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Ein neues, vollvertriigliches endliches Element fiir Plattenbiegung

A New, Fully Compatible Finite Element for Plate Bending

Un nouvel élément fini purement compatible pour le calcul des plaques fléchies

W. BOSSHARD
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Pe Verallgemeinerte Knotenbelastung am Element

P Verallgemeinerte Belastung der Struktur

Bei der Beurteilung von Plattenelementen fiir die Finite-Element-Technik
sind zwei Gesichtspunkte mafgebend: Erstens die Reinheit des Ansatzes.
Reine Verschiebungsansitze erfiillen die Vertraglichkeitsbedingungen iiberall,
die Gleichgewichtsbedingungen nur an der diskretisierten Struktur. Es kann
gezeigt werden [1, 2], daB in diesem Falle die elastische Forménderungsenergie
zu hoch, die Arbeit der duBleren Belastung zu klein eingeschéitzt wird. Grob
gesagt werden also die Verschiebungen unter den Lasten zu klein ausfallen.
Werden umgekehrt die Gleichgewichtsbedingungen iiberall erfiillt, die Ver-
traglichkeitsbedingungen dagegen nur an der diskretisierten Struktur, so wer-
den — wieder grob formuliert — die Verschiebungen unter den Lasten zu gro83
errechnet. Diese obere oder untere Schranken-Eigenschaft eines Ansatzes ist
fiir den Ingenieur von erheblicher Bedeutung. Zweitens wird man nach den
Konvergenzeigenschaften bei fortgesetzter Feinerteilung der Struktur fragen.
Beweise fiir Konvergenz der Verschiebungen zu den exakten elastizitéts-
theoretischen Werten sind bisher nur fiir sehr einfache Verschiebungsansitze
gefithrt worden [3].

Ein allgemeines hinreichendes Kriterium fiir monotone Konvergenz der
minimalen potentiellen Energie hat MELOSH [4] angegeben: es muf3 mdglich
sein, durch geeignete Wahl der verallgemeinerten Verschiebungen der feiner
geteilten Struktur exakt den Verschiebungszustand minimaler potentieller
Energie der grober geteilten Struktur zu geben. Damit kann die minimale
potentielle Energie der feiner geteilten Struktur nur kleiner oder gleich jener
der grober geteilten sein. Von den heute bekannten reinen Verschiebungs-
ansidtzen fiir allgemeine Plattenelemente [5, 6,7, 8] geniigt keiner dem Kri-
terium von MELOSH. Zudem weisen alle mehr oder weniger starke Unstetig-
keiten der Plattenmomente in den Elementecken auf. Es erstaunt nicht, daf3
die Resultate, insbesondere die berechneten Plattenmomente, dem Vergleich
mit &dlteren Naherungsverfahren (endliche Differenzen) nicht standhalten.

Ein reiner Gleichgewichtsansatz fiir dreieckige Elemente ist von MORLEY
angegeben worden [12].

Im folgenden wird ein Verschiebungsansatz angegeben, der dem Kriterium
von MELOSH geniigt und zudem die Plattenmomente in den Elementecken
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stetig iibertragt. Die Untersuchung erstreckt sich auf Plattenelemente von
allgemeiner Dreiecksform und beliebiger, stetiger, schwachverinderlicher
Dickenverteilung (siehe Fig. 1). Symmetrie zu einer Mittelebene wird voraus-

W

Fig. 1. Allgemeines dreieckiges Plattenelement mit verdnderlicher Dicke und beliebiger
Belastung.

gesetzt. Die einschrinkenden Voraussetzungen sind jene der technischen
Plattentheorie. Insbesondere wird die Mittelebene dehnungslos vorausgesetzt,
und die Schubverzerrungen werden vernachlissigt. Dann gelten die Beziehun-
gen

