
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 29 (1969)

Artikel: Long reinforced concrete columns in biaxial bending

Autor: Warner, R.F.

DOI: https://doi.org/10.5169/seals-22913

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-22913
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Long Reinforced Concrete Columns in Biaxial Bending

Flexion biaxiale de colonnes elancees en beton arme

Lange Stahlbetonsäulen unter zweiaxialer Biegung

R. F. WARNER
Senior lecturer in Civil Engineering, University of New South Wales, Australia

1. Introduction

Various methods are available for Computing the ultimate strength in
combined compression and biaxial bending of reetangular [1,2,3] and irregu-
larly shaped [4] reinforced concrete sections. The strength of long reinforced
concrete compression members has also been studied to some extent for the
specific case of bending about one prineipal axis [5, 6, 7]. The general case of
long reinforced concrete column behaviour in biaxial bending has not, to the
knowledge of the author, been considered in the literature, despite the fact
that columns in many structures are subjected to significant biaxial bending
action.

A method for determining the load-deformation characteristics of reinforced
concrete column sections in biaxial bending is briefly described in this paper.
The method is then used in a study of the behaviour of pin-ended columns
subjected to loads with biaxial end eccentricities.

Notation

a depth of section
b width of section
er eccentricity of load measured from centroid of section
ex eccentricity of load in x-y axis system; see Fig. la
ey eccentricity of load in x-y axis system; see Fig. la
e„ eja
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eß ejb
er0 eccentricity of load on long column; see Fig. 3

fc concrete stress
f'c concrete control cylinder strength
fs steel stress
fsy steel yield stress

kx ratio of strength of concrete in column to control cylinder strength
l column length
p As/Ac; proportion of steel reinforcement

q y^t ; reinforcement ratio
kl Je

Ac concrete area in section
As steel area in section

^c €cl€c'> concrete strain ratio
E^ value of Ec in the (i,j) th concrete elemental area
Ek value of Es in the k-th steel elemental area
^s €sl€sy j steel strain ratio

Ei *il<
Na number of rows of elemental concrete areas

Nh number of columns of elemental concrete areas
Nc total number of elemental concrete areas
Ns number of elemental steel areas
P compressive force in section
Pmax strength of long column; see Eq. (33)
P0 strength of column of zero length
Pu ultimate strength of section for zero eccentricity
$c /c/^i/c' concrete stress ratio
Si3- value of Sc in the (i,j) th concrete element
Sk value of Ss in the k-th steel element
S'k equivalent concrete stress ratio in the k-th steel element
$s fslfsy> steel stress ratio
oc x/a; non-dimensional co-ordinate
ß y/b; non-dimensional co-ordinate

yx parameter affecting the shape of the loading portion of the concrete
stress-strain relation

y2 parameter affecting the shape of the unloading portion of the concrete
stress-strain relation

€c concrete strain
erc concrete strain when stress is k1 fc

es steel strain
€sy steel yield strain
e0 strain at corner 0; maximum compressive strain in section
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€x strain at corner 1; minimum strain in section

rj a\b; depth to width ratio of section
6 inclination of neutral axis of strain to y axis. Also inclination of plane

of assumed deflected shape to the x axis
</> curvature
ifj angle defining biaxial eccentricity of force P acting on a section
0O angle defining biaxial eccentricity of load on a long pin ended column

2. Load Deformation Characteristics of Cross-Section

A symmetrically reinforced reetangular cross-section is considered and an

x-y axis system is taken with origin at the corner 0, as shown in Fig. la.
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Fig. 1. Cross section details.
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A force P is assumed to act at point A, defined in the x-y axes by the eccen-
tricities ex and ey. The eccentricity of the load with respect to the centroid G

of the section is defined by the distance er and the angle ip, where
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e, i/(6/2-e„)» + (a/2-eJä, (1)

If the usual assumptions of perfect bonding and plane distribution of strains
are made, the strain distribution in the section can be defined by the three
quantities c0, ex and 9. The strain e0 occurs in corner 0. For convenience it is
assumed that e0 is the maximum positive (i.e. compressive) strain in the
section. The strain e1? which may be positive or negative, occurs in the corner
diagonally opposite 0 and is the minimum strain in the section. The angle 9,

which lies in the ränge 0 ^ 9 ^ tt\2, defines the inclination of the neutral axis
of strain to the y axis, as indicated in Fig. lb.

