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Le probléme du poids minimum d’armature des plaques en béton armé
Das Problem des minimalen Bewehrungsgewichtes in Stahlbetonplatten

The Problem of the Minimum Weight of Reinforcement for Reinforced Concrete
Slabs

GIANNANTONIO SACCHI MARCEL SAVE
Faculté polytechnique de Mons, Belgique

Avant-propos

Nous nous intéressons ci-apres aux plaques fléchies de surface S, en béton
armé, de hauteur . constante et armées de la méme facon sur les deux faces *).
De telles plaques seront considérées comme orthotropes, avec un coefficient
d’orthotropie

Q,, et Q, étant les aires, par unité de longueur, des barres d’armature orien-
tées selon deux directions orthogonales. x; forme un angle p avec I'axe x de
référence du systéme 0, x, y choisi.

Si p=0 les barres d’acier sont orientées selon les axes x et y. Le probleme
de la recherche du poids minimum d’armature peut étre résolu par voie directe,
c’est-a-dire en minimisant 1’intégrale:

v =g(9$1+9y1)d6’, (1)

dans la classe des solutions complétes, au point de vue de l’analyse limite,
pour une charge donnée 7 p. 1l s’agit de la classe des solutions pour lesquelles
on peut associer, a ’aide de la loi de 1’écoulement plastique, un champ de

*) Ce choix d’'une telle classe de structures a pour but de faciliter I’exposé. Une fois
la solution trouvée dans cette classe, on peut toujours en pratique enlever les armatures
comprimées. Il faut évidemment dans ce cas augmenter de maniére adéquate I’épaisseur
de la plaque.
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moments équilibrés ne violant pas la condition de plasticité & un champ des
vitesses de courbure compatibles. On suppose, dans ce qui suit, que le matériau
soit rigide parfaitement plastique et qu’on puisse adopter la condition de
plasticité de JoHANSEN [1].

L’autre voie, sur laquelle nous portons notre attention dans la présente
note, utilise des conditions suffisantes qui, en général, consistent & imposer
que D’énergie dissipée par unité de volume d’acier soit constante, dans le
mécanisme de ruine.

Ces conditions sont généralement des conséquences directes du théoréme
de DRUCKER et SHIELD [2], dont nous croyons utile de rappeler le principe
ci-apres (§ 2).

Dans le cadre de cette condition suffisante on peut adopter différents points
de vue notamment celui de Woop [3] et celui de MoRLEY [4]. Ce dernier a été
présenté par 1’auteur [4] de fagon autonome, sans une référence directe au
théoréme de DRUCKER et SHIELD.

Nous nous proposons de déduire les méthodes de MORLEY et de Woob du
théoréme général et de faire apparaitre les autres points de vue qui pourraient
étre envisagés.

1. Principe du théoréme de Drucker et Shield

Soit une plaque de surface S, & I’état limite plastique sous les charges
np, n étant le paramétre des charges. Soit W= W (z,y) la fonction scalaire
qui définit la déformée de la plaque.

Puisque nous sommes a I’état limite, nous aurons:

nfpWdS =[D(k;)dV (2)
N i

ou D (k;;) est la puissance dissipée par unité de volume V, k;; étant le tenseur
des vitesses de courbure. Considérons maintenant une variation de volume de
V a 1 telle que la plaque puisse supporter au moins n p. Nous aurons:

I () AV <] Do () T3, (3)

ou Dy (k;;) est la puissance dissipée par unité de volume V;. On voit facile-
ment que si:

D (ki) = Dy (k;) = constante (4)
on a:

deV%dVl. (5)

Done si la condition (4) est remplie, V est le plus petit volume qui peut
supporter 7 p.
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Dans le cas des plaques en béton armé la condition (4) est:
D = (6)
D
(1+ ')’)'an

e

1+

= [(0082 o+ sin? ) | K|+ (sin? « 4y cos? ) Eoh ]Kzl] = const.
14 Lty

Kl et Kz étant les vitesses principales de courbure, « 1’angle de la direction

principale 1 avec la direction ;. R, est la limite élastique de 1’acier des arma-

tures et D la puissance dissipée par unité de surface moyenne.

