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The Distribution of Reetangular Patch Loads on Orthotropic Highway
Bridge Decks

La repartition des charges concentrees (reetangulaires) sur les tabliers orthotropes
des ponts pour routes principales

Die Verteilung von Badlasten auf orthotropen Brückenplatten

R. P. PAMA A. R. CUSENS

Ph. D., Lecturer in Civil Engineering, Ph. D., Professor of Civil Engineering,
University of Dundee University of Dundee

Introduction

The development of new construction methods resulting in orthotropic
structures especially in bridge construction has renewed interest in the problem
of orthotropy. Although series Solutions are available for the analysis of orthotropic

plates and shells, slow convergence can make their use inconvenient
even with the use of digital Computers. It appears desirable to present an
analysis for simple spans which avoids this major difficulty without sacrifice
of accuracy in practical design.

The idealization of an actual structure of different rigidities in two orthogonal

directions into an equivalent orthotropic plate on simple parallel supports
is governed by the familiär equation

^^ + 2^a^?+^^==^("'2/)- (1)

This is due to Huber [1], and its application to bridge decks with negligible
torsional rigidity (H 0) was first introduced by Guyon [2] and later extended
by Massonnet [3] to cover all cases falling between the torsionless and iso-

tropic cases. Hence it is apparent that the Guyon-Massonnet Solutions are
applicable only to those bridge deck where the square of half the total
torsional rigidity does not exceed the produet of the flexural rigidities in the two
orthogonal directions (H2^DxDy). In terms of Massonnet's parameter

ZT

q the equations are valid only for a^l. For bridge decks with
V JJX Dy
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low flexural rigidities and for multi-cell bridge decks with high torsional
rigidity, this condition may be exceeded and thus the Guyon-Massonnet
Solution is no longer valid. The authors [4, 5] have analyzed the case where

H2^DxDy or (i.e. a^l). Such bridge decks are designated torsionally stiff-
flexurally soft to cover those cases falling between the extremes of the iso-

tropix slab and the articulated deck (Dy 0).
These analyses are for concentrated loads acting on the deck and as such

are handicapped by the slow convergence of the series especially for moments,
shears and reactive forces. Moreover, the use of concentrated loads to simulate
the loads due to actual tyres is unrealistic since the actual live load imposed
by traffic on a highway bridge is spread over an area, depending on vehicle
weight, and tyre dimensions and inflation pressure. The loaded area of the
bridge deck is larger than the contact area between the tyre and the roadway
because of the load distributing action of the wearing surface, and depends

upon its thickness and rigidity.
The use of reetangular patch loads to represent the tyre pressures on a

bridge deck is realistic, and it will be shown that this approach overcomes
the problem of convergence. Thus the evaluation of design parameters such

as bending moment, becomes very convenient as it requires few harmonics
of the series to give reasonable accuracy.

Theoretical Analysis

The effect of reetangular patch loads on simply supported orthotropic
bridge decks may be obtained directly from the equation derived for concentrated

load by integrating the function over a finite reetangular area. Using
this method the analysis begins by considering a point load acting on the deck

as has been done previously [4, 5].
The governing differential equation for a reetangular orthotropic plate is

defined by Eq. (1) where the flexural rigidities per unit width in the x and y
directions are Dx and Dy respectively and the torsional rigidity 2 H is given by

2H (Dxy + Dvx + D1 + Di), (2)

where Dxy and Dyx are the torsional rigidities of the plate in the x and y directions

respectively and Dx and D2 are the contributions of bending to the total
torsional rigidity of the bridge deck. With these rigidities, the bending and
torsional moments, shearing and reactive forces are funetions of the deflection
w as shown in Eq. (3).

/ d2w d2w\ I d2w d2w\

(3)

xv xvdxdy' vx vxdxdy'
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d^ w

d3w

d3w 1

3xdy2y
v*. =-[n.

