and (20) and the difference expressions (26) (45)
(49) and (25), we obtain for hinged and clamped edge:

E!F+[12Ecot(l+v) 4-2v(l+i/)'
E py

+ • 2v(l+v)]
1-v J

1 1

l-»l F-3
1 -1

u

60Ec*ß(l+v)
Ep2y2

1

-2

2

-1

hinged

TT + 80ptg«p 1 |_2J W + 40ptg<pi/

clamped

w

+ 240ptg<p W
(53b)

-Y-Zy-
C

E 4/>2y(l+v).

Substituting the boundary conditions (18) and (23), in the third basic
Eq. (13c), and using the difference expressions (35) (44) (45) and (49), we find:

100,8 (1-v2)tgcp^apiy F + 504(l-v2)tg9>^«j3/>
-2

2

-1

W

-15
-26
136

-26

96

-354
96

-4
-50 -
240

-50 -
-4

25

-104

119

-104
25

W-i
-8
16

-8

36

-72
36

2

-80
156

-80
2

-2
52

-100
25

-2

w

(53 c)

-14,4(l-v2)-^ai3

(Xv+YQ2tg<p-Z
E

1

-2

2

-1

'-«-(•-^(M
1

-4
6

25,2 (1-V2)p4y3_ 28,8 (l-x/2)/)3y3 ».ET
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For points near the edge the third basic Eq. (13 c) may be established with
the difference expressions (37) and (39) for hinged edge, and (38) and (40) for
clamped edge:

Hinged edge:

1

-i
u+ iQ 80 p tg cp W-

1

12(l-v)p*y2tgcp
(54 c)

10 v

20 -80 20-vl6
-1 16 -94 204 -65 + v30

20 -80 20-vl6
10 v

W
Xrj+YC-Z 2tg<p

E 2(l+v)py.

Hinged edge, near the corner:

1

u+ -¦?¦ V- SOptgcp w-
\2(l-v)pzy2tgcp

(55 c)

-1 16-
20

94

20

65 20

208 65

-94
16

-1

20 w
Xv+Y£-Z 2tg<p

E 2(l+v)py.

Clamped edge:

1

-i
u+ -iQi 80ptg<p W-

10

144(1 -v)p*y2tgcp
(56 c)

-3 32

24

-156
24

12

-96 24

-161
24

360

-96
12

x^+Yi-z^y—
?F — ^-«^«(l+vjpy.
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Clamped edge, near the corner:

1

-i
u+ iQi v- 80 p tg y w-

10

144(1 -v)psy2tg<p
(57 c)

-3 32

24 -
-156

24 -

-161 24

-161
24

480

-156
32

-3

w
Xrj+YC-Z 2tg<p

E 2(l+v)py.

We have now established the boundary equations except for the corners and
points at the edge one mesh from the corners.

With the boundary condition (17) and according to symmetry the condition
in the upper corner is:

u' v 0.

At points one mesh from the corners the difference expression

Eq. (53 a) is according to (18) replaced by

12and
10

-3
-113

192

or -10812
32

V at the lower corner. 6

-4
1

2

3

-8

9

-1

1

-2

2

-1

V in

V at the upper corner

W is replaced by 10

25

64

-54
16

-1

W

w=o

W for respectively hinged and clamped corner. In Eq. (53b) the

difference expression

1

-2

2

1

W is replaced by —

-1
W or |

-8

-3 9

9

-5 -1

W Q

W for

hinged and clamped corner respectively.
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For the third basic Eq. (13 c) at points at the edge one mesh from the
upper corner, we obtain with the difference expression (36) for hinged and
clamped corner

67,2(1-v2)tg<p^ap2y V + (l-^)tg9^aßp
-1 l»" 0

11

-8 w' 0

224 W

hinged clamped

9

-13
-42

76

-6

154

-344
136

-219 82

552

-344
-219

154

-6 76

-13
-42

9

W-v

1

-1 -4
4

14

-30
12

-21 6

56

-30
-21

14

4 -4
-1 1

w

-<"'-->fe(H

25 w" 0

28,8 TT

-113

64 192

54
16

-1

-108
32

-3

w 0

24 W

¦9,6(l-v2)^ocß

-8

-1

hinged

v 0

clamped

(58 c)

E

•28,8 (l-v2)^^.

