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Ein neues, vollverträgliches endliches Element für Plattenbiegung

A New, Fully Compatible Finite Element for Plate Bending

Un nouvel element fini purement compatible pour le calcul des plaques flechies

W. BOSSHARD
Zürich
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Ae Arbeit der äußeren Lasten an einem Element
U elastische Formänderungsenergie der Struktur
A Arbeit der äußeren Lasten der Struktur
q (x, y) Belastung in vertikaler Richtung z

r Verallgemeinerte Knotenverschiebungen der Struktur
Qe Verallgemeinerte Knotenverschiebungen des Elementes

jte Verallgemeinerte Belastung am Element
pe Verallgemeinerte Knotenbelastung am Element
P Verallgemeinerte Belastung der Struktur

Bei der Beurteilung von Plattenelementen für die Finite-Element-Technik
sind zwei Gesichtspunkte maßgebend: Erstens die Reinheit des Ansatzes.
Reine Verschiebungsansätze erfüllen die Verträglichkeitsbedingungen überall,
die Gleichgewichtsbedingungen nur an der diskretisierten Struktur. Es kann
gezeigt werden [1,2], daß in diesem Falle die elastische Formänderungsenergie
zu hoch, die Arbeit der äußeren Belastung zu klein eingeschätzt wird. Grob
gesagt werden also die Verschiebungen unter den Lasten zu klein ausfallen.
Werden umgekehrt die Gleichgewichtsbedingungen überall erfüllt, die
Verträglichkeitsbedingungen dagegen nur an der diskretisierten Struktur, so werden

— wieder grob formuliert — die Verschiebungen unter den Lasten zu groß
errechnet. Diese obere oder untere Schranken-Eigenschaft eines Ansatzes ist
für den Ingenieur von erheblicher Bedeutung. Zweitens wird man nach den

Konvergenzeigenschaften bei fortgesetzter Feinerteilung der Struktur fragen.
Beweise für Konvergenz der Verschiebungen zu den exakten elastizitäts-
theoretischen Werten sind bisher nur für sehr einfache Verschiebungsansätze
geführt worden [3].

Ein allgemeines hinreichendes Kriterium für monotone Konvergenz der
minimalen potentiellen Energie hat Melosh [4] angegeben: es muß möglich
sein, durch geeignete Wahl der verallgemeinerten Verschiebungen der feiner
geteilten Struktur exakt den Verschiebungszustand minimaler potentieller
Energie der gröber geteilten Struktur zu geben. Damit kann die minimale
potentielle Energie der feiner geteilten Struktur nur kleiner oder gleich jener
der gröber geteilten sein. Von den heute bekannten reinen Verschiebungs-
ansätzen für allgemeine Plattenelemente [5, 6, 7, 8] genügt keiner dem
Kriterium von Melosh. Zudem weisen alle mehr oder weniger starke Unstetig-
keiten der Plattenmomente in den Elementecken auf. Es erstaunt nicht, daß
die Resultate, insbesondere die berechneten Plattenmomente, dem Vergleich
mit älteren Näherungsverfahren (endliche Differenzen) nicht standhalten.

Ein reiner Gleichgewichtsansatz für dreieckige Elemente ist von Morley
angegeben worden [12].

Im folgenden wird ein Verschiebungsansatz angegeben, der dem Kriterium
von Melosh genügt und zudem die Plattenmomente in den Elementecken



NEUES, VOLLVERTRÄGLICHES ENDLICHES ELEMENT FÜR PLATTENBIEGUNG 29

stetig überträgt. Die Untersuchung erstreckt sich auf Plattenelemente von
allgemeiner Dreiecksform und beliebiger, stetiger, schwachveränderlicher
DickenVerteilung (siehe Fig. 1). Symmetrie zu einer Mittelebene wird voraus-

z.w

Fig. 1. Allgemeines dreieckiges Plattenelement mit veränderlicher Dicke und beliebiger
Belastung.