L’expression (6) de la puissance dissipée est une généralisation, présentée
par SAVE dans la référence [1], de la puissance dissipée selon la condition de
plasticité de JOHANSEN.

I1 faut noter avant d’aller plus loin que le volume obtenu par la condition
de dissipation constante ne sera un minimum absolu que si cette constance
est assurée sans lier en aucune maniére les variables de dimensionnement.
C’est le cas des structures sandwich étudiées par SHIELD [5] ou D est indépen-
dante de I’épaisseur des feuillets. La question est plus délicate pour les plaques
en béton armé comme nous allons en discuter aux paragraphes suivants.

2. La valeur de a qui donne le poids minimum

D’apres I’expression bien connue dela puissance dissipée dans une plaque en
béton armé, nous savons qu’a 1’état limite nous avons:
n[pWdS = [[|M,, cos*a+M,, sin*a||K,|
i} * +| M, sina+M,, cos?a||K,|]dS =
| R,h[|Q,, cos?a+Q, sin?a||K,|
y +]9Q,, sin?a+Q, cos?a||K,|]dS.

(7)

Si on imagine orienter les barres en tous points selon les directions des cour-
bures principales, on peut transformer 1’équation (7) en la relation suivante:

0[P WdS = [ BRI Ky |+ || | K,[1dS. (8)

Nous pouvons remarquer, en comparant les équations (7) et (8), que:
|2, cos?a+ 82, sin®«| = |2,], |2, sin2 o+, cos?a| = |£2,], (9)
mais puisque:
[2,,|cos?a+|R, |sina > |2, cos?a+82, sin«l, (10)
|92, |sin?a+ |2, |cos? a2 |2, sin?a+82, cos?al,

on obtient:
].le-{-l.le]ngll-i-]Qz‘ (11)
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On peut donc affirmer que, pour un mécanisme de ruine donné, si on oriente
les barres d’acier selon les courbures principales, la quantité d’acier employée
en chaque point est plus petite de la quantité qu’on aurait dt employer en
posant les barres en réseau orthogonal en formant un angle o« =« (x,y)+0 avec
les directions principales des courbures.

Si on compare des solutions de poids minimum relatif d’armature, qui sont
des solutions complétes en ce qui concerne le calcul limite, on peut donc
affirmer que le minimum absolu sera atteint seulement si en chaque point de
la plaque les barres sont orientées selon les courbures principales. Il s’agit
d’une condition nécessaire, bien que non suffisante, de poids minimum absolu.

C’est donc un premier pas pour s’approcher du poids minimum d’armature.
On doit remarquer tout de suite que cette condition peut étre difficile a réaliser
en pratique et que le prix d’une telle plaque pourrait étre supérieur au prix
de la plaque avec réseaux rectiglines.

3. Remarques sur 'influence du coefficient d’orthotropie

a) Le probleme de minimisation directe du volume représenté par 1’expres-
sion (1) peut se formuler de la fagon suivante:

V=[[£(1+y)]dS— min. (12)
8

On doit donc trouver les fonctions £2; et y qui minimisent la fonctionnelle
V=V[2,y]
Si on considére maintenant la fonctionnelle V, affectée d’un condition:

f(£,y) =0, (13)

on peut affirmer de fagon tout & fait générale que le minimum de la fonctionnelle
conditionnée est supérieur ou égal a celui de la fonctionnelle non conditionnée,
la classe de V conditionnée étant plus restreinte que la classe de V.

Pour atteindre le poids minimum absolu, une condition nécessaire est donc
que le coefficient d’orthotropie ne soit pas soumis & des conditions préalable-
ment fixées.

La remarque est utile en pratique parce que souvent des exigences de la
construction portent & fixer a priori une valeur du coefficient d’orthotropie.