B*w+(D«*+DsyDJyyfyj\>
r dz%

Ry =-[Dv7y:

8yS+(D*« + D2hx*dy]¦¦
(3)

83w ,_ _ _. d3w ]
dx2dy\

The Solution of the differential equation based on Levy's method may be
classified into three distinct cases depending upon the relative rigidities of the
deck. These are summarized as follows:

Case 1. H2 > DxDy (Special case Dy 0)

Case 2. H2 DxDy
Case 3. H2 < DxDy (Special case H 0)

Bridge decks within the first category have been classified by the authors
[5] as torsionally stiff-flexurally soft bridge decks. These are characterized
either by low flexural rigidity as in the multi-beam bridge deck with transverse

shear connectors or by high torsional rigidity as in the multi-cell bridge
decks. The Solution of this particular case is based on the potitive roots of the
characteristic equation.

/¦«simple support

edge beam edge beam

— Vi- -

ioad i

Tfeb- yysimple support
¦H,b-

Fig. 1. Coordinate axes for point load acting on bridge deck.
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The second category Covers the familiär isotropic case where the flexural
and torsional rigidities are equal. The Solution may be employed for the analysis
of uniform, solid slabs commonly encountered in practice.

The third and last category may be defined as torsionally soft-flexurally
stiff bridge decks. These have a characteristically high flexural rigidity as

compared with their torsional rigidity. Most composite bridge decks especially
those of T-beam construction are under this case; the Solution is based on the
complex roots of the characteristic equation.

Massonnet [3] has derived the expression for deflection for the second and
third cases. The authors [4, 5] have previously analysed the first case for
concentrated loads acting on the deck. It has been shown that for a concentrated

load P acting at a distance c from the simple support as shown in Fig. 1,

the equation for deflection at any point x may be written as

w
2 PL3

x n l

00

Lj ^4
Sil1 a» C Sil1 a» X Kl'

where ~17

(4)

(5)

and Kx is a coefficient appropriate for each case written as KX1, K12 or Kls
for cases 1, 2 or 3 respectively.

Considering now a wheel load W uniformly distributed over a reetangular
area 2ux2v as shown in Fig. 2, the deflection function due to this finite

simple support

edge beam edge beam v

—y.
Station

P-JO—d-ride » N2U-2V

- du-.7|«

t T »Z^Tl2bZ r—thi »-*¦
t-simple support >

b 4-* b

Fig. 2. Coordinate axes for reetangular patch load acting on bridge deck.
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reetangular patch load is obtained by integrating the deflection from (c — u)
to (c + u) along the #-axis and from — v to + v along the y-a>xis and the equation
becomes

oo c+u V

2WL* sr i f i fw ^—^ A ^ ^ / -^Sin ocnx \ Sinxn€d€—r \ K-idri. (6)
2u2vrr^D^2b M^4 n I n 26 x ' v '

Setting Kf -—r \ K1dv,

where Kf may be written as K^, Kf2 or iCfg as appropriate, the equation for
deflection reduces to

WL* v1 1

w w^n 2j TTSinacnuSinanc8inanx(Kf). (8)

With the expression for deflection known, the moments, shears and reactive
forces due to a reetangular patch load are obtained by successive differentiation
and these are summarized as follows:

Case 1. Torsionally Stiff-Flexurally Soft Bridge Decks

(H*ZDxDy;**l)
Deflection:

W L* v1 1

w r^r- / —- Sin ocn u Sin ocn c Sin a„ x (K&). (8 a)
uvtt5Dt L-\n5 n n n v n/ v

x »=i

Longitudinal Moment:

W L2 v^ 1 I D \
Mx -^7^3 L ^3 Sin a^ w Sin ar*c Sin ans l^fi -j±K$A. (9)

71=1
* X I

Transverse Moment:
00

M" ~y^ % ^Sin«B«Sin«ncSin«Ba;(^Jr&-^1*1). (10)

Longitudinal Twist:

W L2 v1 1 /-D \

n—l \ V i

Transverse Twist:

W L2 v1 1 ID \^ ~^^WirSinar^Sm^^ (12)
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Longitudinal Shear:
00

F* =^sisinawttsina"ccosa^N1_(^^1)ir2*1]- (13)

Transverse Shear:
00

Vv =^5^Sina»ttSina»cSina^[^*i-(^^J/)^i]- (l*)

Longitudinal Reactive Force:
00

R* =y^% z\^^nuSmccncCoSanx [k^-^+^J +^K*^ (15)

Transverse Reactive Force:

