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Application of the Bending Theory Regarding Hyperbolic Paraboloid
Shells with Straight Edges. Finite Difference Solutions

Application de la théorie de flexion aux coques en forme de paraboloides hyper-
boliques avec bords droits. Solutions de la différence finie

Anwendung der Biegetheorie auf hyperbolische Paraboloidschalen mit geraden
Kanten. Endliche Differenzen- Losung

J. STAGEBOE
Siv. Ing., Oslo

Introduction

Shells of cylindrical and positive gaussian curvature have been in use for
many years. Practical interest in the hypar shell, however, occur only during
the last twenty years. Investigations of the stresses in hypar shells appear to
be receiving increasing attention from structural research engineers, both
because of the economical uses of this type of shells and the striking architec-
tural forms possible.

A great number of papers have been published on the membrane theory
of the hyperbolic paraboloid shells [1,2,3]. The membrane theory gives the
interesting answer that the shear force N,, in the direction of the straight
asymptotic lines is given without integration as function of the external load
and without influence of the edge conditions. Thus for constant load in the
plan area the shear force N, is constant all over the shell. The fact that for
anticlastic shells the effect of disturbances is great in direction of the straight
asymtotic lines shows that the membrane theory may be completely inade-
quate.

Shells of positive curvature, not too shallow, with no concentrated external
loads have the important advantage that the membrane theory already gives
a good approximation for the stress distribution in the shell. The bending
stresses are confined to small zones along the boundaries. The calculation of
the edge disturbances can for this type of shells be superimposed on the
membrane state of stress.
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For anticlastic shells, when the edge and the asymtotic lines coincide, the
boundary disturbances may be completely different. The boundary effects
can, in this case introduce stress forces which differ greatly from the membrane
forces, and the bending stresses are not insignificant in comparison with
membrane stresses. These boundary effects are no longer confined to a narrow
zone along the edge.

For shells with negative curvature the differential equations for the mem-
brane forces are of hyperbolic type, and in most cases the solution for the
boundary conditions can not be prescribed in the usually way.

Hence it is necessary and essential to consider the complete bending theory
for a proper design of hyperbolic paraboloid with straight edges.

Levy-type solutions are used [4] to determine boundary disturbances in
hyperbolic paraboloid shells with straight edges, but a set of unrealistic
boundary conditions is used, because it otherwise is impossible to satisfy all
conditions by every individual term of an infinite Fourier series.

To obtain realistic boundary conditions the writer in this paper solves the
three differential equations for the displacements by means of finite difference
approximations. The boundary equations are established for boundary con-
ditions which occur in practical design. The numerical calculations are restricted
to shallow hyperbolic paraboloids square in plan for the following boundary
conditions:

1. The shell is hinged to vertically supported edge members of constant and
linear variable stiffness.

2. The shell is supported upon elastic edge members supported at the corners
only.

The rise of the edge members are !/, and /,. To test the convergence the
plan area of the shell is divided into 6 X 6, 8 X 8 and 12 X 12 meshes. The linear
system of equations varies between 32 and 119 unknown and are solved with
a high speed digital computer.

Notation

xy - .
- curviliniear coordinates

2
x
Y cartesion coordinates
z=z(x,y)
F=7(x25) Position vector of any points on the middle surface of the

shell

oF .

8; = a,') Covariant base vectors of the surface

typ = c_r,z _g } Symmetric metric surface tensors
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Fig. 1.

a' X2 Const.
a* = a*fa _ .
_ _g a* = Contravariant base vectors of the surface
x, = aaﬁa
— 2
@ = (11 Agg — 07y
Qo 11 _ %12
all a22 a/12
— ay Xa .
y o S Unit normal vector
Va
_ das _ Oa, .
bog = —y —3—3 = ds ® Second fundamental form of the surface (symmetric
B B tensor)

b = by1 055 —b35
I75 = barr 0y, " dag, 0ayg\ _ - oa,
* oxg  dx, 0%, 0xg
HeBrX = L[a*A afp + ar P +-v (P P + exX efr)]  Symmetric tensor
1

“a

el — 22 — ()

Cristoffel symbol of the second kind

€12 — _ (12

Ve P P° External loads in curvilinear coordinates

X, Y, Z External loads in cartesian coordinates

Np Stress resultants directed along the covariant base vectors
Mp Stress couples about the contravariant base vectors

M \p) Stress couples about the covariant base vectors

Qi Shearing forces in the direction of the normal vector
Yty v*

Yac o, Displacements in the direction of the covariant, contra-
w varient and normal base vectors respectively

Va vt = u

Vage v = v

Va2 v, =

1) Greek indices range over the values 1,2.
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() o Covariant differentiation
y 220
ox
. 0
(¥ =%
h Shell thickness
E Young’s modulus (#, = edge member)
v Poisson’s ratio
Eh
D= 1—2
E h3
B =13 (1—?)
l Base length (square in plan)
® Slope of the edge members
o= l
 2tg g
F Cross-sectional area of the edge member
J Moment of inertia about the horizontal axis through the
centroid ¢
e Distance from the centroid of the edge member to the
middle plane of the shell
F
o = F
e
B =1
l
Y T3
2
-
p = ; (s mesh distance)
x
¢ =7
_Y
1=
U = %
14 =%’
W=