At the lower corner V is replaced by '-

-1
6

-12
10

-3

At the upper corner point we obtain according to symmetry for the two basic
Eqs. (13 a—b) when substituting the condition (20):

t FEc(l+v)2 t eFEc(l+v)2 2v
V + hE V + YF^-W +-c~W

-X-Z
D~

y
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With the condition v'=0we use the difference expressions (26) (27) (32) and
(33):

-7

-1
v +

-10
2FEc(l+v)2 15

-6
1

shE v +
FeEc
s2hE

-30
2

-119
84 216

-84 5W -144
36 56

-6 -9

w

hinged camped

+
4vs m

-1
W =r 2 S2

(59a-b)

At the lower corners the displacements u, v, w are supposed to be known,
and in the upper corners the displacement w.

For u 0 and w' =0 along the boundary in ^/-direction the Eq. (53 b) may
be written:

1

-2

2

-1

1

-2
1

6EreF(l+v)
+ Es2h-1 8 -7 n2EcF(l+v) 4 1

-Y~Zl 4s21251— 2(l+v)+ w +-} }-

c '—! 1 —v

1 -4

-1 4

u D 1-v*

w

(60b)

The edge member is vertically supported when setting w 0 along the edge.

Putting tg<p 0(c oo) the equations can be applied to plate problems.
The Eqs. (16a-c) (53c) (56c) (57c) (58c) and (60b) have been used in [8] on
reetangular clamped plate on elastic beams with e ^ 0. Compared with '

'Mehrstellen" expressions good agreement is ashieved.

2. The Cross Sectional Area of the Edge Member is Variable

Boundary Conditions

The edge member has no bending rigidity and is vertically supported.
Continuity and equilibrium conditions:

Equilibrium and continuity along the boundary:

N„ N'c EcF(y)v" + Ecv'F(y)\ (61)
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where F (y) is the cross sectional area of the edge member and only function
of y from (14c) and (61) we obtain:

2(l+v)Ecrl]1 _ ._v' J—-[Fv +F v]-uh E
(62)

Boundary Equations

Differentiating the boundary condition (62) and substituting into the basic

Eq. (13a), we find:

¦X-7Ä
(63)

E (l+v)2u--vu''+ 'Ux [Fv'" + 2F'v"+F"v]Eh D

When F (y) is given analytically we find with the same difference expressions
as used in (53a-b).

1

-1 8 -7 u + 2v 2

-1

u + EcF(l+v)2

1

-2

2

-1

Esh v-{-
4ECF' (1+v)2

1

-2
1

Eh

EcF--s(l+v)2
Eh

1

-1
v=-X-Z y 2 s2

c~D~'

(64a)

-1 8 -7 \12EcF(l+v) 4-2v(l+y)1
+ [ Esh + 1-v J v + 6EcF-(l+v)

Eh

1

-1

-3
1

-1

u + -
4ä

hinged

w _Y_zy ^ (64b)

0 when
clamped

c D(l-v)'

According to symmetry and differentiating and substituting Eq. (62) in the
basic Eq. (13a), we obtain for the upper corner point:

E (1+vV -X-Zr
Eh D (65)

and with the condition v =0 we find:

r 2Ec(\+v)2F-\
[ + Eh J

-7
v +

-10
2Ec(l+v)2 15

-6
1

Esh »«= (-X-^l)^2. (66a-b)
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In the special case when F (y) is lineary variable:

¦n / x
El— Fo Ft-\-F9

F(y) -Lr^y+-1 2

l 2 ' (67)

where Fx and F2 denote the cross sectional area at the upper and lower corner
respectively.

• Fx-F2F- l ' F" =0.

Stress Forces and Stress Couples

The stress forces and stress couples are computed from the main variables
JJ, V, W according to (14) (15) (18) and (61). Applying simple differences we
find for the stress forces:

N. El
X 2(l-v2)py -iQ U + v

1

-1
V (68a)

^ =2
El
py

1

-1
V + vNr (68b)

N - El
xv ±(l+v)py

1

-1
u+ i\T\ i v-8oPtg(pW (68 c)

Stress couples:

M, El2
l,2(l-v2)p2y*

1

W1 -2 1 W + v -2
1

(69a)

v 1,2 pV
W + vMr (69b)

if. ÄP
4,8(l+v)p2ys

-1 1

¦

r-' -1
w (69 c)
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and in corner points:

J. STAGEBOE

El2
2,4(l+i/)pV

1 -5
1 6 -5

-1 1

W. (69e)

For clamped edge condition Eq. (37) is used together with (13c) and (14c):
The negative clamping shell moment is:

M-L™ x edge

5 s2

3 c
N„ ilXl+Y*-z\

10

20 -80
1 16 -94 I 204

20 -80
10

20-1/16
¦65 + v30

20-1/16
v

wB
\2s2 (69d)

Near the corner Eqs. (39) have to be used.