Rv -^ S ^SinamWSinarecSinaMx [üT*- (^+^ + *D»)x*1] (16)

-/^-/ffFf (17)

and

(19)

-l*-f'(*),-£
the dimensionless terms ÜTfj, Ül^, üTj^ and Kft are defined as follows:

For ^ £ «/,

_fi\* :~* U- (e-/3a(fi->A) - e-fccfi+'A)) —L <e-ßi(gi-f>) _ e-fr<W>)11 2Z>„(rf-rl) [rl rf
+ ^ * Cosh ft f0 + £ * Cosh ft £0 + <7* Sinh ft $0 + D* Sinh ft f0J

^2* 2/) M-i) [(e^2(6"^ - e_ft,tf1+#)) - M1 <&"*> - e"*<&+*>)
(20)

+ rf 4 * Cosh ft £0 + rf 5 * Cosh ft £0 + rf C* Sinh ft £0 + r\ D* Sinh ft 10],

*& ^fbf) [±{^(^^>-e-^^»)-^(e^^)-e-^^>)} (gl)

+ rt 4 * Sinh ft £0 + r2 5 * Sinh ft £0 + rx C* Cosh ft £0 + r2 Z> * Cosh ft £0j

-^4*1 a,} ,v [ + K(e-A<fi-^)-e-fttf'+*)-r,(e-ft&-*>-e-ft tfi-Hfc)}41 2(rf-rl) L_'- 1V ' 2V /J (22)

+ r?^ * Sinh ft f0 + rl £* Sinh ft f0 + rf <7 * Cosh ft £0 + r\D* Cosh ft f0].

The expressions for stations at the centre of the load where ^ 0, are
obtained by setting £x and if> equal to </r/2 and doubling the result. This is done
for the particular Solution only and following this, the equations for K^, K&,
K$x and Kfx are as follows:
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For |x 0

+ A* Cosh ft |0 + 5 * Cosh ft lo + <?„* Sinh ft |0 + D * Sinh ft |0J

JC& 2D,W->l)[2(e^-^) (24)

+ rf A * Cosh ft |0 + r\ B* Cosh ft |0 + rf C* Sinh ft |0 + r\ D* Sinh ft |0],

^3*1 ^7^—2T[ + r1^*Sinhft|0 + r2JB*Sinhft|0
z\ri-r2) (25)
+ rx C * Cosh ft |0 + r2 Z> * Cosh ft |0],

Kti VjJ-Z2V [ + rf ^*Sinhft|0 + rl5*Sinhft|0

+ rf <7 * Cosh ft |o + r\D* Cosh ft |0].

The positive and negative signs used for ÜTJi and Kft are for Station to the
right and left of the load respectively.

The constants used are defined as follows:

a _ Wi - SA) hi - (fl&+s&) 63i ,27a,n " 2(a3Ai-«iAi) ' (2?B)

d* _ (fttl + S21) a31 ~ (^31 ~ ^4l) ^11 f97M
2(oM611-o116,1) ' V'n)

(7* _ v^3i + ^41) ^11 ~ (^11 ~ ^21) %i (27 0}
2(c31d11 — c11d31)

D* (^11 ~ ^21) c3i~ (^31 + 8*1)Cn (27d^
2(c31an —cna31)

where

su — |"ö J an + (Dy rf - D2) -1] [c-ft(^1-* - e-Ato+*>]f1 L riJ
—1 [ö Jan + (Dyrl-Da)—1 [e-ft^i-0)-e-A(i7i+0)]j

s&. — \° J *n + (Dy r\ - D2) -1] [e-ft<^-*) - C-A <W>]

—-fßJaw + (2)y rf - D2) -1] [e-ft to-# - e-Äta+0],
r2 L r2J

Ä3*i i [^ / «n + (A, rf -2>a -Dw -D^) rj [e-fr<^>- e-ftW>]

- -^ [1? / «TC + (Dv r\-Dt-Dxy -Dyx) r2] [e-ß*«n-4) - e-ft (W)],
'2

(28a)

(28b)

(28 c)
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S& -*[l!Ian + (Dyr*-Da- Dxy-Dyx) rj [e-ft (*-*> - erß«v>**r\