—
=)
o~
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General Shell Equations

The three equations for the displacements in general curvilinear coordinates
for thin elastic shells may be written very compactly in tensor notation when
using the same symbols as GREEN-ZERNA [5]:

D
__Z_Hoc,Bp)\ [vpl)\a _'U)\lpa_ 2 (bp)\w)|cx] +pB =0,

(1)
D
7[1"‘/31’)‘ (2[a+ 2], — 26,0 %) ba,g——BHO‘BPAwIPMBer?* =0.

To be suitable for practical applications the following approximations are
introduced in (1): The equations refer to thin elastic shells. In the two first
equations of equilibrium in the tangential directions of the curvilinear coordi-
nates, the contribution of shearing forces are neglected. In the expressions for
stress couples all members concerning the curvature of the shell are neglected.

These simplifications are for thin shells introduced by Wrassow [6] and
GREEN-ZERNA [5]. In the particular case of a circular cylindrical shell the
equations (1) give the Donnel equation.

Neglecting terms in the covariant differentiation of the same order as the
approximations done in the shell equations, they may be written in developed
form:

B=1:
2v ov ov ov
1111 1_ 1 1 2 2 2 1
H [axl 3Iylla 1 2F113 Flla 2
(% oy _ar2p Nw_b
oz, 11 %11 11012 113
ob ow 0%v 0%2v
_ Jg1122 22 e 2 1112 2 1
H [35”1 21112612_*—(8 Ly 2F12)b22]+H [axf +23x18x2
ov v ov ov ov ov
o B i 1 2 2, Y"1 2 2 1 Y%
F11(8x1+ 8962) 2F12(8x1+8x2) Srna GFI
ov ob ow
2F%23 2— (8&3121—_211%21911 2Fmblz)w bua 26128—;1] (2a)
0%v ov v ov
+H1212[8x21 (F§2+2Fi2) ! F%za ! QF%za 2
4 b22 ] 9 8 Lt 1212 1122 A Lot
*2(8331 -—21’12612—21"121922)w-—lezé?z +[H + H1122] 52, o,

ov ov ov ov 02w owv
(F§2+F:{2) 2 I’;za i 2]_'%28 L Fhﬁ 1] +H1222[ax52_311§26xz
dvy 31} ab 2w pt
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and correspondingly for g=2 | (2b)

[Hllll b + 2 H1211 b + H?2211 b ] I:a (@] b11 w]
1y

+[HM2p 4+ 2 H1212p , 4 [1222, ][%4_%3)_2_2[)12@0]
21
+[HY22p, + 2 H1222p,, + H2222), ][3’02 bzzw]
Lo
B ot w w B w
_Plgun 1 2
D{H [axg 6F11@x§ Grﬂax%axz]
(2¢)
2w Pw BAw & w
me|_“ % 1 %) s — 315 ——=—31%
+4H [33:"1’8962 BN gy, i, g 12@9:%]
Prom P . Bw
1122 1212 - 1 20) =5 — 2 1)
+[2H +4H ][395%895% (4F12+F22)8x§8x2 (4P12+F11)8x18x§

Pw o*w B w ot w
2 1 1222 _ 1 2 — 2 -
Flla F22a 3] 4H I:axlax% 3(F12+F22)8x13x 3P12ax%

2
2

B w ot w 3w > w p?

_371 2222 2 - 0.

3]’223 ey ]+H [8x§ 6F228 VE 6F228x§]}+D 0

a a
Where v, = L yu+22

v,
1/“11 ‘/“22
(3)
v, = N2y 4 922,
‘/an Vazz

and the tensor H*By3:

HUL = (glly2 [112 & f1211 — gllgl2 1122 — [2211 = (g12)2 4
b

(4)
Hize2 — f2212 — gl2g22  Fi212 % [(a12)2+a11 azz__g] ,  H2222 — (g22)2,

Stress Resultants and Stress Couples

Stress resultants:

CL
Nug=D f’ﬁ HoBoA (v, ]y — b,y w) (5a)
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or: Nig = D)/ il [H«xﬁn (2_;1_1“1 F%lvz—buw)
gepe (0% 9% oy o, _2b b
+ 5;0“2'}"3‘;1“ 12V =21V, — 20w (5Db)

Stress couples:

a
Myy= mt gﬁl’
M g5 = —m!2 Va
1 (6)
Moy= m Va
—
M g9) = —m? a§§
M(u) — }/ aaa’ll (mn al? —pl2 all)
M(m) = a (m'1a? —m'2ql?), -
M(m = @ (m'2a'% —m22qll),
M(22) = ]/‘2“22 (m21 al2 — 22 au)
mf = — B HrA w),) (8a)
or
0% w ow
af — (075 5 U — I
" B[H (890% Py Haxz) (Sh)

—I?