gesetzt. Die einschränkenden Voraussetzungen sind jene der technischen
Plattentheorie. Insbesondere wird die Mittelebene dehnungslos vorausgesetzt,
und die SchubVerzerrungen werden vernachlässigt. Dann gelten die Beziehungen

€ —ZK (1)

für die Verzerrungen. Das Elastizitätsgesetz in der Plattenebene x, y für beliebige

Anisotropie kann in der Form

a Ee (2)

angeschrieben werden. Die Plattenmomente sind in der üblichen Weise
definiert als

7t\2 +tl2 + t/2

mx S°xzdz> my \ayzdz, mxy - [rxyzdz (3)
-t/2

oder, mit (1) und (2)

-tj2 -t/2

11 m„
-m^

7t\2 l%
— \Exz2dz — — Ex.

-t!2
1 °12

(4)
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Als Ansatz für die Durchbiegungen w eines Elementes wählen wir das

vollständige Polygon 5. Grades

w bOQl+bX0x + b0Xy + b20x2 + bxxxy + bO2y2 + b30xs + b2Xx2y + bX2xy2

+ &03 y*+fc4o ^4+hi x*y+622x2 y2+h* xy2+<V y*+feso ^5+fe4i ^4 y (5)

+ 632 a;3 y2 + b2Z x2 ys + ftu a;?/4 + fe05 ?/5

mit 21 Koeffizienten 6^. Wir bilden aus den Teilfunktionen — in obenstehender

Reihenfolge — die Zeile

/= [l,x,y, .xy±,y5] (6)

und damit die Matrix (3x21).

fj
dx2

dy2

>
^2

Jdxdy

f
.i(i-l)xi~2yk.

.k^k-^xty1*-2.

2ikxi~1yk-1

Die Koeffizienten bik ordnen wir genauso zur Spalte

he {6OoAoAl> • • Aö}- (8)

Sie bilden einen Satz von Lagekoordinaten [11] für das Element. Mit der
Wahl der Funktionen f haben wir somit eine Diskretisierung des Problems

vorgenommen. An dieser Stelle wird die Verwandtschaft zwischen Finite-
Element-Technik und dem Verfahren von Raleigh-Ritz augenfällig. Mit der
Matrix (7) ist

*=hK (9)

und damit schreiben wir die Formänderungsenergie des Elementes

üe \^edV \ve[\QrAEfAdF]be. (10)

Die Matrix in den eckigen Klammern ist die Steifigkeitsmatrix des Elementes
in den Lagekoordinaten be:

Fe

(10a)

Die Arbeit der äußeren Belastung q (x, y) am Element ist

Fe Fe
(11)
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Die Größen
ne jqfdF

Fe
(12)

sind die verallgemeinerten äußeren Lasten am Element.
Um die totale potentielle Energie einer aus Elementen zusammengesetzt

gedachten Platte geschlossen anschreiben zu können, müssen wir die
Lagekoordinaten be der Elemente aus einem geeigneten Satz von Lagekoordinaten
r der Platte ausrechnen. In die Spalte r lassen wir eingehen (siehe Fig. 2):

— Die vertikalen Verschiebungen w und deren Ableitungen 8 wjd x, d wjd y in
den Knoten.

— Die Ableitungen dwjdn in den Mittelpunkten zwischen den Knoten. Die
Normalen n werden konventionell gerichtet in den 1. oder 2. Quadranten
der x, ?/-Ebene (+a>Achse eingeschlossen, — a:-Achse ausgeschlossen).

— Die Plattenmomente fi in den Knoten. Diese Wahl mag auf den ersten
Blick überraschen. Formal sind die Momente jedoch nichts weiter als
Linearkombinationen von Verschiebungsgrößen.

rri

ix-1

mmmw-
Fig. 2b. Idealisierte Struktur.

Fig. 2 a. Allgemeine Plattenstruktur.

Es ist leicht zu sehen, daß die so definierten verallgemeinerten Verschiebungen

zusammen mit dem Verschiebungsansatz für die Elemente ein voll
verträgliches Verschiebungsfeld über die ganze Platte bestimmen. So sind die
Normalableitungen dwjdn längs der Verbindung zweier Knoten i, k in beiden
angeschlossenen ElementVerschiebungsfeldern Polynome 4. Grades von s.