+ ±[EIocn + (Dy fi-Dt-Dxy -Dyx) r2] [e-fr<*-*> - e~&W>]
(28d)

r;

and the terms au, 6U d3l are given by the following:

«11 (Dy rl ~ Di)Cosh ßx-GJ*nri Sinh ft, (29 a)

&u (A/i-A) Cosh ft - OJanr2 Sinh ft, (29b)

Cn (iVf-ZMSinhft-GJa^Coshft, (29c)

du= (^i-DjJSinhft-öJo^r.Coshft, (29d)

a31 2? /a„ Cosh ft - rx (Dy rf -D2-Dxy-Dyx) Sinh ft, (29e)

bal tf / a, Cosh ft - r2 (D, r\ -D2-Dxy-Dyx) Sinh ft, (29f)
c31 ^/«„Sinhft-ri^rf-^-D^-D^Coshft, (29g)

d31= EIocnSmhß2-r2(Dyrl-D2-Dxy-Dyx)Co8hß2. (29h)

The dimensionless parameters ft and ft are defined as follows:

n-nb-TÜ ,// H Y -D*
A--**'x—r-r^+rfe) -^' (30)

The location of the Station relative to the centre of the bridge and load
respectively are given by

£o=y (32)

and ^^AbsWx. (33)[*]¦
Referring to Fig. 2, £x may be conveniently written as

i1 Äba[l + i0-^. (34)

The width of the patch load relative to the width of the bridge is given by ifj,

thus
ifj vlb. (35)

Case 3. Torsionally Soft-Flexurally Stiff Bridge Decks

(H*£DxDy; «gl)
Most orthotropic bridge decks will be in this category and following the

same procedure as was done for case 1, the following equations are obtained
for deflection, moments, shears and reactive forces.
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Deflection:

W L4
i

Longitudinal Moment:

w —
u

W L4 v* 1

V7rbD Zj ^5 Sina™uSinancSinccnx (if*3). (36)

WL2sr 1 / A \^ u~^ hn^SmanuSm*ncSin(X™x[Kla-JpK&J- (37)
n l * xl

Transverse Moment:

W Iß v^ 1 / 7) T) \
M* ="^bSha"MSina«cSinvKz*s-^*t (38)

Longitudinal Twisting Moment:
00

JFL2v 1 ID \
Mxv= ^^LzÄSinanUSinocncCosocnx\-j^K3% (39)

Transverse Twisting Moment:

Jfi>2V^ 1 ID \
MyX " ^TT-3 2-1 ^3 Sln *n U Sin aw C COS CCn X -^^3*3 • (40)

71=1
*

3/ '

Longitudinal Shear:
00

—aü^ Sin a» U Sil1 <*» C C°S «n * (#1*3 ^ *' #2*31 • (41)
71=1 * XIV J™

Transverse Shear:
00

Vy =~yyy- S ^Sina»wSina»cSina»**(K& —2x> ^-^i• (42)
7i=i * y '

Longitudinal Reactive Force:

WLB„x u 77* £ p"Sin «»« Sin «» c Cos «»* (*Ä -Dl + D£v + DyxK*3\. (43)
?l l \ XITransverse Reactive Force:

WL \^ 1

-,/l/^ + Ä
With r3= l/fJ\ ^ (45)

i/V---and r4= V [^D, (46)
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the coefficients Kf3, Ä"*3, K$3 and ÜT*3 may be defined as follows:

For &$ +

K™ 11777 [^^^^^Cosft^-^ + ^l-rlJSinft^-^e-^^-^* -Vy r3 r4 Lv 3 + r4/

(47)

(49)

- [2 r3 r4 Cos ft (|x + ^) + (rf - rf) Sin ft (|t +,/,)] e-ft <*i+*>}

+ ^ * Cosh ft lo Cos ft |0 + B * Cosh ft lo Sin ft |0

+ (7 * Sinh ft |o Cos ft |0 + Z) * Sinh ft |o Sin ft |oj

K» TT^rKSmftdi-^Je-fe^-^-Sinftd^^e-^^^)}
* ^y rS '4

+ ^ * {{rl - rf) Cosh ft |0 Cos ft |0 - 2 r3 r4 Sinh ft |0 Sin ft |0}

+ B * {(r% - r\) Cosh ft |„ Sin ft |0 + 2 r3 r4 Sinh ft |0 Cos ft |0} (48)