£€=—2% (1)

fiir die Verzerrungen. Das Elastizitatsgesetz in der Plattenebene x,y fiir belie-
bige Anisotropie kann in der Form

c=FEe¢ (2)

angeschrieben werden. Die Plattenmomente sind in der iiblichen Weise defi-

niert als
+t/2 +1/2 +1/2
m, = [o,zdz, m, = [o,2dz, My, = — [1,,2dz (3)
—t/2 —1/2 —42

oder, mit (1) und (2)

mﬂ;
+1/2 13
n = m, | =—(Exz?dz=—~-—-Enx. (4)
—m —t3 12

xy
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Als Ansatz fir die Durchbiegungen w eines Elementes wéhlen wir das voll-
standige Polygon 5. Grades
W = bog 1 +byg@ +boy Y + bog @% + byy Y + Do Y2 + bgo ¥° + byy 2%y + by 2y
+ bog Y%+ bgo @t +bgy XY + bop 22 Y? + byg Y + bog Yt + bso 0 + byy 2ty (5)
+ b3 @ Y? + by 2 Y3 + byg 2yt + b5 Y

mit 21 Koeffizienten b;;, . Wir bilden aus den Teilfunktionen — in obenstehender
Reihenfolge — die Zeile

f= [1,x,y,...xy4,y5] (6)

und damit die Matrix (3 x 21).

0% .. X
'3—;2 ...'L(@—l)xz—zyk...
0% .
fa= ¢ | f=1.-k(k=Y)aty*2 .. | (7)
0? ey
Qﬁxay co. 20 kaitykl |

Die Koeffizienten b, ordnen wir genauso zur Spalte
b, = {bgo> 10, D01 - - - Dos}- (8)

Sie bilden einen Satz von Lagekoordinaten [11] fiir das Element. Mit der
Wahl der Funktionen f haben wir somit eine Diskretisierung des Problems
vorgenommen. An dieser Stelle wird die Verwandtschaft zwischen Finite-
Element-Technik und dem Verfahren von Raleigh-Ritz augenfillig. Mit der
Matrix (7) ist

x=fab, (9

und damit schreiben wir die Forménderungsenergie des Elementes

Ue=%rffea‘st=%bg ” (%)ijfAdF] b,. (10)

e

Die Matrix in den eckigen Klammern ist die Steifigkeitsmatrix des Elementes
in den Lagekoordinaten b, :

kbe=f(-g)fAtEfAdF. (10a)

F,

Die Arbeit der dulleren Belastung q (z,y) am Klement ist

A,=[qwdF = b, [qftdF. (11)
e e
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Die Groflien
7, = [qftdF (12)
Fe

sind die verallgemeinerten dufleren Lasten am Element.

Um die totale potentielle Energie einer aus Elementen zusammengesetzt
gedachten Platte geschlossen anschreiben zu kénnen, miissen wir die Lage-
koordinaten b, der Elemente aus einem geeigneten Satz von Lagekoordinaten
r der Platte ausrechnen. In die Spalte r lassen wir eingehen (siehe Fig. 2):

— Die vertikalen Verschiebungen w und deren Ableitungen dw/dx, dw/dy in
den Knoten.

— Die Ableitungen dw/on in den Mittelpunkten zwischen den Knoten. Die
Normalen n» werden konventionell gerichtet in den 1. oder 2. Quadranten
der z,y-Ebene (4 x-Achse eingeschlossen, —z-Achse ausgeschlossen).

— Die Plattenmomente x in den Knoten. Diese Wahl mag auf den ersten
Blick tiiberraschen. Formal sind die Momente jedoch nichts weiter als
Linearkombinationen von VerschiebungsgroBen.

Fig. 2b. Idealisierte Struktur.

Fig. 2a. Allgemeine Plattenstruktur.

Es ist leicht zu sehen, daB die so definierten verallgemeinerten Verschiebun-
gen zusammen mit dem Verschiebungsansatz fir die Elemente ein voll ver-
tragliches Verschiebungsfeld iiber die ganze Platte bestimmen. So sind die
Normalableitungen ¢w/dn lings der Verbindung zweier Knoten ¢,k in beiden
angeschlossenen Elementverschiebungsfeldern Polynome 4. Grades von s.
Diese beiden Funktionen haben die 5 Stiitzwerte (dw/dn);, (P*w[onds);,
dwldn in der Mitte, (dw/dn), und (0*w[on 0s), gemeinsam. Sie sind identisch.
Ebenso 188t sich die Gleichheit der Verschiebungen w auf zusammenstoBenden
Elementréandern nachweisen. Storungen der Vertriglichkeit konnen bei sprung-
haften Anderungen von Querschnittswerten oder elastischen Eigenschaften
auftreten. Solche Fille miissen ausgeschlossen werden, wenn die Losung eine
untere Schranke der Verschiebungen sein soll. Ein mdéglicher, aber unprak-
tischer Ausweg wire, die Unstetigkeiten ins Innere der Elemente zu verlegen.
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Das Integral in (10) kénnte dann nur noch sehr mithsam automatisch ausge-
wertet werden.