Diese beiden Funktionen haben die 5 Stützwerte (dw\dn)i, (d2w\dnds)i,
dwjdn in der Mitte, (dwjdn)k und (d2wjdnds)k gemeinsam. Sie sind identisch.
Ebenso läßt sich die Gleichheit der Verschiebungen w auf zusammenstoßenden
Elementrändern nachweisen. Störungen der Verträglichkeit können bei sprunghaften

Änderungen von Querschnittswerten oder elastischen Eigenschaften
auftreten. Solche Fälle müssen ausgeschlossen werden, wenn die Lösung eine
untere Schranke der Verschiebungen sein soll. Ein möglicher, aber unpraktischer

Ausweg wäre, die Unstetigkeiten ins Innere der Elemente zu verlegen.
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Das Integral in (10) könnte dann nur noch sehr mühsam automatisch
ausgewertet werden.

Fassen wir die 21 Komponenten von r, die an ein bestimmtes Element e

(1, 2, 3, 4,5, 6) angeschlossen sind, zur Spalte

Qe {wi> w2> w3> dwjdx, dwjdx, dwjdx, dwxjdy, dw2\dy, dwjdy,
dwjdn, dwjdn, dwjdn, fi{, fi2, fi3}

zusammen, so ist die Bestimmung der 21 Polynomkoeffizienten bik aus den
21 Stützwerten in ge ein allgemeines Interpolationsproblem in 2 Dimensionen.
Die notwendigen Gleichungen sind

i 1,2,3,

Sie lassen sich zusammenfassen zu der linearen Relation

Qe=Tebe. (15)

Da diese Gleichung in der Form

b,= T-iQe (16)

benötigt wird, muß die Regularität von T nachgeprüft werden. Zu diesem
Zweck wurden die kleinsten Pivotelemente bei der Inversion von T für den

ganzen Bereich der möglichen Dreiecksformen mit D l, v 0 tabelliert.
Fig. 3 a zeigt einen Schichtlinienplan dieser Tabelle. Singularität kann
offensichtlich nur bei ausgearteten Dreiecksformen eintreten.

Die Formänderungsenergie (10) transformiert sich mit (10 a) und (16) zu

ue ivekbebe }eike9e, (is)
wo ke =T|-ife6eT-i (19)

die Elementsteifigkeit in den Lagekoordinaten der Platte ist. Ebenso erhält
man für die Arbeit der äußeren Lasten

A=b'e"e 9lePe (20)

wo Pe Tt1^ (21)

die verallgemeinerten Elementbelastungen in den Lagekoordinaten der ganzen
Platte sind.

Führt man schließlich die Zuordnung zwischen der Spalte oe und den
Verschiebungen r der ganzen Platte in der Schreibweise von Argyris [10] mit
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3-10

Fig. 3 a. Betrag des kleinsten Pivots bei der Inversion der Matrix T in Abhängigkeit
von der Elementform.

Basis des Dreiecks A—B. Der Pivotbetrag wird über der Spitze C des Dreiecks (variabel)
aufgetragen. Gezeichnet sind die Schichtlinien dieser Funktion.

0
A B

Fig. 3 b. Grenzlinien der unbedingten Konvergenz der iterativen Nachverbesserung der
Inversen von T in Abhängigkeit von der Elementform bei Rechnung mit 8, 11 und

15 Dezimalen.

ee aer (22)

ein, wo ae eine Umordnungsmatrix ist, so erhält man für die elastische
Formänderungsenergie der Platte

U l-^(Z<keae)r^Kr
und für die Arbeit der äußeren Lasten

A=rt(ZaiPe)=r<P.