+ C* {{r% - rl) Sinh ft |0 Cos ft |0 - 2 r3 r4 Cosh ft |0 Sin ft |0}

+ D * {{rl - rl) Sinh ft |0 Sin ft |0 + 2 r3 r4 Cosh ft |0 Cos ft |„}],

K™ 4^ [(^^{^Sinft^ +^ + r.Cosft^ + ^e-^^*
- [r3 Sin ft (|x - </-) + r4 Cos ft (|x - ,£)] e~ft <f^>}

+ A*{r3 Sinh ft |0 Cos ft |0 - r4 Cosh ft |0 Sin ft |0}

+ jB * {r3 Sinh ft |o Sin ft |0 + r4 Cosh ft |0 Cos ft |0}

+ C*{r3Coshft|0Cosft|o-r4Sinhft|oSinft|0}

+ D * {r3 Cosh ft |0 Sin ft |0 + r4 Sinh ft |0 Cos ft |0}]

and

#4*3 i^r[±{[r4Cosft(|1-^)-r3Sinft(|1-1/.)]e-ft(6-*
-[r.Cosft^ + ^-^Sinftdi + ^e-ftdn-^)}

+ A * {(rl - 3 r3 rf) Sinh ft |0 Cos ft |0 + (rf - 3 r4 rf) Cosh ft |0 Sin ft |0}
(50)

+ 5 * {(r3 - 3 r3 rj) Sinh & £0 Sin j84f0 - (i - 3 r4 r§) Cosh j88 £0 Cos j84Q

+ C* {(4 - 3 r3 rf) Cosh ]88 f0 Cos j84 f0 + (r3 - 3 r4 r§) Sinh j88£0 Sin ^84 £0}

+ D * {(r3 - 3 r3 r*) Cosh & £0 Sin /34 £0 - (r3 - 3 r4 r§) Sinh ]88 f0 Cos /34 £0}].

Eqs. (47-50) are valid for |x ^ 0 and special expressions for stations under
the centre of the load defined by i± 0 may be derived following the same
procedure adopted for Case 1. This is achieved by substituting ^/2 for £x and i/j

and doubling the results for the particular Solution only, and following this,
the coefficient K^3, K^s, Kgs and Kfs for |x 0 are as follows:



(52)
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For |2 0

Ki% TW77 f7^is{2r,r4-[2r,r4Cosft^ + (rI-r|)Sinft01c-ft*}

+ A* Cosh ft|0Cosft|0 + £* Cosh ft|oSinft|0 (51)

+ C * Sinh ft |o Cos ft lo + D * Sinh ft |0 Sin ft |0j

^*3 Tn^-[(-2Sinft>A)e-^
^^2/ '3A4

+ ^ * {{r% - rl) Cosh ft |0 Cos ft |0 - 2 r3 r4 Sinh ft |0 Sin ft |0}

+ £ * {(r| - rl) Cosh ft |0 Sin ft |0 + 2 r3 r4 Sinh ft |0 Cos ft |0}

+ C* {{r23 - rl) Sinh ft |0 Cos ft |0 - 2 r3 r4 Cosh ft |0 Sin ft |0}

+ D * {(rf - rl) Sinh ft |0 Sin ft |0 + 2 r3 r4 Cosh ft |0 Cos ft |0}],

1

4r3r4

[ + A * {r3 Sinh ft |o Cos ft |0 - r4 Cosh ft10 Sin ft |0}

+ £* {r3 Sinhft |o Sinft |0 + r4 Coshft |0 Cosft |0}

+ C* {r3 Cosh ft |o Cosh ft |o - r4 Sinh ft |0 Sin ft |0}

+ D * {r3 Cosh ft |0 Sin ft |0 + r4 Sinh ft |0 Cos ft |0}],

1

4r3r4

•[ + ^*{(rl-3r3ri)Sinhft|0CoSft|o + (ri-3r4rl)Coshft|0Sinft|0}
+ JB*{(r|-3r3ri)Sinhft|oSinft|o-(rl-3r4r§)Coshft|0Cosft|0}

(54)

+ C* {(r% - 3 r3 rf) Cosh ft |0 Cos ft |0 + (r| - 3 r4 rf) Sinh ft |0 Sin ft |0}

+ D*M - 3 r3 rf) Cosh ft |0 Sin ft |0 - (rf - 3 r4 rf) Sinh ft |0 Cos ft |0}].