Fassen wir die 21 Komponenten von r, die an ein bestimmtes Element e
(1,2, 3, 4,5, 6) angeschlossen sind, zur Spalte

0, = {wy, Wy, Wy, 0w, [0x, OWy|0x, DWws[Ox, Ow,[0Y, OW,[0Y, dws/0Y, 13
duwylon, dwylon, dwglon, ph, uh, b} (19)
zusammen, so ist die Bestimmung der 21 Polynomkoeffizienten b,, aus den
21 Stiitzwerten in g, ein allgemeines Interpolationsproblem in 2 Dimensionen.
Die notwendigen Gleichungen sind

0 ow 0
w=fennibe (57 = (a—ozf )xl ” (ey), = 7)., o
= 1’ b
ow 0 0 .
(%),‘ - [eos (n; ) (ﬁf)xj,yi-i-cos( iY) (3?/f)x,-,y,] b, (j=4,5,6)
3
und "y = —%Efd (x'wyz) be> (7’ =1, 2, 3) (14)

Sie lassen sich zusammenfassen zu der linearen Relation
Q.= Te be' (15)

Da diese Gleichung in der Form
b,=T, e, (16)

bendtigt wird, mufl die Regularitit von T nachgeprift werden. Zu diesem
Zweck wurden die kleinsten Pivotelemente bei der Inversion von T fiir den
ganzen Bereich der mdglichen Dreiecksformen mit D=1, v=0 tabelliert.
Fig. 3a zeigt einen Schichtlinienplan dieser Tabelle. Singularitdt kann offen-
sichtlich nur bei ausgearteten Dreiecksformen eintreten.

Die Forméanderungsenergie (10) transformiert sich mit (10a) und (16) zu

U,=3bk,b,=30lk.0., (18)
Wwo k, = Tk, T (19)
die Elementsteifigkeit in den Lagekoordinaten der Platte ist. Ebenso erhilt
man fiir die Arbeit der duBleren Lasten
4, = bi 7, = @, p. (20)
wo P.= Té_lne (21)
die verallgemeinerten Elementbelastungen in den Lagekoordinaten der ganzen
Platte sind.

Fiihrt man schliellich die Zuordnung zwischen der Spalte g, und den Ver-
schiebungen r der ganzen Platte in der Schreibweise von ARGYRTS [10] mit
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3-1072
\ /
N c 1072
A
\ / // \\

-3

BN \ 7 [~ 10
A B

Fig. 3a. Betrag des kleinsten Pivots bei der Inversion der Matrix 7' in Abhéngigkeit
von der Elementform.

Basis des Dreiecks A—B. Der Pivotbetrag wird uber der Spitze C des Dreiecks (variabel)
aufgetragen. Gezeichnet sind die Schichtlinien dieser Funktion.

1
7 \ 7/l

t // | /
| /], ]

8//

NPT e

A B

Fig. 3b. Grenzlinien der unbedingten Konvergenz der iterativen Nachverbesserung der
Inversen von T in Abhéngigkeit von der Elementform bei Rechnung mit 8, 11 und
15 Dezimalen.

Q. = a,r (22)

ein, wo a, eine Umordnungsmatrix ist, so erhélt man fur die elastische Form-
dnderungsenergie der Platte

1 1
U=§rt(§a’ékeae)r=§r‘Kr (23)

und fir die Arbeit der duBBeren Lasten

A=r(Yaip) =rP. (24)
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Nimmt man als Nullpunkt des Potentials der (konservativen) Belastung den
unverzerrten Zustand der Platte, so ist die totale potentielle Energie

dU=-4.