Méme au point de vue théorique cette remarque n’est pas inutile, parce que
souvent 1’équation différentielle qu’on obtient, en imposant que la puissance
dissipée par unité de volume soit constante, admet une solution particuliére
facile si on admet y constant.

b) En introduisant le coefficient d’orthotropie y nous écrivons 1’équation
(8) sous la forme:

0[P WS = [ R ALK, +| Kol y|@[148. (14)
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Supposons maintenant que y, K, et K, soient des constantes telles que:
K1=K, K2=,6’K avec 0<B8=1. (15)

De I’équation (14) et des relations (15) on tire:

n[yaWdS:RekK (114;/37)]9 (1+y)dS. (16)
N

Si, tout en gardant le mécanisme caractérisé par W et K, les conditions
d’équilibre indéfinies et au contour permettent que M,,=0, et donc y=0,

nous pouvons écrire 1’équation (16) de la fagon suivante:
nfpWdS =R,hK([2,dS. (17)
S S *

En comparant les équations (16) et (17), nous avons:

1+B7JQ (1+9)dS = JQ ds,

et, puisque

J2u(1+y)d82[2,d5. (19)

Si, au contraire, les conditions d’équilibre indéfinies et au contour sont telles
qu’on peut admettre M ,, =0, et donc £, =0, de I’équation (16) on tire:

nfpWdS =R,hKB[2,dS; (20)
8 S
et, en comparant cette équation avec 1’équation (16), on obtient:
1+’8ny (14+)dS = BJ.Q ds. (21)
Puisque 11++,8yy 2B,

de la relation (21), on tire:

[, (1+y)dS8 <[2,d8. (22)
S S %

Des inégalités (19) et (22) on peut finalement déduire:
[2,d8 =2, (14+y)dS<[R,dS, (23)
S * IS S *

c’est-a-dire que, dans le cadre des hypothéses admises dans ce paragraphe, le
poids minimum d’armature est obtenu si on place les barres d’acier seulement
dans la direction de la courbure principale la plus grande. Si I'armature est
placée, au contraire, seulement dans la direction de la courbure principale



162 GIANNANTONIO SACCHI - MARCEL SAVE

plus petite, on obtient un poids plus grand que celui qu’on obtient en plagant
I’acier dans les deux directions.

I1 faut remarquer que si 8=1, le coefficient d’orthotropie adopté n’a pas
d’influence sur la valeur du poids minimum.

4. Conditions suffisantes de poids minimum

a) Pour obtenir le poids minimum d’armature, nous pouvons donc utiliser
la relation (6), et si nous voulons atteindre la valeur minimum absolue, nous
devons nous rappeler 1’inégalité (11) et écrire:

D R, h

N . ] = = 24
T3]3, = Ty Kl +7[Ks]] = const = [C] B, B (24)

en sous-entendant que le systéme de référence suit les lignes principales de
courbure.

Il s’agit maintenant de trouver, R, et h étant constants, des fonctions K -
K, et y qui satisfassent la condition (24).

En général de (24) on tire: )
_[0]-|&y]

. > 0). 25)
TN ‘

Y
y étant positif, la relation (25) admet des solutions seulement dans 1’intervalle
|K,|2|C|=|K,|. Si on donne deux fonctions |K,| et |K,| satisfaisant bien
entendu aux conditions de mécanisme, le coefficient d’orthotropie y est donné
a la valeur de la constante |C| preés.
En suivant la démonstration du théoréme de DRUCKER et SHIELD nous
écrivons pour une plaque a 1’état limite:

nsfp WdS = [SIQI(I +y)dS] Rh|C|, (26)
ou bien, compte tenu de la relation (25): |
O~ K|
Wds = R,1|C|[Q (1 +|—.——L)ds. 27
778“0 | |sj 1 K| —|C] (27)

Considérons maintenant une variation de volume d’armature de £, & ©, et
de y a y telle que 1a plaque puisse supporter au moins 7 p. Aprés la variation,
nous aurons: '

__|C0]1-|K
7 = 01— 1Ky (28)
| K| —|C]
Nous aurons alors d’apres 1’équation (27):
|0|ml(1 +M)d8§|5lj§l(l+M)dS. (29)
S | K| —|C]| A | K| —|C]|
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Nous serons stir que

IQ1(1+V)dS§f§1(1+)7)dS, (30)
s S
si |C] =|C|, et donc y = 7. (31)

La condition (24) assure donc le poids minimum d’armature dans la classe
des solutions obtenues en ne faisant varier que la fonction £2,, la fonction y
demeurant inaltérée (voir paragraphe 3a). Il s’agit done, si la solution existe,
d’un minimum relatif.