(23)

(24)
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Nimmt man als Nullpunkt des Potentials der (konservativen) Belastung den

unverzerrten Zustand der Platte, so ist die totale potentielle Energie

0 U=-A.
Aus der Forderung, daß dieser Ausdruck ein Minimum sein muß, folgen die
bekannten Gleichungen der Deformationsmethode

Kr P. (25)

Ein Teil der Komponenten von r wird durch Randbedingungen vorgegeben
sein; da r auch die Plattenmomente enthält, gehen nicht nur gegebene
Verschiebungen oder Verdrehungen, sondern auch freie Ränder u. a. in diese ein,
wobei die Kirchhoffschen Randbedingungen des freien Randes allerdings nicht
erfüllt werden. Bezeichnet der Index U Unbekannte, G gegebene Größen r, so

geht (25) über in
\KVÜ Kvo\ \rv-\ \Pv-\
[Kou K06\[r0\ [po\ (26)

X

X
4x4

H

X
8x8

\7>»x^^ ^>>>^±>±>>ss^\t\\>>Ä>^>>55>>>>>±>5>5$>>>>
5>>5>±>±<«<s SSS^

*
Fig. 4. Quadratische Platte.

Elementnetze

16 x 16 usw.
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Die Bestimmungsgleichungen für die Unbekannten sind jetzt

Kuuru (Pu~~K-uGrG) (27)

während die Reaktionen in den Richtungen vorgegebener Verschiebungen
durch

R KGU rU + KGG rG - PG (28)

gegeben sind.
Um mit anderen voll verträglichen dreieckigen Elementen und mit analytischen

Werten vergleichen zu können, wurde als Zahlenbeispiel die einfach
gelagerte Quadratplatte unter mittiger Einzellast und unter gleichmäßig
verteilter Flächenlast gewählt. Die analytischen Werte finden sich in [13]. Es
wurden 3 verschieden feine Netze verwendet (Fig. 4), wobei aus Symmetriegründen

nur ein Viertel der Platte in die Rechnung einging. Selbstverständlich
wäre es um den Preis eines etwas komplizierteren Rechenprogramms möglich
gewesen, auch die Symmetrie zur Diagonalen auszunützen und mit einem
Achtel der Platte zu rechnen. Ein Vergleich der Genauigkeit ist nur in bezug
auf die Größe des Gleichungssystems (27) sinnvoll, die in Fig. 5 zusammen
mit den Ergebnissen für die Durchbiegung in Plattenmitte angegeben ist. Es

Exakter Wert:
0,01160

4x4 8X8 16x16

Neues Element
Unbekannte

Bazeley [6]1)
Clough [5]1)
Unbekannte

0,01134
33

0,01057
0,01039

12

0,01153
139

0,0113
47

0,01158
567

0,0115
182

Pa2
x-ir

Pa2

Fig. 5 a. Maximale Durchbiegung einer frei aufliegenden, isotropen Quadratplatte unter
Einzellast in Plattenmitte, v — 0,3.

Exakter Wert
0,00406

4x4 8x8 16X16

Neues Element
Unbekannte

Bazeley [6]1)
Clough [5]1)
Unbekannte

0,00393
33

0,00376
0,00371

12

0,00403
139

0,00392
47

0,00405
567

0,00401
182

Fig. 5b. Maximale Durchbiegungen einer frei aufliegenden, isotropen Quadratplatte
unter gleichmäßig verteilter Flächenlast, v — 0,3.

i) Zitiert nach [14].
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bestätigt sich die Erfahrungsregel, daß die Verwendung von Elementen mit
mehr Freiheitsgraden im ganzen gesehen die Rechenzeit abkürzt. Mit
Ausnahme sehr kleiner Probleme trifft dies auch mit Berücksichtigung der Zeit
für die Elementsteifigkeiten zu.

1 3 5
4- + + + - X

2 4

+ mx

Punkt 1 2 3 4 5

Exakt 0,0479 0,0458 0,0390 0,0250 0

4X4 0,0520 0,0370 0

8X8 0,0477 0,0455 0,0385 0,0246 0

16x16 0,0478 0,0457 0,0388 0,0248 0

Fig. 6 a. Plattenmomente mx einer frei aufliegenden, isotropen Quadratplatte unter
gleichmäßig verteilter Flächenlast, v — 0,3.