By using higher expressions

N El
x 12(l+v2)py

1 -8 Q] 8 -1 U + v

1

-8

8

-1

V (70a)

and correspondingly for Ny and Nxy.

M„
El2

x 14,4(1- v2) p2y*

-1
16

W-1 16 -30 16 -1 W + v -30
16

-1

(71a)

M„
EP

172,8 (l+v)p2ys

1 -8 8-1
-8 64 -64 8

•?
8 -64 64-8

-1 8.-81
W. (71c)

The stresses in the centre of a mesh may be computed from the corner values

by using simple differences

N„ El
2(\-v2)py

-1 1

-1 1
U + i

1 -1
1 1

V (72a)
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and correspondingly for Ny and Nxy

El2
Mxy

1,2 (l-i/)p2y3
1 1

1 -1 w. (73 c)

The shear force Nxy along the edge according to (18) by using simple differences:

ECU
pZy*

pH

NXT xy -2
p-1

v+ 5Eclocß
p3y3

1

-2

2

-1

W

and by applying higher expressions:

Nx* xy

One mesh from corner:

N.

Upper corner:

Ecloc
\2p2y2

-1
16

-30
16

-1

v+

-1
8

5Eclocß
-13

13
4psys

-8
1

w.

EJoc
xy _2 .,2

1

-2
p y

1

v+ lOEJocß
p3y*

-1
W
11

-8

-3 9

9

-5 -1

w 0

W
3 '

Lower corner:

N El
xv 6(l+v)Py

Nx" xy

0
-8

1

U.

El
-1

4

-3|2(l+v)py
u.

(74)

(75)

(76)

(77)

(78)

Variable cross sectional area of edge member. According to Eq. (61) with
finite difference expression:

N̂T xy
ECF

<?2

1

-2
S

r-'

v + -
EnF'

2s

1

-i
(79)
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and with higher expressions:

N„ ECF
12 s2

-1
16

-30
16

-1

v + -
E„F'
12s

1

-8

8

-1

v. (80)

Corner points Eqs. (77) and (78).
The support reaction along the edge is according to Eqs. (35) (36) and

(13c):

*.-%,*rSE2-£.(x'-+7'~z)

-15
-26
136

-26

96

-354
96

-4
-50 -
240

-50 -
-4

25
-104

wB
24 s3

119

-104
25

-8
16

-8

36

-72
36

2

-80
156

-80
2

-2
52

wB
24 s3

-100
52

-2

and correspondingly with Eqs. (36).

(81)

Numerical Examples

In the following figures the notation a is to be replaced by l (base length).

Example 1

Consider a H.P. shell over a square base, hinged to vertically supported
edge members, with the following properties:

tg9 l/5, a Flh2 50, y l/h 350, p s/1 =1/6, /> l/8, p l/l2.

All examples have the following condition at the lower corners: u — v 0.

To test the convergence this example is computed with a mesh width s l/6,
8 lfS and s l\\2.

The results are as follows:
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Z 0

10-

P-T5"

\>

AMembrane ^

0,5 L

0,5

Shear force Nxy at the lme x Iß (along the edge).

Z a

\

-0,5 Ö 0,5 L

Stress forces Ny at the lme x Iß (along the edge).
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A Nx Nxy
Z Q

ZaZo

^- 0
0.50.5

V*\
Stress forces Nx, Ny and Nx

at the line y —Z/4.
Stress forces Nxy and Ny

at the line y 0.

-4 -, „2IQ"" Z oZa
• ^ N

="^1—^O

*- 0
0,5 l 0 0.5 l0 N

y ^

at the line y Z/4.
Moments Mj, at the Une «/ 0.

IO"* oz Z

// \
//

i-

i
\\\
"V,\\\W

-2»

-3

-4

-5

-6

-7 •

0,5 / /

//

m //
i i / /

\ /;
y-'

0,5 t

Moments M^ and iWfy at the line sc — l.
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IO"4 a2 Z

' \

r- 0
0.5Q5

Mx

IO"4 a2 Z /"\/ \

/ A/ / II/////^ i
^O-^ '

J^S
^^^^Z^

Moments Mx at the line y Z/4. Moments Mx at the line y 0.

Example 2

The cross sectional area of the edge members is linear variable: Lower
corner: F1jh2 15. Upper corner F2\h2 25.

The other properties the same as in example 1. Mesh width 5 Z/8.