Il faut remarquer que, en général, 1’énergie dissipée n’a pas la méme valeur
en chaque barre, et que, si K, =C, et K,=C,, C, et C, étant des constantes,
on a, en vertu de la relation (25), y = const par rapport a la position.

Ceci est la méthode que Woop a utilisée dans certains cas étudiés [3].

On peut améliorer le poids minimum ainsi obtenu en minimisant 1’intégrale:

Iol"_lKl,) s, (32)

V=j2,1+=
S ar
mais comme |C|, et donc y, sont reliés au mécanisme choisi dont K, et K,
sont les courbures, on n’est pas sir d’atteindre le poids minimum absolu.
_b) Si dans la relation (25) on pose | K| =|K,|, on trouve, étant donné que
| K2 |C]z | Ky |: . .
| Kyl = | K| = (0], (33)

et, par conséquent, que y est indéterminé.
Nous pouvons alors écrire la relation (27) de la fagon suivante:

n[pWdS = R.h|C|[2,(1+y)dS, (34)
$ 5

et en donnant une variation de volume de 2, &4 2, et de y & 7, telle que la
plaque puisse supporter au moins 7 p, nous aurons:

Sj.ol(l +y)dS §Sf§1(1 +7)dS, (35)

quelle que soit la valeur de |C|.

La condition (35) assure donc le poids minimum d’armature dans la classe
des solutions obtenues en faisant varier les fonctions £, et y (cfr. § 3a). Il s’agit
done, si la solution existe, d’'un minimum absolu.

Ceci est le point de vue de MORLEY [4]. On peut aisément remarquer que
P’énergie dissipée par unité de volume est égale en chaque barre.

c) Considérons maintenant le cas, assez fréquent dans la pratique, ot les
barres sont posées selon un réseau orthogonal coincidant avec un systéme de
référence cartésien 0,z,y (p=0, cfr. § 1).

On sait [6] que, en ce cas, ’expression de 1’énergie dissipée par unité de
volume est donnée par: ‘
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D 1 Rek{[(l_l_ K,-K, )
1+9)02. 41 T 3 :
(1+7)42, +y .‘/(Km.—Ky)2+4K5";y
+-y(1— KoKy )]|<Kx+Ky>+V<Kx—Ky>2+4K;yy
V(K,—K,2+4K2,
N [(1 _ K,-K, ) (36)
V(Kx_Ky)2+4K.72£y
+'y(1+ : K?{—Kx _ )]|(K$+Ky)_V(Kx—l'{y)uuégy[}.
V(Kx—Ky)2+4K:%y
Si on pose: K, = Ky =K (z,y), (37)

de la relation (36) on tire:

D 1 Reh . % - _
(1)@ = 114y (2K 2K, [+ [1+y][2K -2 K, [ =
R,k . : (38)
S K+ Ky |+ | K~ K, 1)
De la relation (38), on déduit que:
D .
——— =R hK 1 K=K 39
(I+y)2, °° 8l A =gy (39)
€t que: (1+')/)Qx = Ly, xy Sl ay = K.

Si, dans le cas prévu dans la relation (39) on pose K = const, ou si dans le
cas prévu dans la relation (39’) on pose K =y = const, on obtient une condition
suffisante de poids minimum. Il ne s’agit pas de minima absolus en vertu de la
remarque du paragraphe 2, mais il s’agit tout de méme des plus petites valeurs
qu’on peut obtenir en gardant les réseaux des barres coincidant avec un systeme
cartésien orthogonal.

On peut aisément remarquer que, si on impose que les puissances par unité
de volume exprimées par les équations (39) et (39’) soient constantes, on
formule des conditions qui assurent les poids minimum d’armature dans des
classes de solutions obtenues en faisant varier les fonctions 2, et y.

11 s’agit done, si la solution existe, d’un minimum dans la classe des plaques
armées avec résequx caractérisés par p=0.