1 3 5
+ +¦ + + -

2 4

•^p-—
+ my

Punkt 1 2 3 4 5

Exakt 0,0479 0,0448 0,0356 0,0204 0

4x4 0,0520 0,0351 0

8x8 0,0477 0,0446 0,0355 0,0205 0

16x16 0,0478 0,0447 0,0356 0,0205 0

Fig. 6 b. Plattenmomente my einer frei aufliegenden, isotropen Quadratplatte unter
gleichmäßig verteilter Flächenlast, v — 0,3.
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Ein weiterer Vorteil des vorliegenden Elements ist darin zu erblicken, daß
in den verallgemeinerten Verschiebungen die Plattenmomente in den Knoten
inbegriffen sind. Eine nachträgliche Berechnung von Spannungsgrößen aus
Knotenverschiebungen ist überflüssig, sofern nicht Spannungswerte im Ele-
mentinnern verlangt werden. Fig. 6 zeigt den Verlauf der Plattenmomente
in der Plattenmittellinie. Die Vergleichswerte sind aus Timoshenko quadratisch

interpoliert. Die erzielte Genauigkeit ist für Finite-Element-Technik
außerordentlich, ebenso wie die Tatsache, daß die Konvergenz schon beim
8 x 8-Netz für praktische Zwecke abgeschlossen ist.

Die Programmierung des beschriebenen Rechnungsganges für eine digitale
Rechenanlage ist nicht Gegenstand dieses Aufsatzes. In den letzten Jahren
sind mehrere Lehrbücher über Finite-Element-Technik erschienen, die zum
Teil auch Programmbeispiele enthalten ([14], [15], [16]). Dagegen sollen noch
zwei numerische Fragen gestreift werden. Es ist zweckmäßig, die Dicke t der
Platte als Polynom 2. Grades in x und y anzunehmen. Die sechs Werte tx,t2,
£3 A^55£6 an den Ecken und Seitenmitten genügen zur Bestimmung der sechs

Koeffizienten cik von

t (x, y) — c00 + cxo x + cox y + c20 x + cxx xy + c02 y (29)

Wie bei (14) liegt ein Interpolationsproblem in zwei Dimensionen vor. Setzt
man ferner

E const (30)

für das ganze Element, so wird eine formelmäßige Integration von (10a)
möglich. Diese ist für Polynome schneller und genauer als die numerische
Integration nach Gauß, die Zienkiewicz [14] vorgeschlagen hat. Bei großen
Platten mit sehr vielen Elementen kann diese Genauigkeit durchaus erforderlich

sein, um einer numerisch bedingten Divergenz des Verfahrens zu entgehen.
Die einzelnen Integrale in (10 a) haben die Form

I \xlykdxdy.
Fe

(31)

3 x >Y3)

y.jk

2(x2,y2)

VA

1.0

1.0
+» x

Fig. 7. Integration von Polynomen über allgemeine Dreiecksbereiche.

x X2U + X3V, y 7/2 u + 2/3 v.
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Durch eine Transformation

x x2u + x3v, y y2u + y3v (32)

mit der Determinante

2Fe (33)j\ _ \X2 XS\
h/2 y*\

geht das allgemeine Dreieck des x, ^/-Systems in das spezielle des u, ^-Systems
über (siehe Fig. 7). Dann folgt

/ 2Fe[(x2u + x3v)i(y2u + y3v)kdudv (34)
Fe

und durch Ausmultiplizieren erhält man Terme der Form
1 l-V 1

J= \vmdv \undu \vm(l-v)n-1. (35)

0 0 0

Das letzte Integral ist die Definitionsgleichung der Eulerschen Betafunktion,

B(m+l,n + 2)

wofür bei ganzen Zahlen m und n gilt:

B(m+l,n+l)-i (n + 2)lm+2 +
2)> (36)

also J=\unvm /
mlnl^,. (37)

fe (m + n + 2)\
v '

Selbstverständlich müssen alle angedeuteten algebraischen Zwischenschritte
als Manipulation mit Koeffizienten und Exponenten programmiert werden.