For various particular cases, e.g. uniaxial bending (9 0) and diagonal
bending of square sections (a b, 0 45°), it is possible to derive simple ana-
lytic expressions for the compressive force and moments which exist in a
section with a given strain distribution. However, an analytic approach is not
feasible in the general case of biaxial bending. In the present study, an
approximate method is adopted in which the steel and concrete in the cross-
section are partitioned into many small elemental areas. The total force in the
section is thus evaluated by summation of the elemental forces acting on the
elemental areas, while the moments are found by summation of the moments
of the elemental forces. This method is essentially an extension of a previous
study of the ultimate strength of reinforced concrete sections in combined
compression and biaxial bending [4].

The reetangular concrete section is thus considered to be made up of Nc
reetangular elements, each of width A b and depth A a and area A Ac AbAa.

The numbers of rows and colums of elements are Na ajA a and Nb b\A b,

respectively. The position of the (i,j)th element is defined by the co-ordinates
of its centroid, xi and y$, as shown in Fig. 1 c. The strain at this point is given
by the following expression

/ xicos9 + yjsin9\

The concrete stress-strain relation is assumed to be of the shape indicated
by Fig. 2a, and is expressed non-dimensionally in terms of stress ratios and
strain ratios as

EC^Q: Sc 0, (4a)

0ZECS1.0: Se=YlEe + (9-2Yl)E*+(y1-2)El, (4b)

i.o^y2: 8-=1-\~X'Xa' (4C)

Fc^y,: 8C 0, (4d)
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Fig. 2. Stress strain relations.

where the quantity Sc is stress, non-dimensionalised by dividing by the
concrete compressive strength,

Sr Jc_
hie

(5)

and Ec is strain, normalised by dividing by the strain e'c which occurs at the
stress k± f'c,

ec y. (6)

The open parameter y± allows the shape of the loading portion of the curve
to be adjusted to suit concretes of various stiffness Em,

Vi KV
while the parameter y2 allows the shape of the descending portion of the curve
to be varied. It will be noted also that the unloading region, Ec> 1.0, extends
indefinitely and so caters for large compressive strains which can occur in
restrained members under certain conditions [8].



138 R. F. WARNER

It is convenient to rewrite Eq. (3) in terms of strain ratios,

E« E1 + (E0-EMl-V"iC°Sd+ß?7d), (8)
%J \ 77 cos 0 +sin 0 /

in which oci and ß3- are non-dimensionalised coordinates,

*i ~a> & T'
and rj is the depth-to-width ratio of the section,

a

Eqs. (4) and (8) together allow the stress ratio S^ and hence the elemental
force in the (i,j)th concrete element,

AP k1f'cAAcSij, (9)

to be determined for any assumed strain distribution. The moments of this
elemental force about the x and y axes are

AM^bkJ'cAAcßjSt;, (10)

AMy ak1f'cAAc*iSij. (11)

The steel reinforcement in the cross-section is assumed to be distributed
in Ns elements, each of area A As. The position of the k-th steel element is
defined by its co-ordinates ak xkla and ßk yk/b, so that the strain e^ in this
element can be expressed, using a strain ratio Ek ekJ€sy, as

H«,+(*-*,)(--*¦;",':£?')}£ (12>

The elasto-plastic stress-strain relation represented in Fig. 26 is taken to apply
to all steel elements;

Es <: -1.0: Ss -1.0, (13a)

-1.0£E8£+ 1.0 : Ss Es, (13b)

Es^ +1.0: Ss +1.0. (13c)

In Eqs. (13) the stress and strain ratios are obtained by dividing by yield
stress and yield strain, respectively. Eqs. (12) and (13) define the stress ratio
Sk for the &-th steel element, and hence the elemental force,