The dimensionless parameters used are as follows:

K* —

(53)

K* —

mrb 1/ fi),,'1" Dv& «n&*8 —=- 1/ ^ (55)

and /34 an6r4 —=- V —\ y-. (56)

The parameters |0, £x and ^ are the same as in case 1. The upper and lower
signs of K^ and KJ3 are for stations to the right and left of the load respectively.
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The constants used are

A *

B*

O*

D*

(S*3+ss,) d33 - (s* - s*3) d13^
2 (a13 <x33 — a33 d13)

(^13 ~ ^23) C33 ~ (^33 + ^43/ C13

^ (^13 C33 — C13 "33/

(s3\+st3)b13-(sr3-s2%)b33^
^ (613^35 — c13633)

(^3*3 - sa) «13 - (^1*3+£2*3) «33;
2 (a13 a33 — a33 d13)

where

o« _ l \\r Jx r3[D2-Dy(rl + rm)
M"(1+i)lr^" (rl + ri) f

•{[r3 Sinft (Vl - f) + r4 Cosft (m + f)] e-fc0n-*>

- [r, Sinft (Vl + if>) + rA Cos ft (Vl + </») e-&Oi+*}

(r4[Z>2 + Z>i/(rl + ri)]|

•{[r, Cosft (^ - 0) - r4 Sinft (^ - </.)] e-ft<*-*>

- [r, Cos ftOfc + </.)- r4 Sinft (^ + 0)6-^1+*)}],

1 ffp r3[D2-Dy(rl + rl)]|
(i+i)U m M+»-i) J

• {[r3 Sin ßi(V2-+) + U Cosft (^ - «/<)] e~ß^-<P>

- [r3 Sinft + 0) + r4 Cosft (r?2 + </«)] e-&<*+*>}

[r4[i), + Z)y(rl + rl)]|
1 (rl + rj) J

• {[r3 Cosft -«/.)- r4 Sin ft (,a -,/.)] e-ft<*-*>

- [r3Cosft (r,2 + 4,) -r4Sinft (,8 + ^)] e-ft<*+*>}|

tf* —

(57 a)

(57 b)

(57 c)

(57 d)

(58a)

(58b)

S*3
(rl + rf)2 [{[Dv (rl - r§) + D2 + Dxy + Dyx\ (r§ + rf) - EI ccn r3}

¦ {[r3 Sin ßt(Vi-+) + U Cos ßt(Vl- </-)] e-fcftn-*)

- [r3 Sin ft (% + 0) + r4 Cos ft (^ + i/j)] e-fcta+*>}

+ {2Da/r3r4(r§ + ri)--E;/awr4}
• {[r3 Cos ft (^ - 4>) - r4 Sin ft (Vl - tf,)] e-ft0n-*>

- [r3 Cos ßtiVi + 'l')- U Sin ft (^ +«/-)] H»»^*}],

(58 c)
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S& u^^y{E^nri-2Dyr3ri(rl + rl)}

(59a)

(59b)

(59 c)

(59d)

1

(rl + rl)
¦ {[r3 Cos ft (t,2 - 4.) - r4 Sin ft (l2 - $)] e~ß^7)

-[r3Cosßi(7]2 + i/,)-riSmßi(rl2 + 4l)]e-ß^+<!»} (58 d)

+ {EI «m r3 - (rl + rl) [Dy (rf- r§) + D2 + Dxy + Dyx]}
¦ {[r3 Sin ft -,/,) + r4 Cos ft (r,2 - .£)] e-ft<*-*>