Die hohe erforderliche Genauigkeit in den Elementsteifigkeitsmatrizen
stellt große Anforderungen an die Inversion der Matrix in (16). Außer singu-
lären Fällen müssen auch solche ausgeschlossen werden, die zu einem hohen
Stellenverlust führen. Als Kriterium für solche numerische Fastsingularität
wird nach Forsythe und Moler [9] das Konvergenzverhalten der iterativen
Naehverbesserung verwendet. Die Konvergenz dieses Verfahrens ist auch bei
ungünstiger Verteilung der Rundungsfehler gesichert, wenn die Ungleichung

l,01(w8 + 3na)pw||T||0O||r-i||0O<i (38)

erfüllt ist. Darin bedeuten

||. ||oo Maximale Zeilensumme (Holder ^-Norm)
n Die Ordnung der Matrix, hier 21

p Größtes absolutes Pivotelement dividiert durch ||T||
u Einheits-Rundungsfehler, abhängig von Stellenzahl und Rundungsver¬

halten der Maschine
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Der Gültigkeitsbereich von (38) ist in Fig. 3 b für die Präzisionsstufen 8, 11,
bzw. 15 Dezimalstellen dargestellt, entsprechend den üblichen Stellenzahlen
in heutigen Großrechenanlagen bei einfacher Genauigkeit. Die Tatsache, daß

achtstellige Genauigkeit nicht immer ausreicht, hätte das Verfahren im Sinne
der klassischen Statik zur Unbrauchbarkeit verurteilt. Wenn man aber
bedenkt, daß die digitalen Rechner der heute jüngsten Generation fast
ausschließlich 11 und mehr Dezimalstellen mitnehmen, so besteht kein Grund,
diese Präzision nicht auszunützen. Die Bedingung (38) ist außerordentlich
streng, setzt sie doch den außerordentlich unwahrscheinlichen Fall der ungünstigen

Kombination aller Rundungsfeher voraus.
Es ist möglich, das Interpolationsproblem (14) in homogene Dreieckskoordinaten

(siehe Ref. [14]) zu fassen. Dadurch wird Tvon der speziellen Dreiecksform

unabhängig, und die Inversion muß nur einmal ausgeführt werden. Das
numerische Problem bei gestreckten Elementen wird dadurch in die
Transformation von kbe verlegt.
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Zusammenfassung

Es wird ein neuer, rein verträglicher Ansatz für ein Plattenelement von
allgemeiner Dreiecksform mit beliebigem, symmetrischem Dickenverlauf
angegeben. Die Plattenmomente in den Ecken der Elemente gehen als
verallgemeinerte Verschiebungen in die Gleichungen der Deformationsmethode ein.
Eine nachträgliche Berechnung von Spannungen aus Verschiebungen entfällt.

Ein Beispiel zeigt, daß bei kleinerem, numerischem Aufwand bessere

Genauigkeiten als bei früheren Finite-Element-Lösungen zu erwarten sind.
Bei den Spannungen ist die Verbesserung besonders deutlich.

Summary

A new, fully compatible plate-bending element of arbitrary triangulär
shape and arbitrary variable Symmetrie cross-section for use in finite-element
analysis is presented. The bending moments at the element corners are entered
as generalized displacements into the equations of equilibrium, along with the
usual nodal displacements and rotations.

An example compares the new approach with earlier finite-element
Solutions of the compatible type. Better results are obtained with fewer equations,
and no a — posteriori computation of stresses from displacements is necessary.

Besume

On presente un element fini triangulaire purement compatible pour le
calcul des plaques ä epaisseur variable.

Les moments de plaque aux coins des elements entrent dans les equations
de la methode des deformations en tant que deplacements generalises. Ainsi le
calcul ulterieur des tensions ä partir des deplacements n'est plus necessaire.

Un exemple montre que cette methode donne, avec moins d'equations,
une exaetitude meilleure que les methodes precedentes d'elements finis.
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