2 22 4 — 422 *
ox3 0%, ox,

+2Ha,812( Pw I ow —I2 )+Ha522(

w ow " 8w)
ox 02, ~ P0ox; " 1P0x

Cartesian Coordinates

=,
y=y, F= iy e (@ y)is,
2z =z(x,y).

The geometrical quantities for this coordinate-system can be compiled in
the following table:
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Geometrical quantities

1 2 3
a, 1 0 g
@y 0 1 z
a1 4 1+ (2')? z'z
Aoy g'e 1+(27)2
ale 1+(2")? 27
a a
N R e Y
a a
= 2 2 1
? Va Va Va
a, 0 0 2"
a), = a, 0 0 2
a, 0 0 , 2"
124 zl-
b p— =
la ]/a ‘/a
z[. z.l
b —— —
2 ]/a, )/a/
22" 22"
Iy, . ”
z’ z’. z. z-'
I%, a ”
2’z
I, :
22"
| EE
a 1+ (2")2+(27)?

3

’

P =Xallyt Ya12+Z%,

P = Ya22+Xa12+Z%,

Z-XZ-Yz

Va
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The Shell Equations for the Hyperbolic Paraboloid with Straight Boundaries

In this form the middle surface of the hyperbolic paraboloid shell is defined

in cartesian coordinates by

Fig. 2.

By means of the general equations (2a—c) and the table (9) we can easily

establish the shell equations for the displacements:

Geometrial quantities from table (9):
q
y:  x? 1 Y x
a:1+E§+c—2’ bl1=b22=F%1=Fg2=0a b12=c—1-/;’ F%z-_-gg—a, F%2=m,
@y = 1+E§: 2= 2 Aoo = 1+;‘£’
2 2
1+ 1+ %
all = c , al? = _f_?iz’ a?? — c?
a ac a
and the tensor H*Avd (4):
2 4 2 2 3
1+2(2) + () "L ta -2¥_¥%
1 — g £ , Huze - ° . Hmz . °© € ,
a? , az a2
3 29,2 . 2 4
_%2@ x—c?:— x*y —;-a(l—v) 1+2(3_/) +(.34)
H1222 — Hee — _© H2222 — £ el
a2 ? , a[z ? a2

These quantities substituted into (2), neglecting 4 order terms and using (3)

we have:
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c3 c2
dzy >y, 2 2t YA . Y
— —(24+Z 7 WE2=2Z _ L) —(1-2 4+ I =
& v (+c2 cz)u +d V)[(c 203 c3)w (1 262+202)u
2 x? 2 x? xy Y (10)
and equally for the second equation.
The third equation:
xy, , . 2 322 3y x? Y\ .
(1+V)02 (u +’v)+(1 V)[(c —6_3_—0_3w 1 EE 262@6
i Y By . 8% . 4TY e
xz 3 yz 1171 ( x2 y2 I1ee 3 x2 ?/2 seee
+(1+§§—§c—2)w +2(1‘§@—2—c§)w +(1“§5'2‘+z—cz)w =

Cova= ] o xl oy (- Y
D? Va_D[ -5 Yc+(1 2 c? 202)2]'

The difference compared with the work by BoNncarD [7] is due to the simplifi-
cations in the third equation for the expressions for the stress couples and is
insignificant. The two first equations are somewhat simpler than in [7] but

of the same accuracy.
The same geometrical quantities substituted into (5) (7) (8) together with
(3) gives the stress resultants and stress couples:

N(11)=Nac=

D [(1——21;)@&'—{-1}(1—;—;)0’—(1—-—v)%?yu'+c%v+v§2u+2%gw],‘
Ngg = Ny =

D[(1—2‘—”;)@'+V(1_%)u'—u-y)i_zyv'+c—”§—u+u%v+z%w], (11)
Nay =N,y = :

D{(I;V) [(1—2x—022)u'+(1—§‘?/~02—2)v'—2( _Ziz_ng)%"] - “;”%’wwq}.

2 2
— My =M, _B[(l—%)w”—(1+v)~gw’ +(1—-——)vw ]
(12)
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- _ y,, Z . N L xy o]
Map = Mgy = B(1=2) [‘zz‘w v +(l_"2?_§§)w o ]
R R (12)
0] y ’ x * € y I xy r
Mo = My = B(1=2) [55“’ T ‘(l‘m‘z—c‘z)w T ]

When neglecting the quadratic terms in (10) (11) (12) we obtain the equations
for the shallow hyperbolic paraboloid:

Yy
u"—i—l(l—) ,_+l(1+) o l=v . X+Z=
5 vu+g v)v W= =y
B Y+z21
v"+-;—(1—v)v”+%(1+v)u"— 10 Y = ——'D—07 (13a—c)
e 2w\ RPc ., Xy+Yx—Zc
Stress forces: N, =Du' +vv),
N, =D +vu'), (14)
(I_V) '
N,, =D g%+ 2—
Stress couples: M, =BWw'+vw"),
M, =Bw' +vw'"), (15)
M, =B(l-v)w