- [r, Sin ft (t?2 + <A) + r4 Cos ft + 0)] e-&<^)}],

«is [#2 ~A, (»•§ - i)] Cosh ft Cos ß4 + 2Dy r3 r4 Sinh ft Sin ft
+ G J an (r3 Sinh ft Cos ft - r4 Cosh ft Sinft),

b13 [D2-i>|,(rl-ri)]CoshftSinft-2i)vr3r4SinhftCosft
+ OJocn(r3 Sinh ft Sin ft + r4 Cosh ftCos ft),

eis \P2 -Dy (rl - rl)] Sinh ft Cos ft + 2 £„ r3 r4 Cosh ft Sin ft
+ GJ<xn (r3 Cosh ft Cos ft — r4 Sinh ft Sin ft),

du [Dt -Dy (rl - rf)] Sinh ft Sin ft - 2 Dy r3 r4 Cosh ft Cos ft
+ GJocn (r3 Cosh ft Sin ft + r4 Sinh ftCos ft),

«33 lr» (Dt + DxV + A/x) -A* (i - 3 r3 i)] Sinh ft Cos ft
- [r4 (Z>2 + Dxy + Dyx) + Dy (rf - 3 r4 rj)] Cosh ft Sin ft (59 e)

+ EIxn Cosh ft Cos ft,
633 [»'s (A, + Dxy + Dyx) -Dy (r% - 3 r3 rf)] Sinh ft Sin ft

+ [r4 (D2 + Dxy + Dyx) + Dy (rl - 3 r4 rf)] Cosh ^3 Cos ft (59 f)
+ EI<xn Cosh ft Sin ft,

C33 {r3(D2 + Dxy + Dyx)-Dy(4-3r3rl)]CoShß3Cosßi

-{ri(D2 + Dxv + Dyx)+Dy(rl-3rlrl)]Smhß3Sinßi (59g)

+ EIxn Sinh ft Cos ft,
<Z33 [»'s (#2 + ^x*, + Dyx) -Dy (rl - 3 r3 rf)] Cosh ft Sinft

+ [r4 (Z>2+Dxy+Dyx) +Dy(ri-3rtri)-] Sinh ftCosft (59h)

+ EIa.n Sinh ft Sinft.

Similar equations for isotropic and articulated bridge decks have been
derived but are not included here. The isotropic case can be obtained from
Case 1 by means of a digital Computer, setting H= 1.0001 and Dx — Dy \.
By assuming a value of H 0.9999 and Dx Dy l, the isotropic case can
also be obtained from Case 3. When this is done the three results coincide,
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providing a good check of the Solutions and confirming the continuity of the
funetions from H2 > Dx Dy to H2 < Dx Dy with the isotropic case as the dividing
line. The case of the articulated bridge deck may be obtained by Computer
from Case 1 by setting a very small value for Dy (say 0.0001 Dx) and not zero.
The results check very favourably with the exact Solution for the special case
where Dy is zero.

Another check was made on the validity of the equations by allocating a

very small value to the dimensions of the reetangular load u and v (about
0.00016) and the results eoineide with those for concentrated loads [5].

Examining the equations for deflection, it is apparent that the convergence
of the series is controlled by \jnh and as such converges rapidly compared
with lfns for concentrated loads. With this convergence, the first harmonic
gives values sufficiently accurate for design purposes. The equations for
longitudinal, transverse and twisting moments are controlled by the term
l/ns and again, even the first harmonic will be sufficient for preliminary design.
Shearing and reactive forces converge as a function of \\n2 and a few harmonics
only will be needed to obtain reliable results. This is a considerable improve-
ment on the present equations based on concentrated loads where the expressions

for moments, shears and reactive forces do not converge rapidly.
The present analysis incorporates the flexural and torsional rigidities of

the edge-stiffening beams at the edges of the deck. If these beams are not
present, EI and G J are set to zero. Using these edge beam rigidities, equations
for different boundary conditions at the edges of the bridge may be obtained
for the analysis not only of bridge decks, but also of orthotropic floor slabs.

Discussion and Conclusions

The expressions for deflection, moments, shears and reactive forces may
be conveniently presented in the form of a dimensionless distribution coefficient
which may be defined as the ratio of the actual value to the mean value at
that transverse section.