5. Considérations pratiques

Nous pouvons discuter les résultats qui ont été tirés ci-avant sur un cas
présenté dans la référence [6]. 11 s’agit d’une plaque elliptique, appuyée sur le
contour et uniformément chargée, dont a et b sont des demi axes. Soit a = b.
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Supposons qu’elle soit armée avec un réseau orthogonal dirigé selon les
axes ¥ et y coincidant avec les axes de I’ellipe. 2, et £2, sont les aires, par

o . . . p Q
unité de longueur, des sections droites des barres du réseau et y = Q—” est le
x

coefficient d’orthotropie.
En supposant que le mécanisme de ruine soit représenté par la fonction:
. T
W étant la vitesse transversale, on aura le champ des vitesses de courbures

qui suit:

2 . 2« .
x ':-—a?, Ky =€2‘, K = O. (4:].)

K

Si nous admettons y = const, nous pouvons satisfaire la condition (6). Quelle

que soit la valeur de y choisie, la condition de WooD est ainsi satisfaite. Nous

serons capables de satisfaire la condition de MORLEY seulement en posant
y=00, sur la base de ce qui a été exposé au paragraphe 3b.

En effet, nous pouvons associer au champ des vitesses de courbure (41) le

champ des moments suivant:
x2 y2
szA(l—— )Reh, M,=yM,, M, =0. (42)

a® b
On remarque aisément qu’un tel champ peut satisfaire aux équations d’équi-
libre méme dans le cas ou M, =0. Selon MoRLEY il faut armer la plaque seule-
ment selon la direction y. La puissance dissipée est donc égale en chaque barre
et a la valeur

2a
D= Rehﬁ.
I1 faut encore remarquer que, puisque M,, =0, M et M, sont moments princi-
paux et que, par conséquent, la condition nécessaire de poids minimum absolu
présentée au paragraphe 2 est remplie.
Dans le tableau qui suit sont données les valeurs des rapports Vj,/V;, des
poids minima selon Woob et selon MorRLEY pour différents rapports a/b.

Vw|Vu

alb

1 1,00 1,00 1,00 1,00 1,00
1,2 1,44 1,18 1,11 1,085 1,00
1,4 1,96 1,32 1,19 1,14 1,00
1,6 2,56 1,46 1,24 1,18 1,00
1,8 3,24 1,563 1,30 1,21 1,00
2,0 4,00 1,60 1,34 1,24 1,00
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On remarquera que, si a =b, le champ de vitesses de courbure (41) satisfait
aux conditions (33) et done que, dans le cas de la plaque circulaire, les solutions
de Woob, quel que soit y, sont identiques & la solution de MORLEY.

Il faut encore souligner que pour y=0 on a des solutions & dissipation par
unité de volume de barre constante et égale dans toutes les barres.

Ces solutions ne sont néanmoins pas de poids minimum parce que les
armatures sont placées selon la direction de courbure principale la plus petite.
Elles conduisent en effet & des poids d’armature plus grands de ceux prévus
par Woob pour n’importe quelle autre valeur de y.
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Résumé

On s’intéresse aux plaques fléchies, en béton armé, de hauteur constante,
avec armature orthotrope.

On étudie les méthodes de calcul de poids minimum d’armature, pour des
charges limites données. On montre comment les méthodes proposées par
MorLEY et WooD découlent directement du théoreme général de DRUCKER
et SHIELD.

Zusammenfassung

Behandelt werden Stahlbetonplatten konstanter Hohe und orthotroper
Bewehrung. Gezeigt werden die Berechnungsverfahren fiir das minimale
Bewehrungsgewicht unter gegebenen Traglasten. Weiterhin ergibt sich, wie
sich die vorgeschlagenen Verfahren von MorRLEY und Woop direkt von
DruckeRs und SHIELDS allgemeinen Sitzen ableiten lassen.

Summary

Deflected slabs constructed of reinforced concrete, of constant height and
with orthotropic reinforcement, are considered.

The methods for the calculation of the minimum weight of reinforcement,
for the given limit loads, are investigated. It is shown how the methods
developed by MorLEY and Woop follow directly from the general theory of
DRUCKER and SHIELD.
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