Introducing non-dimensional coordinates and displacements we obtain the
three basic equations (13a—c) in ordinary finite difference form (see Fig. 3):

4(1—v) —1. 1 1
8—-[8B—w|8|U+(1+v)| [.] |V-801-v)ptge| [ ]IW=
4(1—v) 1. —1 ~1
_X_ijnztg%(l—vz)pzy,
(16 a—b)
8
4(1—v)—|8B—v)[4(1—v)|V+(14+v)
8

—80(1—v)ptgp|—1[.]1|W = _Y"%mtg‘p 8 (1—12)py,
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1
[Jo+|-1[]1|v—[80ptge| W
~1
1 (16¢)
2 -8 2 1
Xn+Y(-Z
10 Y 2tge
- 1 -8 [20] - — 2(1 :
2(1—=v) i tge| s W 7 Loy
2 -8 2
1
by
S
0,2
S
-1, 0,l A
20 o o lo  [20 X
~l,-1 O,-1 I~
0-2
Fig. 3.

The two first equations (16a—b) are used at all points except the edge points.

For these must be used equations with approximately the same accuracy.
Equally for the third equation (16¢) for points near the edge. Similar finite

difference equations may of course be established for the equations (10a—c).

1. The Cross Sectional Area of the Hdge Member s Constant

Boundary Conditions

The edge member has bending rigidity in vertical direction. The torsional
rigidity is neglected. Continuity and equilibrium conditions for shell and
edge member (Fig. 4):

Equilibrium in z-direction:

N,=D@u +vv')=0, w =—vv. (17)
Equilibrium in y-direction (see Fig. 3):

N,,=N,=FE,v,.
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Fig. 4.
Same deformation shell edge member:
V=0,—ew .
We have thus the expression for the shear force:
N, =FEv +eFEw". (18)

The normal force acting at the controid of the edge member:

5 . . rE, 12¢ ' E

N,=FE,(v+tew") = W E (Ny—va)-l——-kTE;—‘f(My——va). (19)

From (18) and (14c¢) (or (11c¢c) when not neglecting the quadratic terms) we
find the expression:

v'=zflfc(l+v)v"—u'+2%v+2(l+V) ef;cw (20)
Vertical equilibrium:
M, =[(@~eNy)dy,
M;=@Q,—eN,,=R,+g9—eN,;, = E Jw ", (21)
with R, =Bw"+2-v)w'"]. (22)

Expressions (18) and (22) substituted into (21) we obtain the following equation:
wlll + (2 —V) w/-. —
EC

E 3

%va“'—lz(l—vz) g (23)

12 (1 —»2) 275

(J+e2 Fyw " +12(1 —r?)

Before establishing the boundary equations we compile for later use various
difference expressions. The differential expressions or quotients L[f] are
expanded in a Taylor-series with boundary conditions M [f]. Generally L[f]
and M [f] are partial differential expressions in f (x,y) and the expansion is to
coincide with the differential expressions to as high an order as suitable [9]:

2 L{fly = 2 by frs+ M [fl; +higher Taylor terms. (24)
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In that way we obtain:

/ 1 8 ¥4
fo =E(‘“f—1+f0)+§fo +(32)7 (25)
77 1 3 !’ 2
0 =2_§‘2‘(“f—2+8f—1_7f0)+gf0+(8 ) (26)
rer 1 6 ’ 92
0 =8_§(f—3*6f—2+15f—1'10f0)+g2'f0+(3 )s (27)
rr’ 1 2 7 2
0 =§E§,(—f—2+9fo‘“8f1)+§§f1+(8 )s (28)
1244 1 6 17 2
0 =1183(—5f—2+9f—1_3f0_f1)+m 1 +(s%), (29)
22 1 18 7 2
0 =W(7f—3'39f—2+57f—1’“25f0)+‘1‘1—8 0 +(s?), (30)
rree 1 12 ' 2
0 =W(_f—?»-[—16f—2~54f——1+64f0_25i1)+10—82' 1 +(8 )’ (31)
rrr? 1 12 17 2
0 =g;;(_6f—4+36f—3“84f—2+84f—1_30f0) 520 +(s?), (32)
- 1 10 .. s
0 =6—81(—9f_4+56f-3—144f_z+216f-1—119fo)+;3fo+(8 ), (33)
reee 1 5 ’ 3
0 =W(—3f_3+32f_2—108f_1+192fo—113f1)+8—3(f 1+ (s3).  (34)
—4 25 2 -2
—26 96 —50 —104 -8 36 —80 52
21 4%fyst =| —15 136 —354 240 |[119|/f+v|. 16 —72 156 |—100]|f
—~26 96 —50 —104 —8 36 —80 52
—4 25 2 2
+ 2483 [f" +(2=v) " To+ (), (35)
T(d2fy+4%f_1,) st =
9 —42 154|—219 82 1 14 | —21 6
—13 176 —344 552 |—219| ~1 —4 —30 56 |—21
—6 136 —344 154 |tV 4 12 —-30 14
-6 76 —42 4 —4 .
—13 9 —1 1
+ 1283 [+ (2=v) [T+ 1283 [f T+ (2=v) [ ]+ (5°), (36)
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10 v
20 —80 20—v16 _
1042f,6t =|—1 16 —94 — 654230 [f+12(f +v ] )18+ (s°),
20 —80 20—v16
10 v
12
24 —96 24
1242fys* = | —3 32 —156 — 161 |f+60 [y +(s%),
24 —96 24
12
20 65 20
~116 —94 65
1042 f,s* = 20 —94 20 |f+12(f1o+fo1) 82+ (s5),
16
—1
24 —161 24
—3 32 —156 —161
1242 fys* = 24 —156 24 |+ 60 (f10+fo1) s + (%),
32
-3
24 —78 24
—3 32 —156 [364,8]—161
1242 fys* = 24 —112,8 24 |[+60f19s+14,4fy; s+ (s°).
19,2
~1,2