For example, the mean deflection at a section distance x from the support
due to a patch load of length 2 u whose centre is at a distance c from the

support may be written as

w IT 2j tf Sin an u Sin an c Sin ocn x (60)^5
tt 71=1

and the distribution coefficient for deflection may be expressed as
OO J

h 2 ^6 Sin an u Sin ocn c Sin ocnx (Kf)
K (for deflection) - ^^ (61)

2 -gSina^Sina^cSina^
n ln
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and since the series converges rapidly, the distribution coefficient for deflection

considering the first harmonic only is

K (for deflection) =-K*. (62)

The case of concentrated load acting on the deck may be obtained from

j. (62) by stu

be shown that
Eq. (62) by studying the limit of — Kf as u and v approach zero and it may

lim l-K*\
u->0 \V

(Ku,K12otKm), (63)

where Kll9 K12 and K1S are defined in Eq. (4).
Similarly, for longitudinal and transverse moments, the distribution

coefficients may be written as

h 2 7^3 Sin ocnu Sin *n c Sin *n x [K* - -y-piTJ)

K(forMx)= ä »-*"
i

\ D7^1, (64)

2 -3- Sin ocn u Sin <xn c Sin ocn x

h 2 ^ Sin ocn u Sin ocn c Sin ocn xl^K*-^K*\
K(forMy) -^=>n i ^ B7_l. m

2 -«¦ Sin ocn u Sin an c Sin <xn x
n=ln

Note that in Eq. (65) the distribution coefficient for transverse moment is the
ratio of the transverse moment My to the mean longitudinal moment Mx.
A similar case holds true for twisting moments Mxy and Myx, thus

hT 2 ~Sinan^Sina^cCosan^(-^ir*)
*^ *«,) | 7 £=1VI ^—¦ (^)

2 -0- Sin an ^ Sin ocn c Cos aw x
n ln

Two examples are shown in Fig. 3 to illustrate the effect of reetangular
patch loads on orthotropic bridge decks. The decks are square in plan and
one was chosen with torsional parameter a< 1 and the other with a> 1. The
patch load Covers 10% of the width of the deck (i.e. ifj vjb 0.10). Central
and eccentric load positions are shown for each case. The curves are presented
in the form dimensionless distribution coefficients for deflection K defined by
Eq. (61).

The theory as presented provides a logical and effective method of pre-
dicting the distribution of reetangular patch loads on an orthotropic deck
with or without edge stiffening beams. With these equations, it is possible to
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analyze all types of orthotropic bridge decks from the torsionless type to the
articulated plate. It has been shown theoretically that by dissipating the load
over a finite reetangular area, the problem of convergence is overcome and
the theoretical results are accurate even if the first harmonic of the series

only is used.

Reference Stations
b 3/4b b/2 b/4 0 b/4 b/2 3/4b b
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Fig. 3. Transverse profiles of torsionally soft-flexurally stiff and torsionally stiff-flexurally soft
bridge decks under central and eccentric patch load with W= 0.10.

Summing up, this paper has presented equations for finding the deflections,
bending and torsional moments, and shearing and reactive forces due to
reetangular patch loads acting on simply supported orthotropic bridge decks
classified according to their relative rigidities in flexure and torsion. The
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application of the theory necessitates an accurate and reliable method of
determining the flexural and torsional rigidities of the deck and further
investigation both experimental and theoretical is required.
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Summary

The paper presents the analysis of simply supported orthotropic bridge
decks due to reetangular patch loads. The deck is classified into three main
categories depending on their relative rigidities in flexure and torsion. Series
Solutions were employed to determine the expressions for deflection, bending
and torsional moments, shearing and reactive forces.

Resume

Ce rapport presente l'analyse des effets de charges concentrees sur les ponts
orthotropes simples. Les plaques sont reparties en trois categories principales
suivant leur rigidite a la flexion et a la torsion.

Les expressions du flechissement, des moments de flexion et de torsions,
des efforts tranchants et des reactions furent determinees ä l'aide des series.
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Zusammenfassung

Der Beitrag zeigt die Berechnung einfach aufgelegter orthotroper Brückenplatten

unter Radlasten. Die Platte ist in drei Hauptklassen eingeteilt, die
von der relativen Biege- und Drillsteifigkeit abhängen. Reihenentwicklungen
sind zur Bestimmung der Durchbiegung, der Biege- und Drillmomente, Quer-
und Auflagerkräfte angewandt worden.
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