AP fsyAAsSk, (14)

can be determined together with the elemental moments,

AMx bfsyAAsßkSk, (15)

AMy afsyAAscckSk. (16)
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Since each elemental steel area excludes an equal area of concrete from the
section, the above expressions are modified as follows:

AP =AAs(fSySH-hfcSu), (14a)

AMx bAA8ßk(f8ySk^k1f'eSfk)9 (15a)

AMy aAAsock(fsySk-k1f'cS'k). (16a)

In the above equations, the double subscript ij is used for concrete stresses
and strains, while the single subscript k applies to steel stresses and strains.
The only term which does not follow this pattern is Sk, which is an
"equivalent" concrete stress ratio in the k-th steel element. This quantity is the
concrete stress ratio obtained from Eqs. (13) for the strain in the k-th steel
element.

The total force P and the total moments Mx and My are now obtained by
summation over the cross-section. This yields the expressions

Na Nb Ns Ns
P =k1i'cAAc{ZZSii +q'ZSk-v'ZS'k}, (17)

i=l 1 A;=l k=l
Na Nb Ns Ns

mx Pey bkycAAc{z Z «iSa+q' 2 «*#*-?' 2 «*«;}, (is)
i=lj=l fc=l k=l

Na Nb Ng N8
Mv Pex akycAAc{Z Z ßjS» + q' Z ßkSk-p' Z ßkS'k}, (19)

i=l?' l fc=0 k=0

in which the following terms are introduced,

Ncm „, N,
m

As ^ pL
V =ätP> 2 ät<Z> P=-r> 1 V

Ny * Ny '-ab' * kyc-

In the special case of zero eccentricity, i.e. for constant strain over the
cross-section, the ultimate strength is given by

Pu k1f'cAAcNc(l-p + qS0), (20)

where S0 is the steel stress ratio corresponding to the strain ratio e'Jegy.

Eq. (17) may be non-dimensionalised by dividing by Eq. (20);

Na Nb Ns Ns

P 2 Z sti+q'Z sk-P'z s'k
•* i=l 7 1 fc=l fc=l (91\
Pu ~ Nc(l-p + qS0)

* >

The equations for moments Mx and My can likewise be non-dimensionalised
by dividing by Eq. (17). This yields expressions for the eccentricities e0c eja
and eß eylb;

Na Nb N8 Ns

2 2 ociS^+q' 2 <*ksk-v' 2 *ksk
__ i=l ?' 1 fc=l fc l /99\^ - N~~Nb Ns Ns ' ^LL)

i=lj=l k=l k=l
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Na Nb Ns Ns

2 ZßiSv + q'ZßkSk-P'ZßkS'*
1 1 j l k=l fc=l /9Q\eß= N^Wt W. W, • ^ö)

2 ZSa+q'ZSk-p'ZS*
i=l7=1 k=l fc=l

Finally, Eqs. (1) and (2) can be rewritten in terms of ea and eß;

€L /(0.5 - eß)2 + rj2 (0.5 - ej2, (24)

0=tan-i(i^). (25)

The above equations allow the force and moments to be calculated in a

reetangular section with a known strain distribution. The large number of
arithmetic calculations required can be readily and speedily executed with
a digital Computer. Indeed, this analysis has been developed speeifieally for
Computer use, and the equations have been incorporated in several programs.
These programs use iterative type techniques which search out and find the
deformation condition in a section for a given loading condition. One such

program has been used in a study of the general moment curvature relation
for column sections in biaxial bending [9].

For the study of long column behaviour described in the following section
of this paper a simple non-iterative subroutme was written in FORTRAN IV
language which evaluates the force P\PU together with the biaxial eccentricity
(i.e. er\b and ifj) for any given set of input values E0, E± and 9. Other input
data for this sub-program include partitioning details (Na, Nb, Ns) and section

properties (rj,p,q). The co-ordinates of the steel elements, ock and ßk, are
generated in the subroutine, but details such as reinforcement cover, number
of bars (elemental areas) in top, bottom and side faces, are read in as data.