181

(37)

(38)

(39)

(40)

(41)

The difference expressions (34) (38) (40) are well suited for clamped boundary

conditions.

For completeness we add the following difference expressions:

1
2 —8 2
A2fost =1 —8 [20] —8 1|f+(s),
2 -8 2
1
1 -2 1
6/--84 =1—-9 —2 f+(86),
1 -2 1

(42)

(43)
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= et 6o 4y )+ (52), (44)
=gy (— a2y =2y fa) (), @)
0 =2i83("3f—1+10f0—12f1+6f2—f3)+(32)a (46)
-1 1
o= [ |+, (47)
1 -1
1 —4 3
afrst = . . [+, (48)
—1 4 -3
y = a2t )+, (49)
fi =gl (), (50)
fi =g (Blo— it )+ (). (51)

Boundary Equations

The boundary condition (20) differentiated and substituted in the basic
differential Eq. (13a), we obtain:

ol

X-Z
’ . FE(14+v)? . eFE(1+v)?® ... 2v .
u' —vu +——h—E———v 4 W E w +?w =——75 (52)
Introducing the difference expression (26) according to the boundary condition
(17), and the finite differences (44) (45) (49) and (50) the boundary equation

(52) may be written in difference form:

1
—1 O —2 —1
| a(l+v :
|-18[=7]|U+2v U+°—E5y—— [ v+sy| [Lv
~1 2 1
—1 (53a)
1
—4 1 Y
20 B, a B (1 +v)? | -X-Z7
—4 —1
1
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Repeating the procedure for the basic differential Eq. (13b) with the same
boundary conditions (17) and (20) and the difference expressions (26) (45)
(49) and (25), we obtain for hinged and clamped edge:

1 1
1 1 -

—1s v [P O ey s Do
1 -1

1 hinged .

60 E,aB (1 +v) —Z L

c® +v
+ Epty? D W +80ptge|l W +40ptgov W =
2 o 1
1 lamped (53b)

+240ptg o[ W]

_Y_z7Y
*——E—C*“ 4py (1 +v).

Substituting the boundary conditions (18) and (23), in the third basic
Eq. (13¢), and using the difference expressions (35) (44) (45) and (49), we find:

1
B B |
100,8 (1—3?) tgp L Lap’y V+504 (1) tggrafp| [LI|W
2
-1
—4 25 2 -2
—26 96 —50 —104 -8 36 —80 52
—|-15 136 —354 240 [119||W—»| 16 —72 156|—100| 4
—26 96 —50 —104 ~8 36 —80
—4 25 2 —-2 (53¢)
1] | 1]
B, . B -
— 14,4 (1—1?2) ¢ v = )X (X g2 =
A4 (1) 5Bl [V -288(1 V)LEM(8+5) (6]
2 —4
-1 1
(X")+Y€)2tg¢_z 3.3 9

25,2 (1 —v?)pty®—28,8(1—12)p

I ya,E'
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For points near the edge the third basic Eq. (13¢) may be established with
the difference expressions (37) and (39) for hinged edge, and (38) and (40) for

clamped edge:
Hinged edge:

1

— 11y — —
Lol L r-[sosteel Wiy g,
=1 (54c¢)
10 v
=116 —94 [204] —65+430|W = = 282 5(1+v)py
20 —80 2016
10 v
Hinged edge, near the corner:
! 1
-1 11V — -
Lo+ L] 1y -[80ptee] W= 150 etes
-1 (55¢)
20 65 20 :
~1 16— 94 65 Xn+Y{—Z5
: 20 —94 20|W = 7 2(1+v)py.
16
~1
Clamped edge:
! 10
[Nu+|-1[.] 1V —[80ptge L vy vt
—1 (56 ¢)
12
24 —96 24 X 1
n+Y(-2Z
-3 32 —156 —161|W = BP9 (143) py.
24 —96 24
12
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Clamped edge, near the corner:

1
10
D U+ -1 D 1 V_W—144:(1—v)p3'y2tgq3
-1 (67 c)
24 —161 24
—3 32 —156 ~161 XW+YC—Z2t1
24 —156  24|W = T o 2(+v)py
32
—3

We have now established the boundary equations except for the corners and
points at the edge one mesh from the corners.