Aus der Forderung, dafl dieser Ausdruck ein Minimum sein muf}, folgen die
bekannten Gleichungen der Deformationsmethode

Kr=P. (25)

Ein Teil der Komponenten von r wird durch Randbedingungen vorgegeben
sein; da r auch die Plattenmomente enthilt, gehen nicht nur gegebene Ver-
schiebungen oder Verdrehungen, sondern auch freie Riander u.a. in diese ein,
wobei die Kirchhoffschen Randbedingungen des freien Randes allerdings nicht
erfiillt werden. Bezeichnet der Index U Unbekannte, G gegebene GroBen r, so

geht (25) iiber in
[KUUKUG] ['”U] _ [PU] (26)
Koy  Keal Lre P

R R

4% 4 8x8

K

Fig. 4. Quadratische Platte.
Elementnetze

e

16 X 16 usw.
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Die Bestimmungsgleichungen fiir die Unbekannten sind jetzt
Kyyry = (Py—Kygre) (27)

wihrend die Reaktionen in den Richtungen vorgegebener Verschiebungen
durch

R =Ksyry+Kggra—Pg (28)
gegeben sind.

Um mit anderen voll vertriglichen dreieckigen Elementen und mit analyti-
schen Werten vergleichen zu koénnen, wurde als Zahlenbeispiel die einfach
gelagerte Quadratplatte unter mittiger Einzellast und unter gleichméfig ver-
teilter Flichenlast gew#hlt. Die analytischen Werte finden sich in [13]. Es
wurden 3 verschieden feine Netze verwendet (Fig. 4), wobei aus Symmetrie-
griinden nur ein Viertel der Platte in die Rechnung einging. Selbstverstandlich
wire es um den Preis eines etwas komplizierteren Rechenprogramms moglich
gewesen, auch die Symmetrie zur Diagonalen auszuniitzen und mit einem
Achtel der Platte zu rechnen. Ein Vergleich der Genauigkeit ist nur in bezug
auf die GroBle des Gleichungssystems (27) sinnvoll, die in Fig. 5 zusammen
mit den Ergebnissen fir die Durchbiegung in Plattenmitte angegeben ist. Es

Exakter Wert: dxd 8x 8 16 % 16

0,01160

Neues Element 0,01134 0,01153 0,01158 Pa?
Unbekannte 33 139 567 “B
BazreLEY [6]1) 0,01057 — — Paz
CrouaGH [5]1) 0,01039 0,0113 0,0115 X D
Unbekannte 12 47 182

Einzellast in Plattenmitte. v = 0,3.

Fig. 5a. Maximale Durchbiegung einer frei aufliegenden, isotropen Quadratplatte unter

Exalter Wert 4x4 88 16 % 16
0,00406

Neues Element 0,00393 0,00403 0,00405
Unbekannte 33 139 567
BazrLEy [6]1) 0,00376 — —
CroucH [5]1) 0,00371 0,00392 0,00401
Unbekannte 12 47 182

Fig. 5b. Maximale Durchbiegungen einer frei aufliegenden, isotropen Quadratplatte

unter gleichmé#Big verteilter Flidchenlast. v = 0,3.

1) Zitiert nach [14].
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bestatigt sich die Erfahrungsregel, daff die Verwendung von Elementen mit
mehr Freiheitsgraden im ganzen gesehen die Rechenzeit abkiirzt. Mit Aus-
nahme sehr kleiner Probleme trifft dies auch mit Beriicksichtigung der Zeit
fiir die Elementsteifigkeiten zu.