Although computations carried out using the method described in this
section are necessarily approximate, any desired accuracy can be obtained
by a suitable choice of the fineness of the partitioning of the section. Further -

more, several important advantages are associated with this finite approach
and have been discussed in some detail in References [4, 9]. Briefly, sections
with irregulär shape and non-uniform distribution of reinforcement can be

treated in a simple manner, while effects such as strain hardening in the steel
reinforcement and finite concrete tensile strength can be taken into account
with only minimal changes to the Computer programs and very slight increases

in required Computer computation times.

3. Long Column Behaviour

If the equations derived in the previous section of this paper are used to
evaluate the actions in a section for various assumed strain distributions it
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becomes clear that the neutral axis of strain is not usually perpendicular to
the line A G (Fig. la) joining the point of load application A to the centroid G

of the section. For a square, symmetrically reinforced cross-section the difference

between the angles 9 and ifj can be as large as ten degrees. For a constant
load P, the angle difference 8 9 —ifj tends to increase with increasing moment
[9]. For reetangular sections, the difference § can of course become much
larger than ten degrees.

It therefore follows that the deflected longitudinal axis of a reinforced
concrete column in biaxial bending would be non-planar, following a compli-
cated path in three dimensions. It further follows that a typical cross-section
in such a column would be subjected to small torsions and shears, in addition
to the axial force and bending moments. Nevertheless, at least in the case of
members with solid sections, it is doubtful if these secondary actions would
be large enough to affect significantly the deflected shape and strength of the
column. In this present preliminary study the section is assumed to be tor-
sionally rigid and the torsions and shears are ignored. Furthermore, the non-
planar deflected shape of the column is approximated by a planar curve.

The behaviour of a pin ended reinforced concrete column is considered for
the special case of longitudinal loads applied with equal biaxial eccentricities
at each end. This load condition is shown in Fig. 3, with a force P acting at
an eccentricity defined by the distance er0 from the geometric centre and the
angle i/j0.

Fig. 3. Assumed deflected shape.

Deflection at
mid-height

v Plane into which the
longitudinal axis bends
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The deflected shape is approximated by a cosine curve. The two parameters
defining the assumed curve are w, the maximum deflection in the column at
mid-height, and 9, the angle between the x axis and the plane into which the
centre line is assumed to have deflected. Note that the angle 9 is not equal
to the angle i/j0 The deflection is therefore represented by 9 and the equation

77 Z
s wcos- l '

The curvature in the section at mid-height is therefore

A second equation for this curvature can be written in terms of the strains in
the section,

<f> (e0 — ex) (a cos 9 + b sin 0)_1,

hence the following expression for the deflection w is obtained,

sd + sm6)\b) 'b TT2 (rj COS/
(26)

Consideration of the deformations in the section at mid-height shows that
the neutral axis of strain for this section is perpendicular to the deflection
plane. Thus, the neutral axis is inclined at the angle 9 to the y axis. In Fig. 4

the original and the deflected positions of the section are represented. The
eccentricity of the force P relative to the geometric centre in its deflected
position, G', is made up of the initial eccentricity er0 at inclination ifs0, plus

Li
L_

Deflected position
of section

A: Point of application of load
G' Geometrie Centre of mid - height

section in undeflected position
G1- Deflected position of G

Fig. 4. Deflection of section
at mid-height.
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the deflection w at inclination 9. The components of w in the x and y directions

are
u wcos9, (27)

v wsin9, (28)

respectively, and those of er0 are

e± er0cos if;0, (29)

e2 er0sinifj0. (30)

The total eccentricity of P is thus given by

Eqs. (26) through (32) allow the eccentricity of P to be calculated for any
given set of values E0, E± and 9 in the mid-height cross-section. An independent
calculation of erjb and i/j for this same strain distribution can also be made by
considering equilibrium of internal moments in this section, i. e. by using the
equations derived in Section 2 of this paper.