With the boundary condition (17) and according to symmetry the condition
in the upper corner is:

1
-2
At points one mesh from the corners the difference expression I:I V in
2
-8 v=0 —1

Eq. (53a) is according to (18) replaced b 2 |_—9_—| V at the upper corner
g p Yy 3 19Y

1 1 =i — 25 |w"=0

6 —4 @

and | —12 |V at the lower corner. @ W is replaced by Tlﬁ —54 | W

[10] —4 16

—3 1 —1
—113 [v7°
1 192
or o3| —108 W for respectively hinged and clamped corner. In Eq. (53b) the
32
-3 T

3

difference expression D W is replaced by 1—21

1

hinged and clamped corner respectively.
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For the third basic Eq. (13c) at points at the edge one mesh from the
upper corner, we obtain with the difference expression (36) for hinged and
clamped corner

67.2(1— 1) tg ot pty 2|V + (1 =) tg -t B
1

hin@ed clalflped

9 —42 154 [—219] 82 1 . 14[-21] s
—13 76 —344  552[—219] ~1 —4 —30 56[—21]

- —6 136 —344 154 |-V 4 12 —30 14|V
—6 76 —42 4 —4 .
—13 9 -1 1
—25 |*"=% | —113 [*"=°
o [64] 192 ‘ (58¢)
(l—vz)Ep'y( ,82) —54 288W | _108 |24 W
16 32
—1 | _—3
hinged clamped
_8 v=0
—96(1-—2£9 @ _ X+ Yi)2tgp—2 —12) phn3
, v2) —faf V 16,8 (1 —v2)pty
Z, , 7]
-1
3 A,3
—28,8(1—V2)”l’1’?9.
-8 —"(13
At the lower corner [¢] V is replaced by—gi —12 1y,

At the upper corner point we obtain according to symmetry for the two basic
Eqgs. (13a—b) when substituting the condition (20):

—-X-zY
- ¢
D

FE,(1+v)? ... eFE,(1+v)? ...  2v .
tThE Ut hE Y tow S
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With the condition »" =0 we use the difference expressions (26) (27) (32) and
(33):

w=0 w'=0
!—7| 84 216
v+2FEc(l+v)2 15 +F6E gw w
8 shE _e| " eaE| 8|5 | 4ty
—1 1 36 56
—6 -9
hinged camped

(59 a—b)

=0 _xX_7Y
+4V8 mw X Zc

—— = D52,
c _1w D $

At the lower corners the displacements u, v, w are supposed to be known,
and in the upper corners the displacement w.

For 4 =0 and w’ =0 along the boundary in y-direction the Eq. (53b) may
be written:

| 1
12E,F(1l+v) 4 I F(l+v) 2
+v _ c€ +v
—18 [ 7]+ [ o +1—v]”+ = ];lw
~1
1 —4 . y (60b)
_v_zY¥
12s 2(1+V) _ c 482
e O , L'LD“_ D 1-v

The edge member is vertically supported when setting w =0 along the edge.

Putting tgp=0(c=00) the equations can be applied to plate problems.
The Eqgs. (16a—c) (53¢) (56¢) (57¢) (58c) and (60b) have been used in [8] on
rectangular clamped plate on elastic beams with e > 0. Compared with ‘“Mehr-
stellen’’ expressions good agreement is ashieved.

2. The Cross Sectional Area of the Edge Member s Variable

Boundary Conditions

The edge member has no bending rigidity and is vertically supported.
Continuity and equilibrium conditions:
Equilibrium and continuity along the boundary:

N,,=N,=E,F(y)v +Ev F(y), (61)
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where F (y) is the cross sectional area of the edge member and only function
of y from (14¢) and (61) we obtain:
, 2(1+v)E

—_— N 9 .o . i_ .
v = VB [Fv'+F'v]—u. (62)

Boundary Equations

Differentiating the boundary condition (62) and substituting into the basic
Eq. (13a), we find:

—_Xx-7Y

c

E, (1+v)?
e\ 2TV —

Eh

u/,—vu..+ [F’U”.—*—QF"I)“—‘—F”’I).]: (63)
When F (y) is given analytically we find with the same difference expressions

as used in (53a-b).