1 3 |5
+ 4+ 4+ +91—-
2 4 L
+my
Punkt 1 2 3 4 5
Exakt 0,0479 0,0458 0,0390 0,0250 0
44 0,0520 — 0,0370 — 0
8% 8 0,0477 0,0455 0,0385 0,0246 0
16X 16 0,0478 0,0457 0,0388 0,0248 0
Fig. 6a. Plattenmomente m; einer frei aufliegenden, isotropen Quadratplatte unter
gleichméBig verteilter Fliachenlast. » = 0,3.
t 3 5
+ + + + A
2 4
-
+my
Punkt 1 2 3 4 5
Exakt 0,0479 0,0448 0,0356 0,0204 0
4x4 0,0520 — 0,0351 — 0
8x8 0,0477 0,0446 0,0355 0,0205 0
16X 16 0,0478 0,0447 0,0356 0,0205 0

Fig. 6b. Plattenmomente my einer frei aufliegenden, isotropen Quadratplatte unter

gleichméBig verteilter Flichenlast. v = 0,3.
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Ein weiterer Vorteil des vorliegenden Elements ist darin zu erblicken, daf}
in den verallgemeinerten Verschiebungen die Plattenmomente in den Knoten
inbegriffen sind. Eine nachtrigliche Berechnung von Spannungsgréfien aus
Knotenverschiebungen ist tiberfliissig, sofern nicht Spannungswerte im Ele-
mentinnern verlangt werden. Fig. 6 zeigt den Verlauf der Plattenmomente
in der Plattenmittellinie. Die Vergleichswerte sind aus TIMOSHENKO quadra-
tisch interpoliert. Die erzielte Genauigkeit ist fiir Finite-Element-Technik
auflerordentlich, ebenso wie die Tatsache, dall die Konvergenz schon beim
8 x 8-Netz fiir praktische Zwecke abgeschlossen ist.

Die Programmierung des beschriebenen Rechnungsganges fiir eine digitale
Rechenanlage ist nicht Gegenstand dieses Aufsatzes. In den letzten Jahren
sind mehrere Lehrbiicher iiber Finite-Element-Technik erschienen, die zum
Teil auch Programmbeispiele enthalten ([14], [15], [16]). Dagegen sollen noch
zwei numerische Fragen gestreift werden. Es ist zweckméBig, die Dicke ¢ der
Platte als Polynom 2. Grades in « und y anzunehmen. Die sechs Werte ¢,,%,,
t3,ts, 15,1 an den Kcken und Seitenmitten geniigen zur Bestimmung der sechs
Koeffizienten c;;, von

t(2,Y) = Coo+C10% +Con Y + Cap @2+ 1y XY + Co Y. (29)

Wie bei (14) liegt ein Interpolationsproblem in zwei Dimensionen vor. Setzt
man ferner
E = const (30)

fiir das ganze Element, so wird eine formelmifige Integration von (10a)
moglich. Diese ist fiir Polynome schneller und genauer als die numerische
Integration nach Gaul}, die Z1ENKIEWICZ [14] vorgeschlagen hat. Bei groBlen
Platten mit sehr vielen Elementen kann diese Genauigkeit durchaus erforder-
lich sein, um einer numerisch bedingten Divergenz des Verfahrens zu entgehen.
Die einzelnen Integrale in (10a) haben die Form

I = [2tykdxdy. (31)
F,
3(x3,y3)
yA Vi
1.0
3
2(x21y2)
1 - X 2\, = U
10

Fig. 7. Integration von Polynomen iiber allgemeine Dreiecksbereiche.

T=x2U+2X30, Y=Y2U+Ys.
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Durch eine Transformation

X =2TyU+2X30, Y =YU+Ysv (32)

mit der Determinante
— |*2 “3] —2F 33
[?/2 Ys ¢ (33)

geht das allgemeine Dreieck des z,y-Systems in das spezielle des u, v-Systems
iiber (siehe Fig. 7). Dann folgt

I = 28, [ (@ ut a3 0)F (g u+y; 0)* dudo (34)
F,
und durch Ausmultiplizieren erhélt man Terme der Form
1 1-v . 1
— n — — —1
J fvmdvfu du g fvm (1 —v)n 1, (35)
0 0 0

Das letzte Integral ist die Definitionsgleichung der Eulerschen Betafunktion,
B(m+1,n+2)

wofiir bei ganzen Zahlen m und n gilt:

B(m—l—l,n+1)—1=(n+2)(m+7:+2), (36)
nom _  min!
aalSO J —-jj:éu v ——m (37)