In general, the two sets of values of erjb and ifj will not agree if computed
for an arbitrarily chosen set of input values E0, Ex and 9. This non-agreement
indicates that the assumed strain distribution cannot occur at any stage of
loading of the particular column under consideration. Conversely, only when
the separate calculations give the same values for er\b and ifj does the strain
distribution represent a possible stage in the loading of the column.

It is also clear that the maximum compressive strain E0 increases mono-
tonically from zero as the column deflects. This is not true, necessarily, for
either Ex or 9. Nevertheless, for a chosen E0 value, a search technique can be

employed to determine a set of values of Ex and 9 which equates, within a
specified allowable error, the two sets of values of er/b and xjj as calculated on
the one hand from the deflection requirement (Eqs. (31) and (32)), and on the
other hand from the equilibrium requirement (Eqs. (24) and (25)).

Furthermore, by choosing successive, increasing values of E0 and searching
each time to obtain the corresponding E1 and 9, a> sequence of points on the
load deflection curve of the column can be obtained. The strength of the
column can then be found as the load at which the deflection curve becomes
horizontal, i.e. when

£-°- (33)

A general Computer program has been written which can be used to determine

the load-deflection curve (PjPu versus wjb and 9) for a wide ränge of
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possible column shapes and sizes. Computations based on the equilibrium
requirement in this program are made using the subroutme described in
Section 2 of this paper.

Development of the necessary search technique was simplified to some
extent by the fact that the values of i/j and 9 change only slowly as E0 increases,
while changes in Ex are usually of the same order of magnitude as the changes
in E0. Thus, for the n-th E0 value, the initial trial values of both 9 and E1

can be taken equal to their final values for the previous, (n— l)-st, step.
However, an exhaustive and time consuming Computer "search" is sometimes
required to find the values of 9 and Ex which correspond to the first (smallest)
E0 value.

Additional input data required in the main program include the errors in
er/b and ifj which will be tolerated in the search procedure, and magnitude of
the increment of EQ. To maintain maximum generality, all input and output
data are non-dimensionalised while all stresses and strains used in the
computations are evaluated in the ratio forms of Eqs. (5) and (6). The program
has been written in FORTRAN IV language and has been tested and run on
an IBM System 360/50 Computer. The computation time required to obtain
one complete load deflection curve is somewhat less than one minute.

In Fig. 5 typical load deflection curves are plotted from computations made

^
¦L -. 10 er /b 0.25

\
• * •

yo 30
0.8a

K0.8b-*20

30

50

f/ 100

.1 .2 .3 .4 -5 .6

Fig. 5. Load deflection curves; various column lengths.

yb-
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for a column section with the length-to-width ratio varying between zero and
100. The computations were carried out for the following data:

Material Properties

7l 2.2; y2 4.0; eje'c 0.5;

Column Details

a\b 1.0; q 0.5; er0/6 0.25; 0O 30°;
Reinforcing bars distributed as shown in Fig. 5.

Partitioning Details

Na Nb= 10; Ns 16;

Computation Details

Allowable error in er\b 0.005;
Allowable error in ifj =0.01 radians;
Increment in E0:A EQ 0.05.

The unloading portions of the curves in Fig. 5 were obtained by incrementing
the strain ratio E0 until it reached a value of 3.0, when computations were
arbitrarily discontinued. No physical significance should therefore be associated
with the points of termination of the plotted curves.

The Variation in column strength is plotted against length-to-width ratio
in Fig. 6 for several sections and load eccentricities. To obtain uniformity in
the load scale, column strengths have been divided by the strength of a similar
column of zero length, P0. For purposes of comparison the ACI strength
reduction factor, R, for use in the design of long columns in single curvature
uniaxial bending, is also plotted in Fig. 6 against l/b. The value of R is given
[10] as

R 1.07- 0.008 (l/r) ^ 1.0, (34)

where r is the radius of gyration of the section, which is here taken as 0.3 6.

Although the line representing Eq. (34) lies on the safe side of all of the column
curves plotted in Fig. 6, it must be remembered that a considerable additional
safety margin is required in the design interaction equation to account for the
effects of creep deflection in columns under sustained loading. Indeed, the
closeness of several of the curves to this interaction line for relatively small
length-to-width ratios might well indicate that a design equation more con-
servative than Eq. (34) would be appropriate for columns in biaxial bending
under sustained loading.