1
P E, F (1+v)? 2 LB, F (1+v)? L
¢ +v e +v
—18 [—7]u+2v [2]fu+ =g 2T glw——ﬁ—}f—*l—?]v
—1
1 (64a)
E Fs(1+v)? _ Yy 282
T Eh @”—‘X‘Zz‘f’
12E,F(1+v) 4—2v(14v) . 6 E,F (1+v) !
¢ +v —2v(I+v)1 i A (14w
l“ls"’*[ Esh T 1-» ]L—J? Ut Eh ‘;l”
hinged
1 4s y 48 (64Db)
=0 when
-1 clamped

According to symmetry and differentiating and substituting Eq. (62) in the

basic Eq. (13a), we obtain for the upper corner point:
Yy
B, (1+v)? —X-Z;

D

Eh [FQ)'"-{-Z_F"U"-{-F"’U']:

(65)

and with the condition v" =0 we find:

[1 L2E. (1 +v)2F‘] (7] 2, (142

. y\ 2 s?
Th v+ Toh v = (—X—Z—)»—. (66a—b)

cl] D
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In the special case when F (y) is lineary variable:

_A-K  R+h

F (y) Y 5

(67)

where F, and F, denote the cross sectional area at the upper and lower corner
respectively.
_h-F

F T

F=0.
Stress Forces and Stress Couples
The stress forces and stress couples are computed from the main variables

U,V,W according to (14) (15) (18) and (61). Applying simple differences we
find for the stress forces:

1
El
- = _ 7
Ne =500y 1] 1|0+ _]iIV : (68a)
El !
N, =—| []v+vN,, (68b)
2py o
El :
N = Troy @UJr —~1[.] 1|V —80ptge W |. (68c)
Stress couples:
2 :
M, = Ty | L Wl =2]|W]|, (69a)
’ 1
E 2 ~
M, = 1,2 % Wa+vM,, (69Db)
E?
Moy = S5 W (69c)
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and in corner points:

1 -5 |4
v . B
SR TIERTV 7 R

(69e)

For clamped edge condition Eq. (37) is used together with (13¢) and (14c):

The negative clamping shell moment is:

Mzedge'__ 10 14
5 g 5 20 —80 20—v16 B
25 _2e(xYivT_z) |- _ - w
L R (XC+YC z) 116 —94 65-+v30 | 120 (694)
20 —80 20—v16
10 v
Near the corner Egs. (39) have to be used.
By using higher expressions
— =
Bl =
= —-— - ""1 .
N =5,y L8 18 —1|U+v EI 14 (70a)
| =1
and correspondingly for N, and &V ,.
- —
-1
P 16
M. = i | oL 16 [=30] 16 —1 W+v|[=30]| W |, (T1a)
16
-1
1 -8 8 —1
B —8 64 . —64 8
Moy = ta55 40575 | A0 - w (T1c)
8 —64 64 —8
-1 8 -8 1

The stresses in the centre of a mesh may be computed from the corner values

by using simple differences

U+v

El
N, = [—11 1

2(1—v2)py.

-1 —1

1 V (72a)
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and correspondingly for N, and N,

M

Ty

El? -1 1

1,2(1—v)p?y?

1 -1

w.

191

(73 ¢)

The shear force N, along the edge according to (18) by using simple differences:

1
Bl 5Blaf|
ny:_.g_:‘__zly+__;3_3i@ DW (74)
Py Py
1 2
—1
and by applying higher expressions:
-1
-1 8
E,l 10 5E8,1ap -
(04 (0
xy = 12;27/2 V+—4—P°§y—3- D w. (75)
16 13
—1 -8
1
One mesh from corner:
_1 w =0 —8 w'=0
1
AP 108,18 =3]|w | [9o]lw
N,, = o2 L:f_l V+ K o |11 I3 (76)
-5 —1
Upper corner:
7
Bl
Lower corner:
g |7,
Ny=s+—|_%iU. (78)
2(1+v)py [—3]

Variable cross sectional area of edge member. According to Eq. (61) with
finite difference expression: ‘

1
T g2 —i|v+ 2s

]
~1

(79)
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and with higher expressions:

~1 1
Bpl— g

N, = 12c82‘_::g[v+ | L. (80)
8
1 —1

Corner points Egs. (77) and (78).
The support reaction along the edge is according to Egs. (35) (36) and
(13¢):

2 21 [y @
R, - Fpt-,gq;lNW—ﬂs(xc+ YE~Z)

—4 25
—26 96 —50 —104]
w
—|—15 136 —354 240 i (81)
—26 96 —50 —104
-4 25
2 -2

-8 36 —80 52

wB

—v|. 16 —72 156 Y
—8 36 —80 52
2 -2

and correspondingly with Eqs. (36).

Numerical Examples

In the following figures the notation a is to be replaced by ! (base length).

Ezxample 1

Consider a H.P. shell over a square base, hinged to vertically supported
edge members, with the following properties:

tgp=1/5, a=F[h2=50, y=I/h=350, p=s/l=1/6, p=1/8, p=1/12.

All examples have the following condition at the lower corners: v = —v=0.
To test the convergence this example is computed with a mesh width s=1/6,
s=1/8 and s=1/12.

The results are as follows:
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o
"
sl- o= ol-

Membrane

-0,5

Shear force N,y at the line  =1/2 (along the edge).