,N
Z a

5-

Membrane

1 1 1 1 1 1

0.5 0,5

Shear forces at the line x Iß (along the edge).

Example 3

The shell is hinged to vertically supported edge members with various
stiffness. The following properties are used:

tg?=4>
F_
h2

20
50

80'
120

y-j-400, EC E.
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Z-o

« 20

CX=50

5- (X 80

0(=I204

(X 20
<X=I20

0(=80
Membrane

50

— Jt
-0,5 0,5

Shear forces iV^ at the line x Iß (along the edge).

Z-a

« 20

o( 50

o( 80

0C I20

0.5 Ü5 l

Stress force Ny at the line x Z/2 (along the edge).
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i -Ni -N
o(=20Z aZa

ot50
2- o( 80

o(=l20«=20
oc=50-\

cx 80-x
ocsl20-\ Jx.

I 1—fc*JL 0
0.5 L 0

Stress force Ny at the line y 1/4:.

0,5 L

Stress force JV^ at the line y= —Z/4.

o( 20
o£ 50

tf 80

i -N
Z <3

120

-0.5 0.5

Stress force Ny at the line x - Z.

z a

« 20

« 50

«=80

« 120

L

Stress force Nx at the line a? 3/8 l.

I N

«=20
#=120

0,5 [

«=120

Cf=20

Stress forces Ny and Nxy at the line y Q.

Example 4

The edge members have bending rigidity in the vertical direction and
are only supported at the corners. The properties are:

tg<p l/5, a 25, y 220, EJE ±, e 0, v 0, J F2/ß.
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Conclusions

From the calculations it is observed that the membrane analysis is in
significant error, expecially in the region of the lower corners and along the
boundary.

The stiffness of the edge member greatly influences the stress distribution
and the displacements. In the interior of the shell, however, the stresses are
in good agreement with the membrane theory.

By means of electronic Computer, the entire process may be programmed
from given data to end results.
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Summary

The present paper deals with the bending theory of hyperbolic paraboloid
shells with straight edges. By applying tensor calculus the general shell equations

for the displacements in arbitrary curvilinear coordinates are established.
From the general equations, the equations for deep and shallow hyperbolic
paraboloid shells are derived. The Solutions are finally obtained by means of
finite difference approximations. For shallow shells finite difference expressions
are developed for various boundary conditions and the numerical calculations
are accomplished for shell hinged to vertically supported edge member of
constant and linear variable stiffness and shell supported upon elastic edge
members only supported in the corners. To test the convergence the plan
area is divided into 6x6, 8x8 and 12x12 meshes,
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Resume

Le present travail traite de theorie de flexion appliquee aux coques en
forme de paraboloi'des hyperboliques avec bords tendus. Les equations gene-
rales pour les coques sont etablies, au moyen du calcul tensoriel applique,
pour des deplacements en coordonnees curvilignes arbitraires. Des equations
generales, on a derive les equations pour des coques paraboloides hyperboliques
profondes et ä courbure faible. Les Solutions sont finalement obtenues ä l'aide
d'approximations par des differences finies. Pour les coques ä courbure faible
les expressions des differences finies sont developpees pour des conditions
limites variables et les calculs numeriques sont effectues pour des coques
reliees ä des bords Supportes verticalement dont la rigidite est constante ou
lineairement variable et pour des coques reliees ä des bords elastiques seulement

appuyes dans les coins. Afin de tester la convergence, le plan est divise
en mailles 6 x 6, 8 X 8 et 12 x 12.

Zusammenfassung

Der vorliegende Bericht handelt von der Biegetheorie hyperbolischer
Paraboloidschalen mit geraden Kanten. Mittels der Tensorrechnung wird die
allgemeine Schalengleichung für die Verschiebungen in beliebigen, gekrümmten

Koordinaten angegeben. Aus der allgemeinen Gleichung werden diejenigen
für tiefe und flache Schalen hergeleitet. Die Lösungen wurden mit Hilfe der
Endlichen-Differenzen-Näherung erhalten. Für flache Schalen sind Endliche-
Differenzen-Ausdrücke für verschiedene Randbedingungen hergeleitet, und
numerische Berechnungen sind für Schalen durchgeführt worden, die einerseits

senkrecht unterstützte Randträger konstanter oder linear veränderlicher
Steifigkeit und andererseits elastische Randträger, die nur in den Ecken
aufgelegt sind, aufweisen. Um die Konvergenz zu prüfen, ist der Grundriß jeweils
in 6 X 6, 8 X 8 und 12x12 Maschen aufgeteilt worden.
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