Selbstverstindlich miissen alle angedeuteten algebraischen Zwischenschritte
als Manipulation mit Koeffizienten und Exponenten programmiert werden.
Die hohe erforderliche Genauigkeit in den Elementsteifigkeitsmatrizen
stellt groBe Anforderungen an die Inversion der Matrix in (16). AuBer singu-
liren Féllen miissen auch solche ausgeschlossen werden, die zu einem hohen
Stellenverlust fiithren. Als Kriterium fiir solche numerische Fastsingularitit
wird nach ForsyTHE und MoLER [9] das Konvergenzverhalten der iterativen
Nachverbesserung verwendet. Die Konvergenz dieses Verfahrens ist auch bei
ungiinstiger Verteilung der Rundungsfehler gesichert, wenn die Ungleichung

1,01 (n®+3n2) pul||T|. || T Y.<} (38)

erfiillt ist. Darin bedeuten

|||l Maximale Zeilensumme (Holder ,,-Norm)

n Die Ordnung der Matrix, hier 21

P Grofites absolutes Pivotelement dividiert durch ||T||

U Einheits-Rundungsfehler, abhingig von Stellenzahl und Rundungsver-
halten der Maschine
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Der Giiltigkeitsbereich von (38) ist in Fig. 3b fiir die Prézisionsstufen 8, 11,
bzw. 15 Dezimalstellen dargestellt, entsprechend den iiblichen Stellenzahlen
in heutigen GroBrechenanlagen bei einfacher Genauigkeit. Die Tatsache, da@
achtstellige Genauigkeit nicht immer ausreicht, hitte das Verfahren im Sinne
der klassischen Statik zur Unbrauchbarkeit verurteilt. Wenn man aber
bedenkt, daf3 die digitalen Rechner der heute jiingsten Generation fast aus-
schliellich 11 und mehr Dezimalstellen mitnehmen, so besteht kein Grund,
diese Préazision nicht auszuniitzen. Die Bedingung (38) ist auBlerordentlich
streng, setzt sie doch den auBerordentlich unwahrscheinlichen Fall der ungiin-
stigen Kombination aller Rundungsfeher voraus.

Es ist moglich, das Interpolationsproblem (14) in homogene Dreieckskoordi-
naten (siehe Ref. [14]) zu fassen. Dadurch wird T von der speziellen Dreiecks-
form unabhingig, und die Inversion mufl nur einmal ausgefithrt werden. Das
numerische Problem bei gestreckten Elementen wird dadurch in die Trans-
formation von k;, verlegt.
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Zusammenfassung

Es wird ein neuer, rein vertriglicher Ansatz fiir ein Plattenelement von
allgemeiner Dreiecksform mit beliebigem, symmetrischem Dickenverlauf ange-
geben. Die Plattenmomente in den Ecken der Elemente gehen als verall-
gemeinerte Verschiebungen in die Gleichungen der Deformationsmethode ein.
Eine nachtrigliche Berechnung von Spannungen aus Verschiebungen entfillt.

Ein Beispiel zeigt, daBl bei kleinerem, numerischem Aufwand bessere
Genauigkeiten als bei fritheren Finite-Element-Losungen zu erwarten sind.
Bei den Spannungen ist die Verbesserung besonders deutlich.

Summary

A new, fully compatible plate-bending element of arbitrary triangular
shape and arbitrary variable symmetric cross-section for use in finite-element
analysis is presented. The bending moments at the element corners are entered
as generalized displacements into the equations of equilibrium, along with the
usual nodal displacements and rotations.

An example compares the new approach with earlier finite-element solu-
tions of the compatible type. Better results are obtained with fewer equations,
and no a — posteriori computation of stresses from displacements is necessary.

Résumé

On présente un élément fini triangulaire purement compatible pour le
calcul des plaques a épaisseur variable.

Les moments de plaque aux coins des éléments entrent dans les équations
de la méthode des déformations en tant que déplacements généralisés. Ainsi le
calcul ultérieur des tensions & partir des déplacements n’est plus nécessaire.

Un exemple montre que cette méthode donne, avec moins d’équations,
une exactitude meilleure que les méthodes précédentes d’éléments finis.
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