<

Stress forces N, at the line # = /2 (along the edge).
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Ny
l o=
X X
-x ]
Stress forces N, Ny and Ny Stress forces Ny and Ny
at the line y = —1/4. at the line y = 0.

|z
3
>
N
o
N

Stress forces N, Ny and Ny Moments M, at the line y=0.
at the line y =1/4.

1074 0% 2 I

Moments M, and M, at the line x = 1—52l.
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51107%.d% 2

Moments M, at the line y =1/4. Moments M, at the line y = 0.

Example 2

The cross sectional area of the edge members is linear variable: Lower

corner: F /h?="75. Upper corner F,/h?=25.
The other properties the same as in example 1. Mesh width s=1/8.

Ny
Z-a
8+
7
6.
5<._
4 "
3 .
2 4
Membrane
" v
0 ¢ + + + + } } + ¢ } {—
-0,5 0] 0,5

1

Shear forces at the line x = /2 (along the edge).

Example 3

The shell is hinged to vertically supported edge members with various
stiffness. The following properties are used:

20
1 F 50 l 8 1
r=gp T Tisy YT~ r=7-yp E=E

120
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A Ny
Z-a
1]
101
9.
84
74

21 o=20

o= 120

Membrane

-0,5 0 05

Shear forces Nz, at the line x =1/2 (along the edge).

-05 0 05

Stress force Ny at the line x =1/2 (along the edge).
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b -Ny =ty
Za Z-a o =20 \\

=20

Y
—[x

Stress force N, at the line y =1/4. Stress force Ny at the line y= —1/4.

—|<

05

-05 0 05

Stress force N, at the line x = 3/8 [.

)

N
Za

Stress forces N, and Ngy at the line y=0.

Example 4

The edge members have bending rigidity in the vertical direction and
are only supported at the corners. The properties are:

tgp=1/5, a=25, y=220, EJE=4, e=0, v=0, J=F?[6.
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+e
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Conclusions

From the calculations it is observed that the membrane analysis is in
significant error, expecially in the region of the lower corners and along the
boundary.

The stiffness of the edge member greatly influences the stress distribution
and the displacements. In the interior of the shell, however, the stresses are
in good agreement with the membrane theory.

By means of electronic computer, the entire process may be programmed
from given data to end results.
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Summary

The present paper deals with the bending theory of hyperbolic paraboloid
shells with straight edges. By applying tensor calculus the general shell equa-
tions for the displacements in arbitrary curvilinear coordinates are established.
From the general equations, the equations for deep and shallow hyperbolic
paraboloid shells are derived. The solutions are finally obtained by means of
finite difference approximations. For shallow shells finite difference expressions
are developed for various boundary conditions and the numerical calculations
are accomplished for shell hinged to vertically supported edge member of
constant and linear variable stiffness and shell supported upon elastic edge
members only supported in the corners. To test the convergence the plan
area is divided into 6 X 6, 8 X 8 and 12 x 12 meshes,
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Résumé

Le présent travail traite de théorie de flexion appliquée aux coques en
forme de paraboloides hyperboliques avec bords tendus. Les équations géné-
rales pour les coques sont établies, au moyen du calcul tensoriel appliqué,
pour des déplacements en coordonnées curvilignes arbitraires. Des équations
générales, on a dérivé les équations pour des coques paraboloides hyperboliques
profondes et & courbure faible. Les solutions sont finalement obtenues a 1’aide
d’approximations par des différences finies. Pour les coques & courbure faible
les expressions des différences finies sont développées pour des conditions
limites variables et les calculs numériques sont effectués pour des coques
reliées a des bords supportés verticalement dont la rigidité est constante ou
linéairement variable et pour des coques reliées a des bords élastiques seule-
ment appuyés dans les coins. Afin de tester la convergence, le plan est divisé
en mailles 6 X6, 8 X8 et 12x 12,

Zusammenfassung

Der vorliegende Bericht handelt von der Biegetheorie hyperbolischer
Paraboloidschalen mit geraden Kanten. Mittels der Tensorrechnung wird die
allgemeine Schalengleichung fiir die Verschiebungen in beliebigen, gekriimm-
ten Koordinaten angegeben. Aus der allgemeinen Gleichung werden diejenigen
fiir tiefe und flache Schalen hergeleitet. Die Losungen wurden mit Hilfe der
Endlichen-Differenzen-Néherung erhalten. Fiir flache Schalen sind Endliche-
Differenzen-Ausdriicke fir verschiedene Randbedingungen hergeleitet, und
numerische Berechnungen sind fiir Schalen durchgefiihrt worden, die einer-
seits senkrecht unterstiitzte Randtriger konstanter oder linear verinderlicher
Steifigkeit und andererseits elastische Randtriager, die nur in den Ecken auf-
gelegt sind, aufweisen. Um die Konvergenz zu priifen, ist der Grundrif} jeweils
in 6 X6, 8 X8 und 12 x 12 Maschen aufgeteilt worden.
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