The Computer program described in this paper is at present (1968) being
run for a wide ränge of input data to obtain further Information for the
development of simple interaction equations for the design of columns in
biaxial bending.
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1 mai

1.0

.6
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60 10020 40 80 '/
Curve ero <Ao PolPu

1 0.50 0.25 30° 0.562
2 0.50 1.00 30° 0.159
3 0.25 0.75 15° 0.177
4 0.25 0.50 45° 0.281
5 0.50 0.50 15° 0.349

Fig. 6. Typical curves of strength vs. slenderness for columns with square sections.

4. Concluding Remarks

Various simplifying assumptions have been made in this study of
reinforced concrete column behaviour in biaxial bending. In order to emphasise
the preliminary nature of the work, the more important of these assumptions
are discussed briefly.

In the analysis of the load-deformation characteristics of the cross-section,
the two basic assumptions of perfect bonding and plane distribution of strains
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are made. These assumptions are probably accurate provided compressive
stress exists over the entire section preventing the formation of cracks. When
the section is cracked the assumption of perfect bonding is highly idealised
and may well lead to significant error in computed curvatures. Nevertheless,
most previous studies of the uniaxial bending of reinforced concrete columns
have also been based on this simplification.

A two parameter cosine curve has been used to approximate the deflected
column shape. It has been indicated that the actual shape must be non planar.
Although an over-estimation of column strength will result from this approximation,

the magnitude of the error is unknown and can be determined only
when a more accurate analysis has been undertaken. However, in the special
case of uniaxial bending it has been determined that column strength is
relatively insensitive to variations in the assumed column shape. This may well
be true also in the general case of biaxial bending.

Long column behaviour has been studied in this paper only for short-time
loadings. Significant reductions in the strength of actual in-service columns
will occur as a result of time dependent effects such as concrete creep.

Despite the limitations implied by the simplifying assumptions, the analysis
presented should prove to be a useful tool in the study of reinforced concrete
column behaviour. In particular, the method of determining the load-defor-
mation characteristics of a section is convenient when programmed for
Computer computation. It represents the only feasible method of analysing
sections of non-symmetric or irregulär shape,
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Summary

A study is made of the behaviour of long reinforced concrete columns in
biaxial bending. A method is first developed for determining the deformations
in a reetangular reinforced concrete section subjected to a biaxially eccentric
force. The method involves a large number of elementary arithmetical
calculations and has been developed for Computer computation. On the basis of
several simplifying assumptions, notably concerning deflected shape, a study
is made of the behaviour and strength under short-time loadings of pin-ended
columns under biaxially eccentric loading.

Resume

L'auteur developpe une methode pour determiner les deformations d'une
section reetangulaire de beton arme soumise a une force excentrique par
rapport aux deux axes. La methode, qui comprend un grand nombre d'opera-
tions arithmetiques elementaires, ä ete developpee pour le calcul electronique.
Sur la base de certaines hypotheses de simplification, notamment pour la
forme de la section deformee, on etudie le comportement et les contraintes
de colonnes articulees soumises a une force biaxialement excentrique de

courte duree.

Zusammenfassung

Untersucht worden ist das Verhalten langer Stahlbetonsäulen bei Biegung
um beide Hauptachsen. Zuerst wird ein Verfahren zur Bestimmung der
Verformungen in einem rechteckigen Stahlbetonquerschnitt unter zweiaxial
ausmittiger Last entwickelt. Dieses Verfahren zieht eine große Anzahl einfacher
Rechenoperationen nach sich, so daß der Elektronenrechner zu Hilfe gezogen
wurde. Auf Grund verschiedener vereinfachender Annahmen, unter anderem
bezüglich der Biegelinie, wurde das Verhalten und die Beanspruchung unter
Kurzzeitlasten für gelenkig gelagerte Stützen untersucht.
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